
Spectral Graph Theory and its Applications September 9, 2004

Lecture 3

Lecturer: Daniel A. Spielman

3.1 Introduction

There are two topics that I want to cover in this lecture. The first is a technique for lower bounding
the second-smallest eigenvalue of a Laplacian (one could also apply it to the other small eigenvalues).

The second is a proof that the kth eigenvector of a weighted path graph osciallates at most k − 1
times. There is a chance that we don’t get to this today.

3.2 Lower bounding λ2

It is simple to prove an upper bound on λ2: one need merely present any test vector orthogonal to
1 and observe that λ2 is less than the Rayleigh quotient of that vector.

Proving a lower bound is not as easy. In this part of the lecture, I will present one general-purpose
technqiue for lower bounding λ2: by comparing the Laplacian of the given graph to the Laplacian
of another graph whose spectra we already understand. Let’s begin with some crucial notation
used in the Optimization community. For a symmetric matrix A, we write

A < 0

if A is positive semidefinite. We similarly write

A < B

if
A − B < 0.

I find it convenient to overload this notation by defining it for graphs as well. Thus, I’ll write

G < H

if LG < LH . This notation is most powerful when we consider some multiple of a graph. Thus, I
could write

c · G < H.

Using the Courant-Fischer Theorem, we can prove
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Lemma 3.2.1. If G and H are graphs such that

c · G < H,

then

c · λk(G) ≥ λk(H),

for all k.

Proof. By part (2) of the Courant-Fischer Theorem, we have

c · λk(G) = max
S of dim n − k − 1

min
x∈S

c · xT LGx

xT x
≥ max

S of dim n − k − 1
min
x∈S

·xT LHx

xT x
= λk(H).

Now, the question is: how do we prove that c · G < H for some graph G and H? Not too many
ways are known. We’ll do it by proving some identities of this form for some of the simplest graphs,
and then extending them to more general graphs. For example, we will prove

n · Pn < G1,n. (3.1)

That is, n times the path of length n from vertex 1 to n is greater than the edge from 1 to n. This
statement is equivalant to the statement that n serially connected unit resistors have resistance
n. To prove (3.1), we will have to consider what happens when we connect resistors of varying
resistance. Speaking graph theoretically, this means that we are going to have to consider weighted
graphs. Let me define them now.

A weighted graph G = (V,E,w) consists of vertex set V , a set of edges, each of which is an
unordered pair of vertices, and a weight function w : E → IR. The Laplacian of G has the form

LG =
∑

(u,v)∈E

w(u, v) · L(u,v),

where I recall that L(u,v) denotes the Laplacian of the graph containing just the edge of unit weight
between u and v. Note that if G = (V,E,w) and H = (G,V,w ′) are two weighted graphs with the
same set of edges such that w(u, v) ≥ w′(u, v) for all (u, v) ∈ E, then

G < H.

Lemma 3.2.2. Let c1, . . . , cn−1 > 0. Then,

c ·

(

n−1
∑

i=1

ciL(i,i+1)

)

< L(1,n),

where

c =
∑

i

(1/ci).
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Proof. We will prove the equivalent statement:

n−1
∑

i=1

ciL(i,i+1) <

(

1
∑

i(1/ci)

)

L(1,n).

We first note that if we can prove this lemma for n = 3, then we can prove it for all n. To see this,
observe that we could then prove

n−1
∑

i=1

ciL(i,i+1) <

(

1
∑n−2

i=1 (1/ci)

)

· L(1,n−1) + cn−1 · L(n−1,n) (assuming proved for n − 1)

<

(

1
∑n−1

i=1 (1/ci)

)

· L(1,n),

where in this last inequality, we use the case for n = 3.

In the case n = 3, it suffices to prove the inequality in the case 1/c1 + 1/c2 = 1. If we now let

a = (x1 − x2), and

b = (x2 − x3),

then the inequality reduces to
c1a

2 + c2b
2
≥ (a + b)2.

This is Cauchy’s inequality.

3.2.1 Path Graphs

Now, let’s use (3.1) to lower bound λ2 of the path graph on n vertices. We’ll do it by comparing
the path graph to the complete graph on n vertices. For each edge (u, v) ∈ Kn, with u < v, we will
apply the inequality

(v − u)
v−1
∑

i=u

L(i,i+1) < L(u,v).

Summing over all pairs u and v, we obtain

∑

1≤u<v≤n

(v − u)

v−1
∑

i=u

L(i,i+1) <

∑

u<v

L(u,v) = LKn
.

On the other hand, we also have

∑

1≤u<v≤n

(v − u) =

n−1
∑

i=1

i(n − i) ≤ n3/4.

So,

(n3/4) · LPn
<

∑

1≤u<v≤n

(v − u)
v−1
∑

i=u

L(i,i+1),
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and
(n3/4) · Pn < Kn.

As λ2(Kn) = n, this implies
λ2(Pn) ≥ 4/n2.

This bound isn’t so far off from the easy upper bound we proved last lecture of 12/n2.

3.2.2 The Complete Binary Tree

Now, let’s apply this to a graph that we haven’t yet analyzed: the complete binary tree.

The complete binary tree on n = 2d − 1 nodes, Tn, is the graph with edges of the form (u, 2u) and
(u, 2u + 1) for u < n/2. Pictorially, these graphs look like this:

Figure 3.1: T3, T7 and T15. Node 1 is at the top, 2 and 3 are its children.

Let’s first upper bound λ2(Bn) by constructing a test vector x. Set x(1) = 0, x(2) = 1, and
x(3) = −1. Then, for every vertex u that we can reach from node 2 without going through node 1,
we set x(u) = 1. For all the other nodes, we set x(u) = −1. We then have

λ2 ≤

∑

(u,v)∈Bn

(xu − xv)
2

∑

u x2
u

=
(x1 − x2)

2 + (x1 − x3)
2

n
= 2/n.

We will again prove a lower bound by comparing Tn to the complete graph. For each edge (u, v) ∈
Kn, let Tn(u, v) denote the unique path in T from u to v. This path will have length at most
2 log2 n. So, we have

LKn
=
∑

u<v

Lu,v 4

∑

u<v

(2 log2 n)Tn(u, v) 4

(

n

2

)

(2 log2 n)Tn.

So, we obtain the bound
(

n

2

)

(2 log2 n)λ2(Tn) ≥ n,

which implies

λ2(Tn) ≥
1

(n − 1) log2 n
.

In the problem set, I will ask you to improve this lower bound to 1/cn for some constant c.
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3.3 Weighted Path Graphs

We will now prove the following theorem of Fiedler:

Theorem 3.3.1. Let P be a weighted path graph on n vertices, and let vk be the kth eigenvector

of its Laplacian. Then, vk changes sign k − 1 times.

The main ingredient in the proof will be Sylvester’s law of intertia, which I will first recall and
prove.

Theorem 3.3.2 (Sylvester’s Law of Intertia). Let A be any symmetric matrix and let B be

any non-degenerate matrix. Then, the matrix BT AB has the same number of positive, negative

and zero eigenvalues as A.

Proof. We first recall that every non-degenerate matrix B can be factored into the product of
an orthogonal matrix Q and an upper-triangular matrix R with positive diagonals1 Now, since
QT = Q−1, QT AQ has exactly the same eigenvalues as A. Let Rt be the matrix t∗R+(1− t)I, and
consider the family of matrices Mt = RT

t QT AQRt, as t goes from 0 to 1. At t = 0, the matrix has
the same eigenvalues as A. At t = 1, we get BT AB. As the eigenvalues of a matrix are continuous
functions, if the number of positive, negative or zero eigenvalues of BT AB differs from that of A,
then there must be some t for which Mt has more zero eigenvalues than does A. But, as none of
the matrices Rt are degenerate, this cannot happen.

Proof of Theorem 3.3.1. We will just consider the case in which vk has no zero entries. In this case,
we wish to show that the number of i for which vk(i)vk(i + 1) < 0 equals k − 1.

Let L denote the Laplacian of P , and let Vk denote the matrix with vk on the diagonal that is zero
elsewhere. Let λk denote the k-th eigenvalue of L. Consider the matrix

M = V T
k (L − λkI)Vk.

By Sylvester’s law of intertia, we know that M has k − 1 negative eigenvalues, one zero eigenvalue,
and n − k positive eigenvalues. Note that

M1 = 0,

and that for every i such that vk(i)vk(i + 1) < 0, Mi,i+1 is positive. Thus, by Lemma 3.3.3, which
we will state and prove momentarily, there are exactly k − 1 such i.

Lemma 3.3.3. Let M be a symmetric tri-diagonal matrix with 2p positive off-diagonal entries such

that

M1 = 0. (3.2)

Then, M has p negative eigenvalues.

1This is the QR-factorization. It follows from Gram-Schmidt orthonormalization.
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Proof. From (3.2), we have

xT Mx =

n−1
∑

i=1

−Mi,i+1(xi − xi+1)
2.

We now apply a change of variables from x1, . . . , xn to δ1, δ2, . . . , δ2, where

xi = δ1 + δ2 + · · · + δi.

This change of variables is realized by the lower-triangular matrix L which has 1’s on and below
the diagonal:

x = Lδ.

By Sylvester’s law of intertia, we know that

LTML

has the same number of positive, negative, and zero eigenvalues as M . On the other hand,

δT LTMLδ =
n
∑

i=2

−Mi,i+1δ
2
i ,

so this matrix clearly has one zero eigenvalue, and as many negative eigenvalues as there are negative
Mi,i+1.


