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21.1 Tutte’s Theorem

We usually think of graphs as being specified by vertices and edges. But, planar graphs have
another fundamental unit: faces. Formally, a face in a planar graph is a minimal simple cycle of
edges.

Tutte proved that if one takes a 3-connected planar graph, fixes the vertices of one face so that
the vertices are the corners of a convex polygon, and the edges the edges, and then let every other
vertex be the average of its neighbors, then one obtains a planar straight-line embedding of the
graph.

The only property that we will use of 3-connected graphs in the proof is that for every 5 vertices
u, v0, v1, s, t there are either

• vertex-disjoint paths from v0 to s and v1 to t that do not go through u, or

• vertex-disjoint paths from v0 to t and v1 to s that do not go through u.

I’ll present a proof of Tutte’s theorem from the paper “One-Forms on Meshes and Applications to
3D Mesh Parameterization” by Gortler, Gotsman and Thurston (Harvard CS TR-12-04).

The only fact about Tutte embeddings that we will use in the proof is that every non-boundary
vertex is a strict convex combination of its neighbors. That is, is can be written as a sum of its
neighbors with non-zero coefficients.

21.2 Planarity

Given some planar embedding of a planar graph, we can define an orientation of the edges of every
face. By default, we will assume that the edges of all internal faces are oriented clockwise, and
the external face is oriented counter-clockwise. Whenever we consider an edge at a face, we will
consider it with its orientation.

A Tutte embedding assigns to each vertex u coordinates (x(u), y(u)). We let (G, x, y) denote a
Tutte embedding. For a face f in the graph, we say that the embedding of f is convex if the
polygon corresponding to the face is convex. That is, if v1, . . . , vk are the vertices on the face in
order, then no horizontal line crosses more than two of the edges (vi−1, vi), where we take v0 = vk.
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We say that the face is strictly convex if in addition we have that

1. no edge has zero length,

2. the angle at each vertex lies strictly between 0 and π, and

3. the face has non-zero area.

(note that the third is implied by the first and second).

For a vertex u, let v1, . . . , vk denote its neighbors in order. We can then consider the angles in
the embedding between vi−1 and vi at u. We denote these angles α1, . . . , αk. As u is a convex
combination of its neighbors, we have

∑
i αi ≥ 2π. We say that u is a wheel if

∑
i αi = 2π. We say

that u is a strict wheel if in addition each αi is strictly between 0 and π.

We will make use of the following proposition, whose proof I leave as an exercise.

Proposition 21.2.1. If (G, x, y) is a Tutte embedding of a planar graph in which every internal

face is strictly convex and every internal vertex is a strict wheel, then it is a planar straight-line

embedding of G.

Our proof that Tutte embeddings are planar will follow from the following two theorems.

Theorem 21.2.2. In a Tutte embedding of a planar graph, every face is convex and every vertex

is a wheel.

Theorem 21.2.3. In a Tutte embedding of a three-connected planar graph, there are no edges of

zero length, no angles of 0 or π and no faces of zero volume.

21.3 Potentials

We will begin by establishing the notation we need to prove Theorem 21.2.2. Our first step will be
to define a potential to be a map from the vertex set of the graph to the reals: σ : V → IR. We say
that a potential is valid if for all edges (u, v), σ(u) 6= σ(v).

We say that two edges (u, v0) and (u, v1) are a corner if u, v0 and v1 all lie on some face, with u

between v0 and v1 in the orientation of the face.

Given a potential f , we define a change to be a corner (u, v0), (u, v1) such that

1. some face contains both edges with orientation (v0, u) and (u, v1), and

2. sign(σ(u) − σ(v0)) 6= sign(σ(u) − σ(v1)).

Note that a change can be associated with both the face and the vertex u.

For each vertex u, we define

changes(u) = the number of changes at u
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and for each face f , we define

changes(f) = the number of changes at f.

Note that to counte the changes at f we must be careful to consider the orientations.

Proposition 21.3.1. For every valid potential,

∑

u

changes(u) =
∑

f

changes(f).

At faces, we will be more interested in the number of non-changes, defined by

non − changes(f) = the number of sides of f − changes(f).

Proposition 21.3.2. For every valid potential on a planar graph

∑

u

changes(u) +
∑

f

non − changes(f) = 2(V − 2) + F,

where V is the number of vertices and F is the number of faces in the graph.

Proof. We have

∑

u

changes(u) +
∑

f

non − changes(f) =
∑

u

changes(u) +
∑

f

(sides(f) − changes(f))

=
∑

f

sides(f)

= 2E,

where E is the number of edges in the graph. The proposition now follows from Euler’s Theorem,
which says V − E + F = 2.

Given a potential, we will say that a vertex u is bracketed by its neighbors if it has some neighbors
vi and vj for which σ(vi) ≤ σ(u) ≤ σ(vj).

The key to the proof of Theorem 21.2.2 is:

Lemma 21.3.3. Let σ be a valid potential on a planar graph in which there are unique vertices of

maximum and minimum potential, and every other vertex is bracketed by its neighbors. Then,

1. For every non-extreme vertex u, changes(u) = 2. and

2. For every face f , non − changes(f) = 2.
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Proof. As each of the non-extreme vertices are bracketed by their neighbors, each of them must
have at least two changes.

Similarly, for each face, each local minimum and maximum of the potential must contribute a
non-change. So, each face must have at least two non-changes.

Now, if each non-extreme vertex has the minimal possible number of changes, 2, each extreme
vertex has no changes, and each face has the minimal possible number of non-changes, 2, then we
get ∑

u

changes(u) +
∑

f

non − changes(f) = 2(V − 2) + F.

As this agrees with Proposition 21.3.2, each of these values must be at their minimum.

For all but a finite number of lines through the origin, the projection of a Tutte embedding onto
that line is a potential satisfying the conditions of Lemma 21.3.3 .

21.4 Proof of Theorem 21.2.2

Let (G, x, y) be a Tutte embedding, and let f be a face. If f is not convex, then there is a continuous
family of lines that cut f in at least 4 edges. Thus, we can find a line that cuts f in at least 4
edges such that the projection of the embedding onto f is a valid potential. Moreover, because each
vertex in a Tutte embedding is a convex combination of its neighbors, each non-extreme vertex is
bracketed by its neighbors. However, between each consecutive pair of edges that are cut by the
line, f must contain a local maximum or minimum. So, f must contain at least 4 non-changes,
contradicting Lemma 21.3.3.

Similarly, if u is not a wheel, then there must be some line through u intersecting at least four
wedges of the form (vi−1, u, vi) such that the projection of the embedding onto u is valid and
bracketed. However, each of these wedges will contribute a change, contradicting Lemma 21.3.3.

21.5 Proof of Theorem 21.2.3

Given a potential σ, we will call an edge (u, v) degenerate if σ(u) = σ(v). We will call a corner
(u, v0), (u, v1) degenerate if both its edges are degenerate. Finally, we will call a vertex degenerate

if each of its edges is degenerate.

In this section, we will prove

Theorem 21.5.1. Let (G, x, y) be a Tutte embedding of a 3-connected planar graph, and let σ be

a potential obtained by projecting the embedding onto a line. Then, G has no degenerate corner

under σ.

Before proving this theorem, let’s observe that it implies Theorem B.



Lecture 21: November 30, 2004 21-5

First, if there is an angle of 0 or π at a corner, (u, v0), (u, v1), then by projecting onto a line
orthogonal to (u, v0), we obtain a potential under which this corner is degenerate.

To see that is implies there is no edge of zero length, let (u, v0) be such an edge, and let (u, v1)
be another edge that together with the first forms a corner. Now, project the embedding onto a
line perpendicular to the line connecting u to v1. Then, the corner will be degenerate under this
embedding.

To prove Theorem 21.5.1, we will first prove that a degerate corner can only happen at a degernerate
vertex.

Lemma 21.5.2. Let (G, x, y) be a Tutte embedding of a 3-connected planar graph, and let σ be a

potential obtained by projecting the embedding onto a line. If (u, v0), (u, v1) is a degenerate corner,

then u must be degenerate.

Proof. We first note that if u were non-degenerate, then it would have some neighbors vi and vj

such that vi < u < vj.

Let s be one of the vertices at which σ is maximized and let t be one of the vertices at which σ is
minimized. Note that both of these must lie on boundary face.

As the graph is three connected, there are either

• vertex-disjoint paths from v0 to s and v1 to t that do not go through u, or

• vertex-disjoint paths from v0 to t and v1 to s that do not go through u.

Let’s assume without loss of generality that we are in the first case. Then, there is a simple path
in the graph from t to v1 to u to v0 to s. It is not too difficult to show that there exists a valid
bracketed potential τ such that

• τ(w) 6= τ(v) for all vertices w 6= v,

• τ(t) = 1, τ(s) = −1, and

• τ is monotone strictly decreasing on this path.

By now considering the potentials σ + ετ and σ − ετ , for sufficiently small ε, we can show that

1. for one of these potentials, u has at least 4 changes, and

2. for sufficiently small ε, both of these potentials are bracketed.

Thus, we obtain a contradiction to Lemma 21.3.3.

Finally, we observe that Lemma 21.3.3 can be used to show that if there is any degenerate corner,
then every interior vertex is degenerate. To prove this, consider a degenerate vertex u, and two of
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its neighbors v0 and v1. If there is no edge between v0 and v1, add one. The graph remains planar,
3-connected, and the embedding remains a Tutte embedding since v0 and v1 mapped to the same
point anyway. Now, v0 has a degenerate corner (v0, u), (v0, v1), so v0 must be degernate, and so
on.


