Termination Casts: A Flexible Approach to Termination with
General Recursion

Aaron Stump Vilhelm Sjodberg Stephanie Weirich
Computer Science Computer and Information Science Computer and Information Science
The University of lowa University of Pennsylvania University of Pennsylvania
astunmp@cm org vi | hel m@i s. upenn. edu sweirich@is. upenn. edu

This paper proposes a type-and-effect system calféd, which distinguishes terminating terms
and total functions from possibly diverging terms and éfftinctions, for a lambda calculus with
general recursion and equality types. The central ideaiietode a primitive type-form “Terminates
t”, expressing that term t is terminating; and then allowrtet to be coerced from possibly diverging
to total, using a proof of Terminates t. We call such coersi@mmination castsand show how
to implement terminating recursion using them. For the rife¢@ry of the system, we describe a
translation froniré% to a logical theory of termination for general recursiveygly typed functions.
Every typing judgment off®% is translated to a theorem expressing the appropriate riation
property of the computational part of tA8% term.

1 Introduction

Soundly combining general recursion and dependent ty@esignificant current challenge in the design
of dependently typed programming languages. The two méficudties raised by this combination are
(1) type-equivalence checking with dependent types usdalbends on term reduction, which may fail
to terminate in the presence of general recursion; and (@mtihe Curry-Howard isomorphism, non-
terminating recursions are interpreted as unsound inguptioofs, and hence we lose soundness of the
type system as a logic.

Problem (1) can be addressed simply by bounding the numbstept of reduction that can be
performed in a single conversion. This solution may seemoadbut it is less problematic if one works,
as we do here, with a primitive notion of propositional eifyabnd no automatic conversion. Explicit
casts with equality proofs are used to change the types mistesind so with a bound on the number
of reduction steps allowed, one may simply chain togethercaence of conversions to accommodate
long-running terms in types. There are certainly some ssu®e addressed in making such a solution
workable in practice, but it is not a fundamental problem.

Problem (2), on the other hand, cannot be so easily dealt witice we must truly know that a
recursive function is total if we are to view it soundly as aductive proof. One well-known approach
to this problem was proposed by Capretta [7]: extend a teatimig type theory (that is, one for which
we have a sound static analysis for totality, which we usedaire all functions to be total) with general
recursion via coinductive types. Corecursion is used toehgeneral-recursive functions, without losing
logical soundness: productive corecursive functionsespond to sound coinductive arguments. The
type constructof-)¥ for possibly diverging computations, together with natogerations on it, is shown
to form a monad.

A separate problem related to (2) is extending the flexjbit totality checking for total type the-
ories. It is well-known that structural termination can e awkward for some functions like, for

A. Bove, E. Komendantskaya and M. Niqui (Eds.)
Partiality and Recursion in Interactive Theorem Provers. (© Stump, Sjoberg, and Weirich
EPTCS 43, 2010, pp. 7693, d0i:10.4204/EPTCS|43.6

http://dx.doi.org/10.4204/EPTCS.43.6

Stump, Sjoberg, and Weirich 77

example, natural-number division, where a recursive cabtrbe made on the result of another function
call. For this situation, methods like type-based terniimahave been proposed: see Barthe et al. [4]
and several subsequent works by those authors; also, Abel ik idea in type-based termination is,

roughly, to associate sizes with data, and track sizescaligtiacross function calls. Recursive calls

must be on data with smaller size. This method certainlyeiases the range of functions judged total
in their natural presentation. No static termination asialyvill be complete, so there will always be

programs that type-based termination cannot judge tetmgaWhen such analyses fail, programmers
must rewrite their code so that its termination behavior asevapparent to the analysis. What is required
is a flexible method for such explicit termination arguments

This paper’s contribution This paper proposes a system calléd* that can be seen as building on
both these lines of work. We develop a type-and-effect systdere the effect distinguishes total from
possibly partial terms. The type assignment judgniieintt : T 8 includes aermination effec, which
can be eithey (called “total”), for terms that are known to terminate, ofcalled “general”), for terms
whose termination behavior is unknown.

We can view this approach as building, at least in spirit, @pr€tta’s approach with the par-
tiality monad, thanks to the close connection between nomred effects, as shown by Wadler and
Thiemann [[19]. Of course, there are important differencesvben the monadic and effectful ap-
proaches, most notably that effects are hard-wired int¢etiiguage definition, while monads are usually
programmer-defined. We adopt the effectful approach heree sve are particularly focused on these
two kinds of computation, terminating and possibly pasta fundamental. We thus deem them appro-
priate for hard-wiring into the language itself. Exploritige tradeoffs more deeply between these two
approaches must remain to future work.

Importantly, T4 provides a flexible approach to termination because thenjedd of totality,
M=t:T |,isinternalized into the type system. The tyfEminates t expresses termination of terim
The effect of a term can thus be changed from possibly padi@tal by casting the termwith a proof
of Terminates t. Thesetermination castchange the type checker’s view of the termination behavior
of a term, much as a (sound) type cast changes its view of geedf/the term. Termination casts are
used with the terminating recursion operator: the body efaltatively terminating recursive function is
type-checked under the additional explicit assumptioh¢hHés with a structurally smaller argument are
terminating.

By reifying this basic view of structural termination as atplkit typing assumption, we follow
the spirit of type-based termination: our method elimiratee need for a separate structural check
(proposed as an important motivation for type-based teatinn [4]), and gives the programmer even
more flexibility in the kind of functions s/he can write. Th&because instead of relying on a static
analysis to track sizes of datatypes, our approach alloesigier (or an automated reasoning system)
to perform arbitrarily complex reasoning to show termioatbf the function. This reasoning can be
internal, using termination casts, or completely externak can write a general-recursive function that
the type checker can only judge to be possibly partial, aret f@rove a theorem explicitly showing that
the function is terminating. Of course, one could also wslsupport what we would see as a hybrid
approach, in the style of theR®GRAM tactic in Coq [16], but this is outside the scope of the presen
paper.

Outline of the development In Section[2, we first present the syntax, reduction rulestgpd as-
signment system fof®%. Because type assignment is not algorithmic Téf*, we also develop an

78 Termination Casts

effects 6,p = [|?
types T = nat | N%:T.T" | t =t | Terminatest
terms t = X | Ax.t|tt'| O Suct

| recf(x)=t| casett't’

| join | terminates | contra | abort
values v = X | 0] Suev | Ax.t | recf(x)=t

| join | terminates | contra
contexts ¢ = [| Suc¥ | €t | v¥ | caser'tt

Figure 1: Syntax ofrea+

annotated version af¢% suitable for implementation, where terms are annotatediable algorithmic
type checking. We follow this explanation with a number cieyples of the use of termination casts, in
SectiorB. Next, in Sectidd 4 we develop our central metarthii result, based on a translationTéf*
typing judgments to judgments about termination of the terguestion, formulated in a first-order logi-
cal theory of general-recursive functions (caM#). This system is similar in spirit to Feferman’s theory
W (see Chapter 13 of [10]), although with significant syntadifferences, and support for hypothetical
reasoning about termination. We show tf&f" is sound with respect to this translation. Also, we find
that constructive reasoning suffices for soundness of gmeslation, so we také/’ to be intuitionistic
(whereas an important characteristid/éfis that its logic is classical).

2 Definition of Té%+

The languagd@®?t is a simple language with natural numbers and dependedtrecursive functions.
The syntax of type¥ and termg appears in Figurlg 1. The variablés bound int in the termA x.t and in

T’ in the typel®x: T.T'. As explained belowd for MN-types represents the latent effect of the function’s
computation (it does not describe the input argument). Em@blesf andx are bound irt in the term
rec f(x) =t. We use the notatioft’ /x] T and[t’ /x|t to denote the capture-avoiding substitutiont’of
for xin types and terms respectively.

We deliberately omit fronT¢4+ many important type-theoretic features which we believbaamr-
thogonal to the central ideas explored here. A full-fledgpe theory based on these ideas would include
user-defined inductive types, type polymorphism, perhapsigerse hierarchy, large eliminations, im-
plicit products, and so forth. Some of these features, itiquéar large eliminations, raise serious tech-
nical challenges for this approach (and many others). Rsipiper we develop the core ideas needed
for distinguishing total and possibly partial computasiomith our effect system and using termination
casts to internalize termination, leaving other probleo&iture work.

2.1 Operational semantics

Reduction forT®dt is defined as a call-by-value small-step operational seénsarfigure]l presents the
syntax of values and evaluation contexts and Figlire 2 amthie two judgments that make up this
semantics. Values ifi®% include variables, natural numbers, functions and primitiroof terms for the
internalized judgments of equality and termination.

We define the reduction rules with two relations: the priveitB rules, writtent ~ 3 t' describe
reduction when a value is in an active position. This refai® used by the main reduction relation

Stump, Sjoberg, and Weirich 79

t WB t/ t t/
BETA_APPABS tpt
— RED_CTXT
AV =g [V/x]t 7 - 7[0]
— BETA_CASEZERO
RED_ABORT
case0tt ~p t % [abort] ~~ abort

BETA_CASESUC
case(Sucv) tt/ ~p t'v

BETA_APPREC

(recf(x) =t)v~p [v/X][recf(x)=t/f]t
Figure 2: Call-by-value small-step operational semantics

t ~ t/, which lifts beta reduction through evaluation context@nd terminates computation fabort,
representing finite failure. Other proof forms, includiogntra, are considered values. We cannot, in
fact, obtain a contradiction in the empty context (assunoimigtheoryW' is consistent), but at this point
in the development that cannot be shown.

2.2 Type assignment

Figure[3 defines théype-assignmernsystem. The judgmerit -t : T 6 states that the termcan be
assigned typd in the context™ with effect 8. (The other two judgment$, - Ok andl" - T, are used
by this one to check that contexts and types are well formeéde)define the system such thats an
approximation of the termination behavior of the systemwéfcan derive a judgmefit-t: T |, then
this means that for any assignment of values to the variabl&s reduction oft must terminate. (If
the context is inconsistent,might not terminate even if the type system judges it to dosgme an
inconsistent context can make unsatisfiable assertionst abonination, which may pollute the type
system’s judgments.) In contrast, the judgmEnt t: T ? places no restrictions on the termination
behavior oft. We view 6 is as acapability on termination behaviof [9]. A term with capability ? is
allowed to diverge, but terms with capabilifycannot. As a result, any term that typechecks withill
also typecheck with ?. Thus ? is more permissive thaand we order them gs<?.

Such reasoning is reflected in the type systdifd' has a call-by-value operational semantics, so
variables stand for values. Therefore, a variable is kn@xgrminate, so we can type variables with any
effect in rule TVAR. This pattern occurs often; all terms that are known to teat@ have unconstrained
effects in the conclusion of their typing rules. In this wasg build subeffecting into the type system and
do not need an additional rule to coerce total terms to géoness. Because of this subeffecting, when
a premise of a rule uses the general effect, such_&QKit places no restriction on the term.

As is standard in type-and-effect systems, function typesanotated with katent effect This effect
records the termination effect for the body of the functioniule T_ABS. Likewise, in an application
(rule T_ApPp), the latent effect of the function must be equal or less thancurrent termination effect.
Note that, although the system supports subeffecting,asdwt support subtyping. In an application,
the type of the argument must exactly match that expectetidojuinction. Although there is a natural
extension of subeffecting to subtyping, for simplicity wav/k not included it in this system.

Te4t types include two propositions. The type= t’ states that two terms are equal and the type

80

MEt:T? THY:T?
rFt=t

K_EQ

OK_EMPTY

- Ok

t~*tg tstig
Fr=t:17?2 r=t:17°

— T_Joi
N-join:t=t86

M-t:T |

N

I +terminates: Terminates t

[-t: Terminates €' [t'] 6

T_REIFY

rx:TET

ARG

Fr=t:T77?
" - Terminates t

rN-0Ok TFT
M,x: Tk Ok

Met:[t2/x]TO
Fl—t’:t1:t2¢ [

Termination Casts

K_TERM

OK_CONS

/x| T
L/XIT ¢ cony

FEt:[ty/x]T 6

MrEt:T7?
I =t :Terminatest |

Mr-t:T7806

rx)=T T+ Ok

T_REFLECT

~1t: Terminates t/ 6 T-CTXTERM M=x:T6 T-VAR
Frx:THt:Tp TEOPXIT.T T Ass Fr=t:NPx:T'.TO THY: T p<8®b T App
FEAXt:MPX:T'.T O B et [t/x]T6 B
I+ Ok T ZEro ~t:nato T Suc
F=0:nat@® ~ ~Suct:natf ~
MEE0=Sud 4 o onrra _TFPOk o sort
M~contra:T 6 h M~abort: T?
N-t:nat6 TrHt:[0/x]THO
Ff:NxT.T,x:THt:T? It”:MPX:nat.[Sucx /x]TO8 p <86
— T_REC . T_CASE
Mrecf(x)=t:MNx:T'.TO -casett’ t”:[t/x]T 6
p¢&fvt
I f:N?:nat.T,x: nat,p: M¥x:nat.M+p :x = Sucxy. Terminates (fx) Ft: T
3) P 1 P 1 (1) \l/ T RECNAT

Mrecf(x) =t:M¥x:nat.T 6

Figure 3: Type assignment system

Stump, Sjoberg, and Weirich 81

Terminates t declares that term is terminating. The introduction form for the equality posjtion
(rule T_JOIN) requires both terms to be well typed and evaluate to a conmaduct. For flexibility,
these terms need not be judged terminating nor have the squrae The elimination form (JTCoNv)
uses a total proof of equality to convert between equivalgms. Likewise, the introduction form for
the Terminates t proposition (TREIFY) requires showing that the term terminates. Analogoubly, t
elimination form (TREFLECT) uses a total proof of termination to change the effect. oT®" also
internalizes an admissible property of the judgment withdimpty context—if a term terminates, then
the subterm in the active position of the term terminate€C{X TERM). This property does not (appear
to) follow constructively from the others.

Recursive functions can be typed with either general ot tatant effects. In the latter case, the
T_RECNAT rule introduces a new hypothesis into the context that maysked to show that the body of
the function is total. The assumptign Mtx; :nat.M+p :x = Sucx;. Terminates (f x;) is an assertion
that for any numbex; that is one less thax the recursive callf x;) terminates. Even though the type
of f has a ? latent effect, recursive calls on the immediate pesger can be cast to be total using this
assumption.

The rule TRECNAT includes a restriction thad ¢ fvt. This means that the only places tipatan
occur in a typing derivation is in the proof-premises afCDNv, T_REFLECT, and T.CONTRA. The
advantage of setting up the system this way is that we canediffeoperational semantics without any
reference to proofs: the ruleEBA_APPREC does not have to specify a proof term to substitute for free
occurrences of in t. In other words the TJRECNAT rule bakes in a form gproof erasurd12,[3,[11].

We may worry that this restriction limits the expressivenetthe language because the varigble
can not be used in every context. However, that is not the asisir system satisfies a form mibof
irrelevance No matter what proof we have of termination, we can alwaysthe rules TREIFY and
T_REFLECT to replace it by the (computationally) uninformative préefminates. We give an example
of this behavior in the next section. Thus, we do not lose ldngtby making the proof variablp
second-class, since we can always replace it with a proofdies not mentiop. (Likewise, equality
proofs are irrelevant, as we can useld@iN followed by T_.CoNv to show that™ Fu:t =t | implies
MEjoin:t=1t .

2.3 Annotated language

The previous two subsections provide a complete speciitati theT¢% language. However, ili®d+,
type inference is not algorithmic. Given a contExa termt and effectd, it is not clear how to determine
if there is somel such that” -t: T 8 holds. The terms do not contain enough information to irtdica
how to construct a typing derivation.

Fortunately, it is straightforward to produce an annotatedsion of T4 where the type checking
algorithm is fully determined. Below we give the syntax af #imnotated terms. The full typing rules for
the annotated system appear in Figure 6. The judgment fofnit-ia : S 6, where algorithmicallyl, a,
and@ are inputs to the type checker and typis the output.

Most annotated term forms have direct correspondence tarthenotated terms. Figuré 5 defines
the operation| - | that erases annotations. Notably, there are two differemh$ of recursion, based
on which typing rule should be used. Furthermore, the syimalides termsdonvx.Sad a, inv a &,
andreflect a &) that mark where type conversions, termination inversamd termination casts should
occur—these are implicit in the unannotated system.

The annotated system uses tyjs&that are exactly like type$ except that they contain annotated
terms. However, because there is no operational semardfased for annotated terms, the join rule

82

annot types S ::
annot terms a

Terms

x|

ad|

|A0xSal

[

| Suca|
|casex.Sad a’|

|rechat f(X p): S=a|

|rec f(xS): S =a

nat | M%x:SS | a= 4 | Terminates a

x | ad | A®xSa | 0 | Suca

Termination Casts

recnat f(x p):S=a | rec f(xS):S=a | casexSad @’
joinad | convx.Sd a | terminatesa | reflectaa

invaa | contraSa| abortS

Figure 4: Syntax of annotatefa+

Types
|nat| = nat
IMPx:SS | = N%«:|S|.|S|
la=d| = |af = [d]
| Terminates a| = Terminates |a|
= X |join a d|
= |a||d| |terminates a|
= AX.|a| |contra S &
=0 |abort S|
= Suc|a| |convx.Sad |
= caselal|d||a"] |reflectad |
= recf(x)=]a| linvad |
= recf(x)=]|a|

Figure 5: Annotation erasure

join
terminates
contra
abort

a|

al

El

Stump, Sjoberg, and Weirich 83

M-S
I IOk S NAT rM-s r,x:Sks S P
lNkFnat rFnéx:ss h
rM-a:s? rika:s?
rM-s ris SE MNa:S? S TERM
Nr-a=a -=Q - Terminatesa
I IF Ok
———OKA_EMPTY FIF Ok rH_SOKA CONS
JFOk T I, x: Sl Ok -
Nta:se
la| Nt |a|~Nt MFa:[ay/x]S6
r-a:s? Flka’:S’?AJOIN rea:ap=a | I'\F[al/x]SACONV
MNkjoinad:a=a6 IFconvx.Sad :[a;/x]S6O B
MN-a:S| A REIFY MNFa:S? I'\Fa’:TerminatesaiAREFLECT
I I terminatesa: Terminatesa 6 IFreflectaa : SO h
I I-a: Terminates a”’ 6
&) = ¢la]] AcTxTerm X =T TIROK
INFinvaa :Terminatesa 8 Nex:s6 h
MNx:Slka:Sp TIFMNPx:S.S MNFa:MPx:8.56 riFa:S6 p<éo
A_ABS A_APP
MNFAPxS.a:MPx:S.S6 MNFad:[a/x]S6
I IF Ok A ZERO MNkFa:naté A Suc
MNO:natf NFSuca:natf
MNa:0= Suca | A CONTRA I I- Ok A ABORT
lNFcontraSa:S6 IFabort S:S?
Nra:nat® TIFa:[0/x]S6
I-a”:NPx:nat.[SucX /x|SO
M, f:NxS.S,x:SlFa:S? A Rec p<6 A Case
Mkrec f(xS):S=a:MNx:8.856 IlFcasex.Sad @' :[a/x|S6
p&fva

M, f:MN?:nat.S,x: nat, p: Mix;:nat.M4p':x = Sucxy. Terminates (fx)IFa: S
b. P L () ¥ A RECNAT

[I-rechat f(x p): S=a:Mix:nat.S6

Figure 6: Annotated type checking system

84 Termination Casts

(shown below) first erases the annotations before detammihthere is some common reduct. Likewise,
the inversion rule uses erasure to find the evaluation contex

Simple comparison of the typing rules of the two systems immaaghtforward inductive proof shows
that the annotated system is sound and complete with retsptxe implicit system.

Proposition 1 (Soundness of annotated systemf I' I-a: SO thenl - |a| : |S| 6.

Proposition 2 (Completeness of annotated systendf I' -t : T 6 then there exists an a and S, such that
|aj]=tand|S|=T andl IFa:S#@.

Note that although type inference is syntax-directed, it/ decidable in the annotated system
if there is some cut-off in normalization in the join rule. é&vif we were to requir@ anda’ to have
the total effect in this rule, this restriction would not ares decidability. An inconsistent context could
type a looping term with a total effect. It would be reasoedll make the cutoff part of the annotated
join-term itself, although here we use a global cut-off. Notd thgposing a cutoff in the join rule in
the annotated system does not jeopardize completenessirageajsin in the implicit system can be
translated to several joins in the annotated system.

Finally, we are not considering the problem of annotaticierence for this system. This is an
important problem to ease the burden of programming withiteation casts. We conjecture that in many
simple cases like structural decrease of a single pararetbe function, the appropriate termination
casts can be added completely automatically. But workiisygiocess out is beyond the scope of this
paper.

3 Examples

Natural number addition: internal verification Our first example shows how simple structurally re-
cursive functions can be shown terminating at their definitime using the TRECNAT rule. We define
natural number addition with the following term, showingfiits implicit then annotated versions:

implicit plus %) Xp.recf(xy) = (casexs (Ag.x2) (AX.Aq.Suc(fx)))join
annotated plus 97) ixnat. recyy f (X, p): nat =
(casex.(M¥q:x; = x.nat) x;
(Atgxg = 0.x)
(A:nat.Atgx, = Sucx. Suc(reflect (fX) (pXq))))
(join X1 Xl)

In this example, we must abstract over equality types treatlaen applied tgoin. This standard trick,
used frequently in 6Q and similar dependent type theories, introduces diffeasatimptions of equal-
ities into the context, depending on the case branch. Asniedabove, we have deliberately omitted
from T4+ a number of features that would improve some of these examptgably implicit products
(as proposed by Miquel [11]) for equality proofs in casevsr

The typing rules verify that plus is a total operation. Foamyple, in the annotated system we can
show:

-IF plus: M¥x :nat.M¥x: nat.nat |

To see why this is so, consider the context that we use to typekcthe body of the recursive function:

%%, : nat, x : nat, f : M%;:natnat, p: M*x:nat.N*q:x = Sucx.Terminates (fx),-

Stump, Sjoberg, and Weirich 85

In this context, we would like to show that the case expreshias type M+q:x; = x;.nat). Note that
the abstraction off must be| so that when we apply the case expressiojoito the entire expression
will have the] effect. In the zero case, we use rules_A&8s and TA VAR to show that the abstraction
has the desired total function type.

In the successor case, we use a termination cast to shovhéhetdursive call is total. Without this
cast, we would be unable to use the latent effeitt the abstraction ofl. Using the rules for variables
and application we can show that the recursive call has arglesiéect, but by itself, this will not let us
define a total function.

r,x :nat,q:x = SucX IF fxX :nat?

However, given the extra argument from recursive functisa,can produce a proof that the recursive
call terminates.
X :nat,q:x = Sucx I pXq: Terminates (fx') |

From these two, we can use a termination cast to change tw effthe recursive call.
M, X :nat,q:x; = Sucx I-reflect (fX) (pXq):nat |

Finally, we can use the rules for successor and abstraaticoriclude that the successor case has the
desired type.

Natural number addition: external verification ~An advantage of this system is that we do not need
to prove that plus is total when we define it. We could also @gbins using general recursion:

plusd:ef)\ X2.rec f(x;) = casexy X2 (A z.Suc(f z))

But note, the best typing derivation will assign a ? latefeectfto this function. (For brevity, this and
further examples will be presented in the implicit language

-F plus: I'I¢x2 : nat.l'l?xl ‘nat.nat |

However, all is not lost. We can still prove the following tiiem and use it in a termination cast to show
that a particular application @lusterminates. The proof term (below) uses recursion to cocisé total
witness for this theorem.

plustotal : M¥xp:nat.M*x;:nat.Terminates (plusxx;)

plustotal L X2.(recf(xy) = (casex; (A q.terminates) (A z.A g.terminates))join)
To understand this proof term, we look at the typing deroratn each branch of the case term. LCdie
the context that rule JRECNAT uses to check the body of the recursive definition, shownabelo

def
r< % : nat

X; @ nat,
f : M’z:nat.Terminates (plus»z),
p : M‘z:nat.Mq:x; = SuczTerminates (f z)

Then in the zero case, becaysesx 0 evaluates ta, and variables terminate, we can use rul€dnv
to show that case total.

Mg:xx=0FXx:nat | :
I,9: % = 0Fterminates: Terminates x, | I=join : plusx0 = x |
,9: X = OF terminates: Terminates (plusx0) |
I+ Aq.terminates: MYq:x; = O.Terminates (plusx0) |

86 Termination Casts

For the successor case, we need to make a recursive calltteetbrem to show that the recursive call to
the function terminates. Below, IEt be the extended environment z : nat, q : X, = Suczand(x) be
the derivation of ’ I join : plusx (Sucz) = Suc(plusxz) |. Then, the derivation looks like:

MFplusxz:nat? '+ fz: Terminates (plusxz) |

" Fplusx»z:nat |

Ik Suc(plusxz) :nat |

" I terminates : Terminates (Suc(plus»z)) | (%)

I I terminates: Terminates (plusx (Sucz)) |

First-class termination proofs Recursive functions can also call helper functions in tbefinitions,
passing off the recursive term and a proof that the recuisallewill terminate. For example, suppose
there is some functioh that takes an argument, a (general) function to call on tigairaent, and a proof
that the call terminates.

h: M¥x:nat.M*f : M°x: nat.nat.M*p: Terminates (f x).nat

For example, h may just appfyto x and use a termination cast to show the effect total. We cain use
in the definition of a total recursive function, even if we dat know its definition. (Lel” be a context
which contains the above binding for)

[+recf(x) = (casex (A q.0) (Az.Aq.hzfterminates))join : M*x:nat.nat |

Note that in this example, we userminates as the proof that z terminates. Although TRECNAT
introduces the variablg, of typeM‘z:nat.M‘q:z = Sucz Terminates (f z), we cannot passzqgas the
termination proof tch because cannot be mentioned in the term. However, the proof temminates
works instead, as shown by the following derivation. (Cébe the context in the successor case,li.e.
extended with bindings fox, f, p, zandq.)

Fpzq: Terminates (fz) | M+~fz:nat?
M-fz:nat |

I I terminates: Terminates (fz) |

T_REFLECT
T_REIFY

Natural number division Finally, we demonstrate a function that requires a coufseoies argument
to show termination: natural number division. The generabjem is that division calls itself recursively
on a number that is smaller, but is not the direct predecedgdbe argument. To show that this function
terminates, we do structural recursion on an upper boundeoflividend instead of the dividend itself.
(Note that we could also define division as a possibly paftiattion, without this extra upper-bound
argument, and separately write a proof that states thatidivis a total function.) The type we use for
division is:
div: M¥z:nat.M*x: nat.M*x :nat.M*u: (lteX x) = true.nat

Stump, Sjoberg, and Weirich 87

wherez is the divisor,X is the dividendx is an upper bound of the dividend, alté is a function that
determines if the first number is “less-than-or-equal” teosid. We have been parsimonious in omitting
a boolean type, so we use 0 aBdcO for false andtrue, respectively in the result dfe. Therefore, we
define
lte ©'rec f (x) = A u.casex (Suc0) (A X .caseu0 (X))
and show
-k Ite: N°x:nat.M?X :nat.nat |

Note that we are consideriritg as a possibly partial function; nothing is harmed by not ol it to be
total. We also define cut-off subtraction as a total functiinusof type M+x: nat.M*x : nat.nat (details
omitted). The code for division is then:
div &' Az ((casez
(Ag.AX.AX.Au.0)
(AZ.Aq.recf(x) =AX.Au.((case(lte(Sucx)z)t; (AZ'.Ad.0))join)))
join)

We handle the case of division by 0 up front, obtaining anmggion q: z = SucZ when the divisor is
not zero. Next, we case split on whether or not the bouisdstrictly less tharz, that is,Ite (Sucx) z. If
so, we use the terthz’ . A ¢ . 0 of type

M7’ :nat.M*q :lte(Sucx)z = (SucZ’).nat

Then the quotient is 0. If not, we use the tetayof typelN+q : (Ite (Sucx)z = 0).nat, which is (witht,
discussed below):

ti 2" Aq.(Suc(f (predx) (minuskz)t,))
In this case, we are decreasing our bound on the dividend éyamd then using a termination cast to
show thaf (predXx) is terminating. Here, we defimredas justA x.casex0A X .xX. Of course, since this
is the implicit language, the termination cast does not appethe term itself. To apply the termination
cast, we must use the implicit assumptipielling us thatf terminates on the predecessoxofVe can
prove thatcasex 0 A X' . X is the predecessor afin this case, because the assumptigng = (SucZz)
andq' : Ite(Sucx)z = falseshow thatx is non-zero: Intuitivelyg’ implies thatx is greater than or equal
to z, which we know is non-zero bg. The termt, is a proof thaiminus Xz is less than or equal to the
predecessor of the bounchsex 0 A X' .X'. In fact,join will serve fort, because the desired equation is
provable from the assumptions.

4 A Logical Semantics forTed+

In this section, we give a semantics fo?9" in terms of a simple constructive logic callgd. This
semantics informs our design o9+ and can potentially be used as part of a consistency prodefor

The theoryW’ is reminiscent of Feferman’s theoW (see, for example, Chapter 13 o6f [10)V is a
classical second-order theory of general-recursive fonst classified by class terms which correspond
to simple typesW supports quantification over class terms, and quantificatieer defined individual
terms. It is defined in Beeson’s Logic of Partial Terms, adatgsigned for reasoning about definedness
in the presence of partial functiorig [3) includes a relatively weak form of natural-number inductio
Indeed,W is conservative over Peano Arithmetic.

88 Termination Casts

A = nat | A—>A

F = True | WX:AF | F=F | FAF | Terminatest | t =1t
S = | I,x:A

H | H,F

Figure 7: Simple types, formulas, typing contexts, and mggion contexts ofV’

4.1 The theoryW’

Figure[T gives the syntax for soms(which are just simple types) and formulgdor the theoryW'’; as
well as typing context& and contexts for logical assumptions. Terntsare just as for (implicit)r¢9+,
except withoutontra, terminates, andjoin. Figurel8 gives the proof rules for the thed/. The form
of judgments i ; H F. This expresses that formufaholds under the assumed formuladinX is a
typing context declaring free term-level variables ocitigrin H andF.

W' is similar in spirit to Feferman’sV, but differs in a number of details. Fir&y is a two-sorted
theory: there is a sort for individual terms, and one for €lsms. To express that tetnis in classC,
theoryW uses an atomic formulac C. Our theoryW’, in contrast, is a multi-sorted first-order logic,
with one sort for every simple type. $¢ does not make use of a predicate symbol to express that a term
has a sort. We only insist that terms are well-sorted wheamtisiting quantifiers. This is apparent in the
rule Pv_ALLE, which depends on a simple typing judgment\fét. The rules for this typing judgment
may be found in the companion technical repbrt [18]. Wetkfedness of equations does not require
well-sortedness of the terms W’ (as also inW). Also, we have no reason at the moment to include
non-constructive reasoning W', so we define it using principles of intuitionistic logic gnl

A few more words on the proof principles 0’ are warranted. The\ROPSEM equates termisand
t’ iff t ~*t’. Thanks to the P_SuBsST rule, symmetry and transitivity of equality can be derivadai
standard way. We do not require quantifiers to be instauditiageonly terminating terms. This means that
for induction principles, we must state explicitly that tleems in question are terminating. We include a
principle R/_ComMPIND of computational induction, on the structure of a termimgttomputation. That
is, if we know that an application of a recursive functionageminating, we can prove a property of such
an application by assuming it is true for recursive callgl sinowing it is true for an outer arbitrary call
of the function. Note that the assumption of terminatiorhefapplication of the recursive function is es-
sential: without it, we could prove diverging terms term@a/Ne also include a principleVRTERMINV
of computational inversion, which allows us to concluigminates t from Terminates ¢ [t]. Inter-
estingly, even without the inversion rule 89+, the theorem we prove below would make heavy use of
computational inversion. In a classical theory Nig this principle may well be derivable from the other
axioms. Here, it does not seem to be.

Computational translation of terms Figure[9 defines what we will refer to as the computational
translation ofT®% terms (the “C” is for computational). This translation, wihiis almost trivial, just
maps logical termgin, terminates, andcontra to O.

Translation of types Next, givenTé% type T, we define[T]|® and [T]-. The “L” is for logical
translation. Thig[T] is a sortA, and[[T]" is a predicate on translated terms. Recall that the syntax fo
such types and for the formul&sused in such predicates is defined in Fidure 7 above. The tigfini
of the interpretations is then given in Figlird 10. Note tha oan confirm the well-foundedness of this
definition by expanding the definition §T5, a convenient abbreviation, wherever it is used.

Stump, Sjoberg, and Weirich

7F € H Pv_ASSuUME
SSHEF
2:HEWX:AF ZFt:A PV ALLE
5 HE[t/X]F -
S>HFF=F X:HFF By IMPE
S HEF -
S:HEFAF Py ANDEL
> HEF h
2:H F True PV-TRUEI
U opsem
SSHEt=t
>:H F Terminates OPV‘TERMO
>:H F Terminates A x.tPV‘TERM'A‘BS
Z; H F Terminates ¢ [t]
Pv_TERMINV

2:H F Terminates t

;HFE[0/x]F Z,X :nat;H, Terminates X, [X /X|F F [SucX /x]F

89

> X:A;JHEF x¢gfvH By ALL
>:HEFVWXAF h
ZHFER PV_IMPI
SHEFF=F
SSHEF Z:HEF By ANDI
S;HFFAF i
> HEFAR Pv_ANDE2
S HEF -
ZHPO0=5ud o onTra
S:HEF -
S;HEt=t Z;HF[t/X]F Py SuBST
Z,HE[tV/X]F)
>:H F Terminates t BV TERMS
>:H F Terminates Suda
- Pv_TERMREC
>; H Terminates recf(x) =t

>:H F Terminates abort

PV_NOTTERMABORT

S HEF

Pv_IND

2:H F ¥X:nat.Terminates x= F

S f A AH YA fX/Z]FEYX:ALt/z]F Zhrecf(x)=t: A=A

2, H F vx: Al.-Terminates (recf(x) =t)x=[(recf(x) =t)x/z|F PV-COMPIND
Figure 8: TheoryV’

[X)© = X [tt']° = [[v]°

[A 1] = Ax[t]° [o]° -0

[Suct]© = S[t° [ioin]© =0

[terminates]© = 0 [contra]|© =0

[abort]© = abort [recf(x) =t]¢ = recf(x).[t]°

[casett t']° = C[t]° [t]° [t']°

Figure 9: Computational translation of terms

90 Termination Casts

[nat]® = nat [nat]-t = True
Mo TTIC = [T]—[T"] Mo TPt = wx: [TIS[T]) x = [T']5 (tX)
[t =t]° = nat It =to]"t = [t]°=[t]
[Terminates t}° = nat [Terminates t]*t = Terminates [[t']¢
[TI;t = Terminatest A [T]"t
[T)5t = Terminatest = [T]-t

Figure 10: Interpretation of types

4.2 Examples

Example 1. If we consider the typ&l‘x; : nat.MNM*x, : nat.nat, we will get the following. Note that the
assumptions below that variables terminate reflect thebgallalue nature of the language. A translation
for a call-by-name language would presumably not includd sissumptions.

[M¥x :nat.M¥x;:natnat]® = nat— (nat— nat)
[M*x:nat.M*x;:nat.nat]" plus = ¥x; : nat. Terminates x; A True = Terminates (plus %) A
Vxo : nat. Terminates x; A True = Terminates (plus X X2)
A True

Example 2 (higher-order, total). If we wanted to type a functioiiter which iterates a terminating
function xy, starting fromx,, and does this iteratioxs times, we might use the type:

M¥x; :M¥x:nat.nat.M*x, : nat.Mxz :nat.nat.

For this type (call ifT for brevity), we will get the following translations:

[T]°¢ (nat — nat) — (nat — (nat — nat))
[T]“iter = Vx;:nat— nat. Terminates x; A
(Vx: nat.Terminates X A True = Terminates (x; X) A True) =
Terminates (iter x;) A
VX2 : nat. Terminates x A True = Terminates (iter x; X2) A
VX3 : nat. Terminates x3 A True = Terminates (iter x; X2 x3) A True

Notice that in this case, the logical interpretatiifi]- includes a hypothesis that the functism is
terminating. This corresponds to the fact tkahas type1¥x: nat.nat in the originalT¢%* type.

Example 3 (higher-order, partial). If we wanted to type a different version iéér which, when given a
general-recursive functioxy and a starting valug,, returns a general-recursive function taking ingut
and iteratingx; x3 times starting fronx,, we might use the type:

M¥x :M7x:nat.nat.M*x, : nat.MN’x3 : nat.nat.

Stump, Sjoberg, and Weirich 91

[F.x:T]° = [r]x:[T]° rx:T]5 = [r]. [T]} x
Figure 11: Interpretation of contexts

For this type (call ifT'), we will get the following logical translation:

[T]“iter = Vx;:nat— nat. Terminates x; A
(Vx: nat.Terminates x A True = Terminates (X, X) = True) =
Terminates (iter x;) A
VXz : nat. Terminates x; A True = Terminates (iter X; Xz) A
VX3 : nat. Terminates x3 A True = Terminates (iter X; Xp x3) = True

4.3 Translation of contexts

Figure[T1 gives a similar 2-part translation of typing catge The translatiorf-] produces a simple-
typing contextz, while the translatiorf-]* produces a logical contekt, which asserts, for each variable
x, thatx terminates and has the property given by [ffjé translation of its type.

4.4 Translation of typing judgments

We are now in a position to state the main theorems of thismpdjpe proofs are given in the companion
technical report. Theoref 4 shows that the logical traiosiaif types is sound: the property expressed
by [T]5 can indeed be proved to hold for the translatjofft of terms of typeT.

Theorem 3 (Soundness of Computational Translation)lf I -t: T 8, then[[I']¢ + [t]€ : [T]C.

Theorem 4 (Soundness of Logical Translation)if I t:T 6, then[T]J<; [T]" - [T]} [t]°.

5 Related Work

Capretta’s Partiality Monad Caprettal[7] gives an account of general recursion in tefrascoinduc-
tive type constructo(-)”, and manyT®4 programs can be fairly mechanically translated into pnogra
using (-)¥ by a translation similar to the the one described by Wadler Bmemann[[19]. However,
one interesting difference is th&fd" functions can have a return type which depends on a potential
nonterminating argument. It is not clear how to represeistitha monadic framework.
For example, if we imagine a version 6f% extended with option types, and suppose we are given

a decision procedure for equality oats and a partial function which computes the minimum zero of a
function:

eqDec: M*x:nat.M*x :nat.Maybe (x = X)

minZero: M°f : (M¥x:nat.nat).nat

Then we can easily compose these to make a function to teg ifuinctions have the same least zero:

Af.Af .eqDeq minZerof) (minZerof)
-T2 (M¥x:nat.nat).N?’: (M¥x: nat.nat).Maybe (minZerof = minZerof)

92 Termination Casts

However the naive translation of this into monadic form,
A f.Af.(minZero f) >>= (Am.(minZero f) >>= (Am'.return (eqgDec m 1)),

is not well typed, since the monadic bing>=: VA B.AY — (A — BY) — BY does not have a way to
propagate the type dependency.

Other Another approach, not depending on coinductive types,ptoexd by Capretta and Bove, who
define a special-purpose accessibility predicate for eadergl-recursive function, and then define the
function by structural recursion on the proof of accesijbilor the function’s input [[6]. ATS and
GURU both separate the domains of proofs and programs, and camflow general recursion without
endangering logical soundnessl[l7, 8]. Systems like CayEnQMEGA [15]. and GNCOQTION[13]
support dependent types and general recursion, but doelotsilentify a fragment of the term language
which is sound as a proof system (althougbNE0QTION uses ©Q proofs for reasoning about type
indices).

6 Conclusion

Te4 combines equality types and general recursion, using @ttedfystem to distinguish total from
possibly partial terms. Termination casts are used to ahémg type system’s view of the termination
behavior of a term. Like other casts, termination casts Imaveomputational relevance and are erased
in passing from the annotated to the implicit type system. hake given a logical semantics fofa+

in terms of a multi-sorted first-order theory of generalumstse functions. Future work includes further
meta-theory, including type soundness T6flt and further analysis of the proposed thed; as well

as incorporation of other typing features, in particulalypwrphism and large eliminations. An impor-
tant further challenge is devising algorithms to recortdtannotations in simple cases or for common
programming idioms.

Acknowledgments.Many thanks to the PAR 2010 reviewers for an exceptionathgelreading and
many constructive criticisms. All syntax definitions indhpaper were typeset and type-checked with
the OrT tool [14]. Thanks also to other members of theeLLYS project, especially Tim Sheard, for
helpful conversations on these ideas. This work was plgraipported by the U.S. National Science
Foundation under grants 0702545, 0910510 and 0910786.

References

[1] A. Abel (2006): A Polymorphic Lambda-Calculus with Sized Higher-Orderég/pPh.D. thesis, Ludwig-
Maximilians-Universitat Miinchen.

[2] L. Augustsson (1998)Cayenne—A Language with Dependent Types Proc. 3rd ACM International Con-
ference on Functional Programming (ICFgp. 239-250.

[3] B. Barras & B. Bernardo (2008)The Implicit Calculus of Constructions as a Programming ¢uaage
with Dependent Typesin: Roberto M. Amadio, editorFoundations of Software Science and Computa-
tional Structures, 11th International Conference, FOSSAQ08 Lecture Notes in Computer Scient@62,
Springer, pp. 365-379.

[4] G. Barthe, M. Frade, E. Giménez, L. Pinto & T. Uustalu @2): Type-based Termination of Recursive Defi-
nitions. Mathematical Structures in Computer Scieftd€l), pp. 97-141.

[5] M. Beeson (1985)Foundations of Constructive Mathematics: Metamatherab8tudies Springer.

Stump, Sjoberg, and Weirich 93

[6] A. Bove & V. Capretta (2005)Modelling General Recursion in Type Theorllathematical Structures in
Computer Scienc#5, pp. 671-708. Cambridge University Press.

[7] V. Capretta (2005)General Recursion via Coinductive Typdsgical Methods in Computer Scient€?),
pp. 1-28.

[8] C. Chen & H. Xi (2005): Combining Programming with Theorem Provindgn: Proceedings of the 10th
International Conference on Functional Programming (I@3jPTallinn, Estonia.

[9] K. Crary, D. Walker & G. Morrisett (1999)Typed Memory Management in a Calculus of Capabilities
POPL '99: Proceedings of the 26th ACM SIGPLAN-SIGACT symipas on Principles of programming
languagesACM, pp. 262-275.

[10] S. Feferman (1998)n the Light of Logic Oxford University Press.

[11] A. Miquel (2001):The Implicit Calculus of Constructionsn: Typed Lambda Calculi and Applicatiofjsp.
344-359.

[12] N. Mishra-Linger & T. Sheard (2008)rasure and Polymorphism in Pure Type Systeims Roberto M.
Amadio, editor:Foundations of Software Science and Computational Strestd 1th International Confer-
ence (FOSSACSpBpringer, pp. 350-364.

[13] E Pasalic, J. Siek, W. Taha & S. Fogarty (200€pncoqtion: Indexed Types Nowh: G. Ramalingam &
E. Visser, editorsACM SIGPLAN 2007 Workshop on Partial Evaluation and Progidanipulation

[14] P. Sewell, F. Nardelli, S. Owens, G. Peskine, T. RidgeS&kar & R. Strnisa (2010)0tt: Effective Tool
Support for the Working Semanticist Funct. Progran20(1), pp. 71-122.

[15] T. Sheard (2006)Type-Level Computation Using Narrowing@mega In: Programming Languages meets
Program Verification
[16] M. Sozeau (2006)Subset Coercions in Cogn: T. Altenkirch & C. McBride, editors:Types for Proofs

and Programs, International Workshop, TYPES 2006, Nditing, UK, April 18-21, 2006, Revised Selected
Paperspp. 237-252.

[17] A. Stump, M. Deters, A. Petcher, T. Schiller & T. Simps009): Verified Programming in Guru In:
T. Altenkirch & T. Millstein, editors:Programming Languges meets Program Verification (PLPV)

[18] A. Stump, V. Sjoberg & S. Weirich (2010Jermination Casts: A Flexible Approach to Termination viién-
eral Recursion (Technical Appendixiechnical Report MS-CIS-10-21, Computer and InformaSarence,
University of Pennsylvania.

[19] P. Wadler & P. Thiemann (2003Y.he Marriage of Effects and Monad&\CM Trans. Comput. Logié(1),
pp. 1-32.

	1 Introduction
	2 Definition of Teqt
	2.1 Operational semantics
	2.2 Type assignment
	2.3 Annotated language

	3 Examples
	4 A Logical Semantics for Teqt
	4.1 The theory W'
	4.2 Examples
	4.3 Translation of contexts
	4.4 Translation of typing judgments

	5 Related Work
	6 Conclusion

