
Spectral Graph Theory and its Applications Lecture 14

Distances in Point Sets

Lecturer: Daniel A. Spielman October 21, 2004

14.1 Distances in Point Sets

In this lecture, we will prove two theorems relating distances in point sets to the Gram matrices
of eigenspaces. The first will be an upper bound on the number of points in a distance-2 set. This
provides a lower bound on the dimensions of the eigenspaces of strongly-regular graphs.

The second theorem will be a reformulation of the linear programming bound of Delsarte. The
LP bound enables us to upper bound the number of codewords in an error-correcting code of high
minimum distance. We will prove this bound by examining the Gram matrices of the eigenspaces
of the hypercube. We will merely apply the LP bound to prove the Plotkin bound. However, the
best bounds on error-correcting codes can also be proved this way.

14.2 Distance-two sets

Let x1, . . . , xn be a set of points in IRf such that there are three values α, β and γ such that

〈xi, xj〉 =

{
α if i = j,
β or γ otherwise.

We remark that if all the points are distinct, then we must have β, γ < α. We will now prove an
upper bound on n in terms of f .

The key to our proof is to define an f -variate polynomial for each point. In particular, we set

pi(y) = (〈y, xi〉 − β)(〈y, xi〉 − γ).

We first note that each polynomial pi is an f -variate polynomial of degree 2. As each f -variate
polynomial of degree 2 can be expressed in the form

a +
∑

i

biyi +
∑
i≤k

ci,jyiyj ,

we see that the vector space of degree-2 polynomials in f variables has dimension

1 + 2f +
(

f

2

)
.
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To prove an upper bound on n, we will show that these polynomials are linearly independent.
Assume by way of contradiction that they are not. Then, without loss of generality, there exist
coefficients α1, . . . , αn with α1 6= 0 and ∑

i

αipi(y) = 0.

To obtain a contradiction, plug in y = x1, to find∑
i

αipi(x1) = α1p1(x1) 6= 0.

Thus, we may conclude

n ≤ 1 + 2f +
(

f

2

)
.

14.3 The Linear Programming Bound

We now explain a version of Delsarte’s linear programming bound. Let C ⊂ {0, 1}n be an error-
correcting code of minimum distance ∆. Delsarte’s linear programming bound enables us to prove
upper bounds on |C| in terms of n and ∆. The tool we will use in these bounds is an analysis of
the Gram matrix of the eigenspaces of the hypercube Hn.

Recall that the adjacency matrix of Hn has eigenvalues n − 2k for k = 0, . . . , n, and that the kth
eigenspace is spanned by the vectors χw where w ∈ {0, 1}n, |w| = k, and we recall

χw(x) = (−1)〈w,x〉.

Let Uk denote the 2n-by-
(
n
k

)
matrix whose columns are the eigenvectors of the kth eigenspace, and

let
Ek = UkU

T
k .

Then, the (x, y) entry of Ek equals

Ek(x, y) =
∑

w:|w|=k

χw(x)χw(y)

=
∑

w:|w|=k

(−1)〈w,x〉(−1)〈w,y〉

=
∑

w:|w|=k

(−1)〈w,x⊕y〉

=
∑

w:|w|=k

χw(x⊕ y).

So, this entry only depends upon x⊕ y.

Here is Delsarte’s linear programming bound.
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Theorem 14.3.1. Let α1, . . . , αn ≥ 0, α0 = 1, and let

A =
n∑

k=0

αkEk.

If for all x and y that differ in at least ∆ coordinates, A(x, y) ≤ 0, then every code C ⊂ {0, 1}n of
minimum distance ∆ satisfies

|C| ≤ A(0,0).

Proof. Let C ∈ IR2n
be the characteristic vector of C. Recall that E0 = J , the all-1’s matrix. We

now compute
CT JC =

∑
x∈C

∑
y∈C

1 = |C|2 .

We also note that each matrix Ek is positive semi-definite, so

CT EkC ≥ 0

One can also see that by observing

CT EkC = CT UkU
T
k C = (UT

k C)T (UT
k C) ≥ 0.

Finally, as A(x, y) ≤ 0 for each x and y that differ in at least ∆ coordinates,

CT AC ≤ CTdiag(A)C,

where by diag(A) we mean the matrix containing just the diagonal elements of A. Putting these
inequalities together, we find

|C|2 ≤ CT JC

≤ CT JC +
∑
k≥1

αkC
T EkC

= CT AC

≤ CTdiag(A)C
= |C|A(0,0).

To actually apply this theorem, we must find linear combinations of the Ek matrices that have
negative entries for all far apart x and y. Let’s begin by examining E1. In our analysis, I will let
ei denote the elementary unit vector that is 1 in the ith coordinate. We have

E(x, y) =
∑
|w|=1

χw(x⊕ y)

=
∑

1≤i≤n

χei(x⊕ y)

= (n− |x⊕ y|)− |x⊕ y|
= n− 2 |x⊕ y|).
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So, consider the polynomial
A = E0 + E1.

We have A(x, y) ≤ 0 for |x⊕ y| ≥ n/2. We will use this to prove the Plotkin bound.

Theorem 14.3.2. Let n = 2l + 1 and ∆ = l + 1. Then, every code C of minimum distance ∆ has
at most n + 1 codewords.

Proof. The matrix A satisfies the conditions of Theorem 14.3.1, so

|C| ≤ A(0,0) = 1 + n,

as E1(0,0) = n.

14.4 An almost-matching point set

To show that we can come very close to the bound of Theorem 14.3.2, consider the following set of
2d points in IR2d

. Each point will be represented as a vector indexed by entries of x ∈ {0, 1}d. For
w ∈ {0, 1}d, the point pw will have coordinates

pw(x) = (1 + χw(x))/2.

From our proof a few lectures ago that the characteristic vectors were orthogonal, we can see that
each of these points differ in half their coordinates. Morover, we can double the size of the point
set by taking every point pw and its complement. We thereby obtain 2n points in {0, 1}n that each
differ in at least n/2 coordinates.


