
Spectral Graph Theory and its Applications November 5, 2004

Lecture 9

Lecturer: Daniel A. Spielman

9.1 Expanders

The topic of this lecture is expander graphs. I will explain how one can use bounds on µ2 to prove
expansion-like properties, and will also prove bounds on how good µ2 can be.

9.2 Quasi-Random Properties

Let G = (V,E) be a d-regular graph. For now, I want to consider how a random subset of the
vertices of G looks. For example, we could choose a set X ⊆ V by putting each vertex in A with
probability α, independently for each vertex. If we do this, how many edges to we expect to find
between vertices in X?

The answer is simple: for each edge in the graph, the probability it winds up in X is α2. As there
are dn/2 edges in the graph, we expect to find α2dn/2 edges in A.

We will prove that in an expander graph, every set X of size αn contains approximately α2dn/2
edges! So, every set looks like a random set. In fact, we will prove something even stronger.

What if we choose two sets X and Y at random, putting vertices in X with probability α and
putting vertices in Y with probability β. I will make all these choices independently, so that X and
Y can overlap. I can again ask how many edges I expect to find of the form (u, v) with u ∈ X and
v ∈ Y and u < v. If u ∈ X ∩ Y and v ∈ X ∩ Y , I will count the edge twice. Reasoning as before,
we find that the answer is αβdn. We will show that, in a good expander, this is the approximately
the answer for all sufficienly large sets A and B.

To state the theorem, I use the notation

e(X, Y ) = {(u, v) ∈ X × Y : (u, v) ∈ E} .

Theorem 9.2.1. Let G = (V,E) be a d-regular graph on n nodes such that every eigenvalue but
the largest has absolute value at most µ. Let X, Y ⊆ V have sizes |X| = αn and |Y | = βn. Then,

|e(X, Y )− αβdn| ≤ µn
√

(α− α2)(β − β2).

This result is applicable when µ/d ≤
√

αβ.

9-1
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Proof of Theorem 9.2.1. This proof will follow from the standard tricks. We will let x be the
characteristic vector of X and y be the characteristic vector of Y . We then observe that

xT Ay = e(X, Y ).

To bound xT Ay, we set v = x− α1 and w = y − β1, so that v and w are orthogonal to 1. We can
then compute

xT Ay = (v + α1)T A(w + β1)

= vT Aw + α1T Aw + βvT A1 + αβ1T A1.

We now examine each of these terms. The easiest two are the middle terms: since A1 = d1, and v
is orthogonal to 1,

βvT A1 = 0.

Similarly, we find that
α1T Aw = 0.

For the last term, we compute

αβ1T A1 = αβ1T (d1) = αβdn.

So,
e(X, Y )− αβdn = vT Aw.

To bound the right-hand term in this equality, we note that ‖Aw‖ ≤ µ ‖w‖ (using the same trick
as we used last class), and so ∣∣vT Aw

∣∣ ≤ ‖v‖ ‖Aw‖ ≤ µ ‖v‖ ‖w‖ .

Finally, a routine calculation reveals that

‖v‖ =
√

n(α− α2) and ‖w‖ =
√

n(β − β2),

so ∣∣vT Aw
∣∣ ≤ n

√
(α− α2)(β − β2).

9.3 Expansion

We will now derive a bound the most fundamental property of expander graphs: vertex expansion.

Theorem 9.3.1 (Tanner). Let G be a d-regular graph with an adjacency matrix A in which every
eigenvalue other than d has absolute value at most µ. Then, for every set X ⊆ V ,

|N(X)| ≥ d2 |X|
µ2 + (d2 − µ2) |X| /n

. (9.1)
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Proof. This theorem will follow quickly from Theorem 9.2.1. Let Y = V −N(X), and set |Y | = βn.
By construction e(Y, X) = 0, and N(X) = (1− β)n. Applying Theorem 9.2.1, we find

αβdn ≤ µn
√

(α− α2)(β − β2).

After some simple manipulation, this inequality becomes

(1− β) ≥ d2

µ2 + (d2 − µ2) |X| /n
.

I remark that this is not how Tanner originally proved this theorem: he instead considered the
norm of Ax, and applied the Cauchy-Schwartz inequality to show that it must be non-zero in many
places.

Let’s examine how the right-hand side of (9.1) behaves for some interesting setting of the parame-
ters. In a Ramanujan graph, µ ≤ 2

√
d− 1. If we assume that |X| /n is small, then we essentially

get |N(X)| ≥ (d/4) |X|. This is a very strong inequality, as we always have |N(X)| ≤ d |X|.

Unfortunately, many applications of expander graphs require an expansion factor at least (d/2) for
small sets. There were both positive and negative developments in our attempts to achieve such
expansion. Kahale improved Tanner’s bound to show that for sufficiently small (but constant) α,
one would obtain |N(X)| ≥ (d/2−o(1)) |X|. On the other hand, Kalahe also showed that one could
modify explicit constructions of expander graphs to obtain graphs with µ ≤ 2

√
d− 1 yet with a set

of two vertices with the same set of d neighbors, and so expansion factor at most d/2. This later
result ended most attempts to achieve expansion factor d/2 through eigenvalue analysis.

Little progress was made until 2002, when Capalbo, Reingold, Wigderson and Vadhan came up
with a new technique for constructing and analyzing expander graphs, and used this technique to
prove that their graphs had expansion up to d(1 − ε) for sufficiently small sets. Their technique
does not depend upon eigenvalues, so I will not explain it in this course.

9.4 Explicit Constructions

There isn’t much that I can tell you about the explicit constructions of expanders, but I can tell you
how they look. Margulis and, independently, Lubotzky, Phillips and Sarnak constructed d-regular
Ramanujan graphs (µ ≤ 2

√
d− 1) from Cayley graphs of the projective special linear groups over

finite fields. In particular, let π be a prime congruent to 1 modulo 4, and let Zπ denote the
integers modulo π. Our vertices will correspond to elements of PSL(Zπ): the 2-by-2 matrices with
determinant 1 in which we identify A and −A. A cayley graph on this vertex set is given by a set
S of elements of PSL(Zπ), by putting an edge between matrices A and B if AB−1 ∈ S.

In these constructions, S is determined by another prime p congruent to 1 modulo 4 that is a
quadratic residue modulo π. We consider the solutions to the equation a2

1 +a2
2 +a2

3 +a2
4 = p, where

a1 is odd and a2, a3 and a4 are even. One can show that there are p + 1 such solutions. For each,
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we put the following matrix in S:

1
√

p

[
a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

]
,

where i satisfies i2 = −1 modulo π.

What we learn from this discussion is that these matrices are rather concrete, and that we can
easily perform computations such as determining the neighbors of a vertex. In particular, we can
perform these computations in time polynomial in the length of the label of a vertex, and do not
need to store the entire graph.

9.5 Lower bounds on µ2

I will conclude the class by presenting a lower bound which shows that for every ε > 0, for sufficiently
large graphs, µ2 cannot be lower than 2

√
d− 1− ε. For the following proof, which is attributed to

A. Nilli but which we suspect was written by N. Alon, we find it more convenient to work with the
Laplacian.

Theorem 9.5.1. Let G be a d-regular graph containing two edges (u0, u1) and (v0, v1) that are at
distance at least 2k + 2. Then,

λ2 ≤ d− 2
√

d− 1 +
2
√

d− 1− 1
k + 1

.

Proof. Our proof will follow from the construction of a carefully chosen test vector. We first define
sets

U0 = {u0, u1}
Ui = N(Ui−1)− ∪j≤i−1Uj , for i ≤ k

V0 = {v0, v1}
Vi = N(Vi−1)− ∪j≤i−1Vj , for i ≤ k.

That is, Ui consists of the vertices at distance exactly i from U0. Let Ū = ∪Ui and V̄ = ∪Vi

Note that there are no edges betweena Ū and V̄ .

For some constants α and β to be chosen momentarilly, we set

x(a) =


α

(d−1)−i/2 for a ∈ Ui

− β
(d−1)−i/2 for a ∈ Vi

0 otherwise.

We now choose α and β so that x is orthogonal to the all-1s vector. It turns out that the choice is
otherwise unimportant.
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To aid in our evaluation of the Rayleigh quotient of x, let EU denote the set of edges attached to
vertices in Ū , and define EV analogously. From our assumption that U0 and V0 are at distance at
least 2k + 2, we know that EU and VU are disjoint. Thus, the Rayleigh quotient is∑

(a,b)∈EU
(x(a)− x(b))2 +

∑
(a,b)∈EV

(x(a)− x(b))2∑
a∈Ū x(a)2 +

∑
a∈V̄ x(a)2+

≤ max

(∑
(a,b)∈EU

(x(a)− x(b))2+∑
a∈Ū x(a)2+

,

∑
(a,b)∈EV

(x(a)− x(b))2∑
a∈V̄ x(a)2

)
,

by my favorite inequality. We will just consider one of these terms, as they are symmetric. We first
compute ∑

a∈V̄

x(a)2 =
k∑

i=0

|Ui|
(d− 1)i

.

As each vertex a ∈ Ui has at most d − 1 neighbors in Ui+1 (this is why we started from an edge
rather than a vertex), we have

∑
(a,b)∈EV

(x(a)− x(b))2 ≤
k−1∑
i=0

|Ui| (d− 1)
(

1
(d− 1)i/2

− 1
(d− 1)(i+1)/2

)2

+ |Uk| (d− 1)
1

(d− 1)k

=
k−1∑
i=0

|Ui|
(d− 1)i

(√
d− 1− 1

)2
+ |Uk|

1
(d− 1)k−1

=
k−1∑
i=0

|Ui|
(d− 1)i

(
d− 2

√
d− 1

)
+ |Uk|

d− 2
√

d− 1
(d− 1)k

|Uk|
2
√

d− 1− 1
(d− 1)k

=
k∑

i=0

|Ui|
(d− 1)i

(
d− 2

√
d− 1

)
+ |Uk|

2
√

d− 1− 1
(d− 1)i

.

Now, we clearly have ∑k
i=0

|Ui|
(d−1)i

(
d− 2

√
d− 1

)
∑k

i=0
|Ui|

(d−1)i .
≤
(
d− 2

√
d− 1

)
.

Finally, we observe that
k∑

i=0

|Ui|
(d− 1)i

≥ (k + 1)
|Uk|

(d− 1)k
,

so
|Uk| 2

√
d−1−1

(d−1)k∑k
i=0

|Ui|
(d−1)i

≤ 2
√

d− 1− 1
k + 1

.


