Equality, Quasi-Implicit Products, and L arge Eliminations

Vilhelm Sjoberg Aaron Stump
Computer and Information Science Computer Science
University of Pennsylvania The University of lowa
vilhelm@cis.upenn.edu astump@acm.org

This paper presents a type theory with a form of equality c&fla: provable equalities can be used
to coerce the type of a term. Coercions and other annotatiodlsiding implicit arguments, are
dropped during reduction of terms. We develop the metath&wran undecidable version of the
system with unannotated terms. We then devise a decidattkensyvith annotated terms, justified in
terms of the unannotated system. Finally, we show how theoajgh can be extended to account for
large eliminations, using what we call quasi-implicit poots.

1 Introduction

The main goal of this paper, as of several recent works, iadiithte external reasoning about depen-
dently typed programs [9] 2]. This is hampered if one mussarabout specificational data occurring
in terms. Specificational data are data which have no effiedhe result of the computation, and are
present in program text solely for verification purposedraditional formal methods, specification data
are also sometimes called ghost data. For example, corikeléamiliar example of vectorsec @)
indexed by both the type of the elements and the lendthf the vector. An example dependently typed
program is theappeng, function (we work here with monomorphic functions, but velide type sub-
scripts), operating on vectors holding data of tygpeWe can defin@ppendso that it has the following
type, assuming a standard definitionpifis on unary natural numbersat :

append: Ml :nat .Mly:nat .Mvy : (vec @l1).Mv: (vec @l,). (vec @ (plush l>))

We might wish to prove thaippendis associative. In type theories such a3@ Calculus of Inductive
Constructions, we would do this by showing that the follogvigpe is inhabited:

Mly:nat .Ml :nat .MNlg:nat .Mvy: (vec @l1).Mvy: (vec @ly).Mvz: (vec @ls).
(append(plus k 1) I3 (append{ |2 v1 v2) v3) = (append] (plus b I3) v1 (append 3 I3 vz v3))

Notice how the lengths of the vectors are cluttering everstagement of this theorem. Tools likeo@
allow such arguments to be elided, when they can be unigeebnstructed. So the theorem to prove
can be written in the much more palatable form:

Mly:nat .Ml :nat .MNlz:nat .Mvy: (vec @l1).Mvy: (vec @ly).Mvs: (vec @l3).
(append(append y V,) v3) = (append y (append ¥ v3))

This is much more readable. But as others have noted, whlattices have been elided, they are not
truly erased. This means that the proof of associativitggggendmust make use of associativity also of
plus in order for the lengths of the two vectors (on the two sidethe equation) to be equal. Indeed,
even stating this equation may require some care, sincg/ples of the two sides are not definitionally

E. Pimentel, B. Venneri and J. Wells (Eds.): Workshop on
Intersection Types and Related Systems 2010 (ITRS 2010). (© Sjdberg and Stump
EPTCS 45, 2011, pp. 90=100, doi:10.4204/EPTCS|45.7

http://dx.doi.org/10.4204/EPTCS.45.7

Sjoberg and Stump 91

equal: one hagplus (plus k I2) I3) where the other ha@lus h (plus b I3)). This is where techniques
like heterogeneous equality come into play [7].

One solution to this problem is via intersection types, &@albed in this settingmplicit products
as in the Implicit Calculus of Constructioris [8]. An imptigroductvx: ¢.¢ is the type for functions
whose arguments are erased during conversion_(¢fl [9, BPh 8 type can also be viewed as an infinite
intersection type, since its typing rule will assért-t : Vx: @.¢f whenever ,x: @+t : ¢'. This rule
formalizes (approximately) the idea thas in the typevx : ¢.¢/ whenever it is in each instance of that
type (i.e., each typgi/x|¢ for u: @). Thus, membership in theé-type follows from membership in the
instances of the body of thétype, making thé/-type an intersection of those instances. Note that this
is an infinitary intersection, and thus different from thasslical finitary intersection type &f [4]. We note
in passing that the current work includes first-class dptstywhile the other works just cited all rely on
encodings of inductive data as lambda terms.

We seek to take the previous approaches further, and erbgesharguments to functions typed with
implicit products, but all annotations. This is not the casthe Implicit Calculus of Constructions, for
example, or its algorithmic developmel@C* [2], where typing annotations other than implicit argu-
ments are not erased from terms. When tesfirgguivalence of terms, we will work with unannotated
versions of those terms, where all type- and proof-anrwtathave been dropped. For associativity of
append the proof does not require associativitypfis From the point of view of external reasoning,
appendon vectors will be indistinguishable froappendon lists (without statically tracked length).

The TVé¢ Type Theory. This paper studies versions of a type theory we T4f . This system is
like Godel's System T, with vectors and explicit equalitpafs. We first study an undecidable version
of TVe¢ with equality reflection, where terms are completely unaateal (Sectioil2). We establish
standard meta-theoretic results for this unannotateceisy$Sectiof 3). We then devise a decidable
annotated version of the language, which we also T&f (the context will determine whether the
annotated or unannotated language is intended). The sessdifiannotated“*° is justified by erasure
to the unannotated system (Sectidn 4). We consider theiasgitg of appendin annotatedlV¢¢, as
an example (Sectidn 4.1). This approach of studying unatedtversus annotated versions of the type
theory should be contrasted with the approach taken in NyBRéed on Martin-Lof's extensional type
theory [3]6]. There, one constructs typing derivationsegmarate artifacts, for unannotated terms. Here,
we unite the typing derivation and the unannotated term inglesartifact, namely the annotated term.

Large eliminations. Type-level computation poses challenges for our approB@ebause coercions
by equality proofs are erased from terms, if we naively edéehthe system with large eliminations
(types defined by pattern matching on terms) we would be a@bkessign types to diverging or stuck
terms. We propose a solution based on what weauaisi-implicit products These effectively serve
to mark the introduction and elimination of the interseatigpe, and prohibit call-by-value reduction
within an introduction. This saves Normalization and Pesgt which would otherwise fail. We develop
the meta-theory of an extension of the unannotated systémlarge eliminations and call-by-value
reduction, including normalization (Sectibh 5).

The basic idea of basing provable equality on the operdtisgrmantics of unannotated terms has
been implemented previously in theuBu dependently programming language, publicly available at
http://www.guru-lang.org [10]. The current paper improves upon the work ouR®, by de-
veloping and analyzing a formal theory embodying that ideek{ng in [10]).

http://www.guru-lang.org

92 Equality and Implicit Products

(Ax.a) d ~ [d/x]a

(Rat 2@ 0) ~ a

(Rnat @ad (Sd)) ~ (@@ (R ad d"))
(Rec @@ nil) ~ a

(Rec @ad (cons a3 @’)) ~ (dapd (Rec ad d’))

Figure 1: Reduction semantics for unannotaf&¥f terms

2 Unannotated TV€¢

The definition of unannotate@’®® uses unannotated terragwe sometimes also write):
a = x|(ad)|Axa|0|(Sa| (Rt add’)|nil |(cons ad)|(Recadad’)]|join

Here, x is for A-bound variables an& is for successor (not th8 combinator). R,a is the recursor
over natural numbers, ariRlec is the recursor over vectors. We have constructdrs andcons for
vectors. The term construgin is the introduction form for equality proofs. We will not riean
elimination form, since our system includes a form of equakflection. For readability, we sometimes
use meta-variablefor termsa intended as lengths of vectors. Tyggare defined by:

@ = nat | (vec ga)|Nx:@.¢ |vx:@.¢ |a=4d

The firstl-type is as usual, while the second is an intersection typtadiing a specificational This
x need not be\ -abstracted in the corresponding term, nor supplied asg@ument when that term is
applied, similarly to Miquel's implicit products [8].

The reduction relation is the compatible closure undertianyi contexts of the rules in Figuté 1.
Figure[2 gives type assignment rules fBf¢, using a standard definition of typing contexts We
definel” Okto mean that if” =1,x: @,I2, thenFV(¢p) C dom1). We usea | & to mean that anda
are joinable with respect to our reduction relation (ileeré exists Such thata ~* danda ~*).

Perhaps surprisingly we do not track well-formedness aésypnd indeed thjein andconv rules
can introduce untypable terms into types. However, thegguue the invariant that terms deemed equal
are joinable, and that turns out to be enough to ensure typtysa

Type assignment is not syntax-directed, due to(dwnv) , (spec-abs) , and(spec-app)
rules, and not obviously decidable. This will not pose a fmwbhere as we study the meta-theoretic
properties of the system. Sectioh 4 defines a system of aedat@rms which is obviously decidable,
and justifies it by translation to unannotafB§¢ . We work up to syntactic identity modulo safe renaming
of bound variables, which we denate

3 Metatheory of Unannotated TV€©

TVé¢ enjoys standard properties: Type Preservation, Progi@ssldsed terms), and Strong Normaliza-
tion. These are all easily obtained, the last by dependerasing translation to another type theory (as
done originally for LF in[[5]). Here, we consider a more seti@ally informative approach to Strong
Normalization. Omitted proofs may be found in a companigooreon the second author’s web page
(seehttp://www.cs.uiowa.edu/ ~astump/papers/ITRS10-long.pdf).

Theorem 1 (Type Preservation) If ' -a: @and a~ &, thenl &' : ¢.

http://www.cs.uiowa.edu/~astump/papers/ITRS10-long.pdf

Sjoberg and Stump

rx)=¢@ IOk

Me=x:@ var

ala IOk ioin
I - join :a:a’J

Frx:¢ta:@ x¢FV(a)
Mr-a:vx:¢.@

spec-abs

rx:¢gra:o@
FEAxa:Nx: ¢.@

abs

I Ok

M+=0:nat Z€ero

a:nat

—— =% succ
(S a:nat

MN-a:o@
r-a:(vec @l)

I (cons ad):(vec ¢ (SI)) cons

93

r-a”:a=a" rra:[@/xe x¢domr)

Mr-a: @ /xe conv

NrFa:vx:¢.¢o rea:¢

spec-a
FFa:[@/xe P PP

NrM-a:Mx:¢.¢ r=a: ¢ app

r-(ad):[@/xe

I Ok

IEnil :(vec @0) nil
x ¢ dom(I")
r=a’:nat
M-a:[0/xe

MEa :Ny:nat .Mu:[y/X@.[(Sy /X ¢ Rnat

M- (R @ad d”):[@ /X

x ¢ dom(I")

r=a’:(vec ¢'l1)

rEa:[0/y,nil /o

rea:Nz:¢.vl:nat .NMv:(vec @ I).Nu:[l/y,v/X .
[(S1/y,(cons zv)/X¢

M (Rec ad a’): [l /y,a"/Xe

Figure 2: Type assignment system for unannotatéd

Rvec

94 Equality and Implicit Products

Theorem 2 (Progress) If I' - a: @ and dontl") NFV (a) = 0, then either a is a value ofd’.a ~ .
Here avalueis a term of the form

v = Axal|0|(SV|nil |(consvV)|join

3.1 Semanticsof equality

For our Strong Normalization proof, a central issue is ptimg an interpretation for equality types in the
presence of free variables. We would like to interpret equatlike (plus 2 2) = 4 (where the numerals
abbreviate terms formed witBand 0 as usual, arlus has a standard recursive definition), as simply
(plus2 2) | 4. But when the two terms contain free variables — e.g(pias x y) = (plus y ¥ — or when
the context is inconsistent, the semantics should makedtatien true, even though its sides are not
joinable. So our semantics for equality types is joinapilinder allground instancesf the context.
The notation for this is ~r @. The definition must be given as part of the definition of theripretation

of types, because we want to stipulate that the substigitioreplace each variabbeby a ground term

in the interpretation obT (x). WhenT is empty, we will writea ~r & asa ~ &. We use a similar
convention for other notations subscripted by a contexdvael

3.2 Theinterpretation of types

The interpretation of types is given in Figlide 3. In that feguwe write= and<> for meta-level implica-

tion and equivalence, respectively, and gizelowest precedence among all infix symbols, andchext
lowest precedence. We stipulate up front (not in the claurstree figure) that € [¢]r requiresa € SN
(whereSNis the set of strongly normalizing terms) ahd- a: ¢. The definition in Figur€]3 proceeds
by well-founded recursion on the trip{d|,d(¢),|(a)), in the natural lexicographic ordering. HefE|

is the cardinality otlom(T"), and ifa € SN then we make use of a (finite) natural numb@) bounding

the number of symbols in the normal form af We need to assume confluence of reduction elsewhere
in this proof, so it does not weaken the result to assume hate@ach term has at most one normal form.
While we believe confluence for this language should beeasiablished by standard methods, that
proof remains to future work. The quantitly) is the depth ofp, defined as follows:

d(nat) =0 d((vec @l)) = 1+d(¢)
ggﬂijfﬂ) = 1+maxd(¢),d(¢)) divx:@.¢/) = 1+maxd(e),d(¢))
a=4a =0

Note thatd(¢) = d([a/x]@) for all a, x, and@. Also, in the clause fovec -types, since the right hand
side of the clause conjoins the conditiar SN | (a) is defined, and we hav¢a”) < I(cons & a”). The
figure gives an inductive definition for whene [[F]]a. We call such a aclosable substitution

In general, the inductive definition of closable substinto € [[']a allows the range of the substi-
tution to contain open terms. Whenis empty, o is a closing substitution. The definition of:] for
types uses the definition of closable substitutions in a-feelhded way. We appeal only 6] (with an
empty context) in the definitions of[@]r and[[¢]:. Where the definition ofa appeals back to the
interpretation of types, it does so only when thigvas non-empty, and with an empty context given for
the interpretation of the type. Sb| has indeed decreased from one appeal to the interpretdtigpes
to the next.

Sjoberg and Stump 95

T
(@a~*nil = 1~r0)A
va.va'.a~*(cons & a’) = (i)a €[¢]r A 3.
(i) a" € [[(vec @I")]r A
(i) | ~r (ST)

ac [[nat [r
ac [[(vec oh)]r

T ¢

acMx:¢.¢lr <« vadec[¢]. (ad)ea/Xg]r
¢.glr & vVae[d]f ac[@/Xg]r
acai=ar & (a~*join = ag ~r ap)

where
a~rd & Vo.oel[l] = (oa)l (0d)
acfelf < ac[glr A (IF|>0= VYoe[r]. cacog])

and also
acog]y oe€[ra

0c[Ja oufxa)}e(l x: ¢l

Figure 3: The interpretatioa € [¢]r of strongly normalizing terms with -a: ¢

3.3 Critical properties

A term is defined to beeutraliff it is of the form (a &) or (Rg a & a”) (with B € {nat ,vec }), or
if it is a variable. We prove three critical properties of weibility at type ¢, by mutual induction on
(IF|,d(@),l(a)). Here we writenexi{a) = {a' | a~ &'}

R-Pres. If a€ [¢]r, thennex{a) C [¢]r.

R-Prog. If ais neutral and” I- a: ¢, thennex{a) C [¢@]r impliesac [@]r.

R-Join. Supposey ~r a; ' & : a3 = a, for somea’; andx ¢ dom(I"). Then[[[as /X @]r C [[[az/X|@]r-
3.4 Soundness of typing with respect to the interpretation

Our typing rules are sound with respect to our interpretiatib types (Figuré13). As usual, we must
strengthen the statement of soundness for the inductiom tinrgugh. We need a quasi-orderon
contexts, defined byA C ' < Vx e domA). A(x) =T (x).

Theorem 3 (Soundnessfor Interpretations) Supposd F a: @. Then for anyAOk withA C I and
o € [[[a, we have(oa) € [0@]|a.

Critically, we quantify over possibly open substitutiomswhose ranges consist of closable terms.
Corollary 1 (Strong Normalization) If ' +a: ¢, then ac SN.

Corollary 2 If TFa:@andl -4 : ¢/, then a| & is decidable.

Corollary 3 (Equational Soundness) If - +a:b; =b,, thenh | b,.

Corollary 4 (Logical Soundness) There is a typep such that- a: ¢ does not hold for any a.
Proof. By Equational Soundness, we do not have: 0 = (S0) for anya.

96 Equality and Implicit Products

X| = X (tt)] = (t[It'])
|(tt)"] = |t IAX: @t = Ax|t|

IA7X: @t = |t 0| =0

(S Y] = (Sit]) |(nil @) = nil

|(cons tt)] = (cons [t| [t']) |(Rnat x.@tt"t")| = (Raa [t] [t'] |t"])
|(Riec Xy.@tt't")] = (Ruec [t|[t'] [t"]) |(join tt')] = join

|(cast x.@tt))] = |t

Figure 4: Translation from annotated terms to unannotateds

4 Annotated TV€¢

We now define a system of annotated tetmand a decidable type computation system deriving judg-
mentsl |-t : ¢, justified by dropping annotations Vial (defined in Figur€l4). The annotated ternase

the following. Annotations include typeg possibly with designated free variables, ag.ip (bound by
the dot notation).

t o= x| ()] (tt)" [Ax:@t | A™x:@t]|0] (St | (Ruat x@tt't")

| (nil @)]| (cons tt') | (Rec xy.@tt't")| (join tt')| (cast xg@tt))
Three new constructs correspond to the typing r@égsec-abs) , (spec-app) , and(conv) of
Figure[2: A~ x: ¢.¢@, (tt')” and(cast x.@tt’'). Figure[® gives syntax-directed type-computation
rules, which constitute a deterministic algorithm for catipg a typeg as output from a context and
annotated ternt as inputs. Several rules use the function, since type® (as defined in Sectionl 2
above) may mention only unannotated terms.

Theorem 4 (Algorithmic Typing) Givenl and a, we can, in an effective way, either figcuch that
IFa: @, or else report that there is no sugh

This follows in a standard way from inspection of the rulesing Corollary2 for thgoin -rule.

Theorem 5 (Soundnessfor Type Assignment) If I I-t: @thenl - |t] : ¢.

4.1 Example

Now let us see versions of the examples mentioned in Sedtavailable in theyuru-lang/lib/vec.g
library file for GURU (seewww.guru-lang.org). The desired types for vector appenaygpend)
and for associativity of vector append are:

append : Vlp:nat Vlz:nat .Mvy:(vec @l1).Mvo: (vec @ly).(vec @ (plush I2))
appendassoc : Vli:nat .Vl,:nat .Vlz:nat .
Mvy: (vec @l1).Mvy: (vec @lz).Mvs: (vec @l3).
(append(append y Vv») v3) = (append y (append y v3))

www.guru-lang.org

Sjoberg and Stump 97

Fet:e TIEt @ LY Tikt:a=a Tt [a/Xe Tx:@lkt:@ XxEZFV(|t])
M (oin tt)):|t|=|t'| Mk (cast x@tt):[@/x¢ TIFA X:¢@t:Vx:¢.@

Fet:vx:@.@ Ti-t': ¢ Frx:¢@l-t: FEt:Nx:¢.@o TIFt: ¢
CiEY):t'|/Xe FiEAX: @ t:MNx: ¢.@ CiE@t):|t']/Xe

ri-t":(vec ¢'1)
It [0/x,nil /y|e
-t :vl:nat .Nz: ¢.Nv:(vec ¢ 1).Mu:[l/xVv/ye.
[(S1)/x,(cons zv)/y|g
MF(Rec xy.@tt' t"): [1/x|t"|/y]@

Figure 5: Type-computation system for annotafé®f (selected rules)

We consider now annotated inhabitants of these types. Wiadfithe following:

append = A lp:nat A ly:nat .Avy:(vec @li).Ava:(vec @ly).
(Rrec (xy.(vec @ (plus xb)))
(cast (x.(vec @Xx)) Py vp)
(A7l:nat .AX: @AV :(vec @l).Ar:(vec @ (plusll))).
(cast (x.(vec @Xx)) P, (cons xr))
Vl)

The two cases in th®,c term return a type-cast version of what would standardly dierned in
an unannotated version afppend The proofsP, and P, used in those casts show respectively that

I, = (plusOl) and(S(plus | b)) = (plus(S 1) I,). They are simple join-proofs:
PL = (join I (plusOly)) P, = (join (S(pluslly)) (plus(S1) 1))
Now for appendassog we can use the following annotated term:
appendassoc = A7 lp:nat .A7lx:nat A7 lz:nat .
Avy:{vec @li).Avo:(vec @ly).Avz: (vec @l3).
(Rec (x.y.(appendappend y v2) v3) = (append y (append y vs)))
(join (append(appendhil ;) v3) = (appendhil (appendyvs)))

(A7l:nat Ax: @AV : (vec @l).
Ar: (appendappend ¥ v2) v3) = (append ¥ (append y v3)).

Ps))

The omitted proofs is an easy equational proof of the following type:

(append(append(cons x V) V) v3) = (append(cons x V;) (append y v3))

5 TVEC with Large Eliminations

Next we study an extended versionTFf¢ with large eliminations, i.e. types defined by pattern match
ing on terms. This extended language no longer is normgliaimder genergB-reduction~~, but we

98 Equality and Implicit Products

@ = ...|ifZero a@¢ a:=..|AalaDd vi=..|Aa
- :F(p:_)\z Z(pVX X(i .;V(a) spec-abs’ — aILVFX;‘é-:fP[a/ /rx]tpa/ 2 spec-app
Fka:;ZFe?o:(pmpcp’ foldz rl_a:ﬁzke:f:(pow(p, unfoldZ
ri;?i;ch;ror '_(i dr;e?; . olds I+a:ifZero Igsl_ei):(fp,cp’ I+a :nat urfoldS

Figure 6: Types, terms, values, and typing rules6¥ with large eliminations.

will prove that well-typed closed terms normalize undet-bglvalue evaluation~,. In particular, the
language is type safe and logically consistent.

The additions to the language and type system are shown irefiiyu

The type language is extended with the simplest possibla fufr large elimination, a type-level
conditionalifZero which is introduced and eliminated by th@d andunfold rules. While type
conversion and type folding/unfolding are completely iitipl we replace thespec-abs/app rules
with new rulesspec-abs’/app’ which require the place where we introduce or eliminatevtigpe
to be marked by newjuasi-implicit forms A.a anda 0. These forms do not mention the quantified
variable or the term it is instantiated with, so we retaindddgantages of specificational reasoning. The
point of these forms is their evaluation behavi¢i.a) 0 ~~, @, andA.a counts as a value so CBV
evaluation will never reduce inside it. Besides this, theVQiperational semantics is standard, so we
omit it here.

In the language with large eliminations we no longer havenatization or type safety for arbitrary
open terms. This is because the richer type system lets us usakof absurd equalities: whenever we
havel' Fa: @andl+ p: (S d)=0, we can show I a: ¢ for any ¢ by going via the intermediate type
(ifZero 0 @(a.¢')). In particular, this means we can show judgments like

p:1=0F (AxXX) (AX.X X) : nat and p:1=0F00:nat .

This is also the reason we introduce the quasi-implicit pobsl Using our old rulespec-abs we
would be able to show 0 0:Vp: 1=0.nat , despite 0 0 being a stuck term in our operational semantics.
Because of thigjuod libetproperty it is no longer convenient to prove Progress andd?vation be-
fore Normalization. While the proof of Preservation is natdy Progress as we have seen depends on the
logical consistency of the language, which is exactly whathwpe to establish through Normalization.
To cut this circle we design an interpretation of types (fédily that lets us prove type safety, Canonical

Forms and Normalization in a single induction.

5.1 Semantics of Equality

We need to pick an interpretation for equality types. Sineecane only interested in closed terms, this
can be less elaborate than in secfidn 3. Perhaps surpyisingn though we are interested in CBV-
evaluation of programs, we can still interpret equality @agbility | under unrestricte¢B-reduction.

In the interpretation we use, for the program being evaluated, but whenever we talk about terms

Sjoberg and Stump 99

ac [nat | & dna~jn
ac [(vec @l)] & (a~ynil Al~*0)V
vvn a~(cons vV)Al~*(Sn
AVE[@] AV E[{vec pn)] 0c[]
ae[Mx:¢.q] & Ja.awy (Axa) A va e [¢]. (ad) € [[a/Xq]
ac [vx: ¢.¢] & Jalawy (Ad) A va e @] (an) e [[@/Xq] velog] oelr]

ac ar=ag & awijoin Aagla .
ac[g] ifb~*0 ouU{(xVv)}e[l.x: ¢

€[ifZzero be¢] < Jac[¢] ifb~*(Sn
False otherwise

Figure 7: Type interpretatioa < [[¢] and context interpretatioo € [[[']] for TV¢¢ with large eliminations

occurring in types (namely imec , =, and R-types). Th@in typing rule is specified in terms ef, so
when doing symbolic evaluation of programs at type checkimg the type checker can use unrestricted
reduction, which gives a powerful type system than can proagy equalities.

5.2 Normalization to Canonical Form

We define the interpretatiof] as in figurd¥ by recursion on the depth of the tgpeAs we only deal
with closed terms, the definition can be simpler than the nrsectior B. The proof then proceeds much
like the proof for open terms:

R-Canon. If a € [¢], thena~~ v for somev. Furthermore, if the top-level constructor @fis nat , I,

V, =, orvec, thenvis the corresponding introduction form.

R-Pres. If a€ [[¢]] anda~, &, thend € [[¢].

R-Prog. If a~~, &, andd’ € [¢], thena € [[¢].

R-Join. If a1 | ap, thena € [[[a1/X]@]] impliesa € [[[az/X|¢].

Theorem6 If T'Fa: @ando < [[I'], thencac [og].
Corollary 5 (Type Safety) If -a: @, then a~x} v.

Corollary 6 (Logical Soundness) + a: 1=0does not hold for any a.

6 Conclusion and Future Work

TheTVe¢ type theory includes intersection types and a form of eguadilection, justified by translation

to an undecidable unannotated system. The division intotated and unannotated systems enables
us to reason about terms without annotations, while retgidiecidable type checking. We have seen
how this approach extends to a language including largeir@imons, by introducing a novel kind of
quasi-implicit products. The quasi-implicit products allow convenieras@ning about specificational
data, while permitting a simple proof of normalization obstd terms. Possible future work includes
formalizing the metatheory, and extending to a polymorpyipe theory. Adding an extensional form of
equality while retaining decidability would also be of irget, as in[[].

100 Equality and Implicit Products

Acknowledgments. Thanks to members of theRELLYS team, especially Stephanie Weirich and
Tim Sheard, for discussions on this and related systems Wik was partially supported by the the
U.S. National Science Foundation under grants 0910510 @ha7B6.

References

[1] T. Altenkirch, C. McBride & W. Swierstra (20070bservational Equality, Nowln: A. Stump & H. Xi, edi-
tors: PLPV '07: Proceedings of the 2007 Workshop on Programmimgjbages meets Program Verification
pp. 57-68.

[2] B. Barras & B. Bernardo (2008)The Implicit Calculus of Constructions as a Programming ¢aage
with Dependent Typesin: Roberto M. Amadio, editorFoundations of Software Science and Computa-
tional Structures, 11th International Conference, FOSSAQ08 Lecture Notes in Computer Scient862,
Springer, pp. 365-379.

[3] R. Constable & the PRL group (1988mplementing Mathematics with the Nuprl Proof Developn$aistem
Prentice-Hall.

[4] M. Coppol & M. Dezani-Ciancaglini (1978)A New Type Assignment farterms Archiv. Math. Logik
19(2), pp. 139-156.

[5] R. Harper, F. Honsell & G. Plotkin (1993 Framework for Defining LogicsJournal of the Association for
Computing Machiner0(1), pp. 143-184.

[6] P. Martin-Lof (1984):Intuitionistic Type TheoryBibliopolis.

[7]1 C. McBride (1999):Dependently Typed Functional Programs and Their Pro®fs.D. thesis, University of
Edinburgh.

[8] A. Miquel (2001): The Implicit Calculus of Constructionsin: Typed Lambda Calculi and Applications
Lecture Notes in Computer Scien2@44, Springer, pp. 344-359.

[9] N. Mishra-Linger & T. Sheard (2008)Erasure and Polymorphism in Pure Type Systemns Roberto M.
Amadio, editor:Foundations of Software Science and Computational Strestd 1th International Confer-
ence (FOSSACS) ecture Notes in Computer Scier4862, Springer, pp. 350—364.

[10] A. Stump, M. Deters, A. Petcher, T. Schiller & T. Simps009): Verified Programming in Guru In:

T. Altenkirch & T. Millstein, editors: Programming Languges meets Program Verification (PL.B) 49—
58.

	1 Introduction
	2 Unannotated Tvec
	3 Metatheory of Unannotated Tvec
	3.1 Semantics of equality
	3.2 The interpretation of types
	3.3 Critical properties
	3.4 Soundness of typing with respect to the interpretation

	4 Annotated Tvec
	4.1 Example

	5 Tvec with Large Eliminations
	5.1 Semantics of Equality
	5.2 Normalization to Canonical Form

	6 Conclusion and Future Work

