Orthogonal Polynomials and Spectral Algorithms

Nisheeth K. Vishnoi
A

FOCS, Oct. 8, 2016



Orthogonal Polynomials

p-orthogonality

Polynomials p(x), g(x) are j-orthogonal w.r.t. 1 :Z — Rx>g if

(P, ) = / _PUX)al)du(x) =0




Orthogonal Polynomials

p-orthogonality

Polynomials p(x), g(x) are j-orthogonal w.r.t. 1 :Z — Rx>g if

(P, ) = / _PUX)al)du(x) =0

y

p-orthogonal family

Start with 1,x,x2,...,x% ... and apply Gram-Schmidt
orthogonalization w.r.t. (-,-), to obtain a p-orthogonal family
Po(x) = 1, p1(x), pa(x); . - - Pa(x), - .

v



Orthogonal Polynomials

p-orthogonality
Polynomials p(x), g(x) are j-orthogonal w.r.t. 1 :Z — Rx>g if

(P, ) = / _PUX)al)du(x) =0

p-orthogonal family

Start with 1,x,x2,...,x% ... and apply Gram-Schmidt
orthogonalization w.r.t. (-,-), to obtain a p-orthogonal family

Examples
o Legendre: 7 = [—1,1] and p(x) = 1.
o Hermite: Z =R and p(x) = e *"/2.
o Laguerre: 7 = R>¢ and p(x) = e *.
o Chebyshev (Type 1): 7 =[-1,1] and j(x) = %

1—x2°
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Orthgonal polynomials have many amazing properties

Monic p-orthogonal polynomials satisfy 3-term recurrences

pd+1(x) = (X — ad+1)Pd + BdPd—1

for d > 0 with p_; = 0.

Proof sketch

degree d
Q Pit1— XPd = Qgy1Pd + BdaPd—1+ D jcq_17iPi
Q For i <d—1, (xpg, Pi)u = (Pd+1 — XPd; Pi)u = Vi{Pi, Pi), but
Q (xpd,pi)y = (Pd.xpi), = 0 as deg(xp;) < d implying ~v; = 0.

Roots (corollaries)

o If po,p1,...,Pd,-.. are orthogonal w.r.t. u: [a, b] = Rx>g
then for each py, roots are distinct, real and lie in [a, b].

@ Roots of py and py+1 also interlace!
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@ Extensions to multivariate and matrix polynomials

@ Several examples in this workshop ..
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Many spectral algorithms today rely on ability to quickly compute
good approximations to matrix-function-vector products: e.g.,

o Asv, A lv, exp(—A)v, ...

@ or top few eigenvalues and eigenvectors.

Demonstrate

How to reduce the problem of computing these primitives to a
small number of computations of the form Bu where B is a
matrix closely related to A (often A itself) and u is some vector.

e A key feature: If Av can be computed quickly (e.g., if A is
sparse) then Bu can also be computed quickly.

Approximation theory provides the right framework to study
these questions — Borrows heavily from orthogonal polynomials!
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How well can functions be approximated by simpler ones? )

Uniform (Chebyshev) Approximation by Polynomials/Rationals
For f : R — R and an interval Z, what is the closest a degree d
polynomial/rational function can remain to f(x) throughout 7

inf sup|f(x) — p(x)|.
A suplf(x) = p(x)|

inf sup|f(x) — P(x)/q(x)|.
p,qeidxeg| ( ) /q( )|

3 4: set of all polynomials of degree at most d.

@ 150+ years of fascinating history, deep results and many
applications.

@ Interested in fundamental functions such as x°, e™* and 1/x
over finite and infinite intervals such as [—1, 1], [0, n], [0, c0).

@ For our applications good enough approximations suffice.
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A simple example:

Compute ASv where A is symmetric with eigenvalues in [—1,1],
v is a vector and s is a large positive integer.

@ The straightforward way to compute A°v takes time O(ms)
where m is the number of non-zero entries in A.

@ Suppose x° can be J-approximated over the interval [—1,1]
by a degree d polynomial ps 4(x) = Z?:o aix'.

Candidate approximation to A°v: 7 a;A'v.
@ The time to compute 27:0 aiAlv is O(md).
1529, ajAlv — Asv|| < §|v| since

o all the eigenvalues of A lie in [-1,1], and
o ps g is 0-close to x° in the entire interval [—1,1].

How small can d be? )
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Example: Approximating the Monomial

For any s, for any § > 0, and d ~ /s log (1/s), there is a

polynomial ps 4 s.t.  sup |psq(x) —x°| < 0.
x€[—1,1]

o Simulating Random Walks: If A is random walk matrix of a
graph, we can simulate s steps of a random walk in my/s time.

o Conjugate Gradient Method: Given Ax = b with
eigenvalues of A in (0, 1], one can find y s.t.
ly — A=1b||a < 5||[A71b| 4 in time roughly my/k(A)log 1/s.

o Quadratic speedup over the Power Method: Given A, in
time ~ m/\/5 can compute a value p € [(1 — 0)A1(A), A1(A)].
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Chebyshev Polynomials

Recall: Chebyshev polynomial orthogonal w.r.t. \/11_7 over [—1,1]

Td+1(X) = 2XTd(X) — Tdfl(X)

Averaging Property

xTy(x) = Td+1(X)J2FTd71(X) _

Boundedness Property

For any 6, and any integer d, T4(cos®) = cos(d®).
Thus, |T4(x)| <1 for all x € [-1,1].
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Back to Approximating Monomials

def

def

Ds = >77 1 Yiwhere Yi,..., Ysiid. £1 w.p. /2 (Dy = 0).

Thus, Pr [\Ds| > m} <.

Key Claim: v E YS[TDS(X)] = x°. J

111111

s+1

-,k 2ATpa(x) + To, () = | E H[TDSH(X)I

Yi,..,Y. Vi, Ys

sup

x€[-1,1] x€[—1,1]

|psd(x) = x| = sup

IN

E |1 < sup |Tp(¥)|| < E |1 <6
Yl,...,Y5|: |D[>d XE[J;J” p.( )} Sy Ys[ DJ>d] <
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Let f(x) be §-approximated by a Taylor polynomial Zﬁ:o CsX®.
Then, one may instead try the approx. (with suitably shifted ps 4)
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Approximating the Exponential

For every b > 0, and 4, there is a polynomial rp 5 s.t.
SUPye[o,b] |6 — rb.s(x)| < 6; degree ~ \/blog1/s. (Taylor -Q(b).)

o Implies O(m+/[|Al[log1/s) time algorithm to compute a
d-approximation to e v for a PSD A. Useful in solving SDPs.

© When A'is a graph Laplacian, implies an optimal spectral algorithm
for Balanced Separator that runs in time O(™/,/7). (v is the target
conductance) [Orecchia-Sachdeva-V. 2012].

How far can polynomial approximations take us? )
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Markov's Theorem (inspired by a prob. of Mendeleev in Chemistry)

Any degree-d polynomial p s.t. |p(x)| <1 over [—1, 1] must have
its derivative |p(M)(x)| < d? for all x € [-1,1].

@ Chebyshev polynomials are a tight example for this theorem.

Bypass this barrier via rational functions!




Example: Approximating the Exponential

For all integers d > 0, there is a degree-d polynomial S4(x) s.t.
Supr[Opo) ‘G_X %‘ <2- Q(d )




Example: Approximating the Exponential

For all integers d > 0, there is a degree-d polynomial S4(x) s.t.
Supx6[07oo) ‘G_X %‘ <2- Q(d )

Sa(x )def Zk 0 3T- (Proof by induction.) J




Example: Approximating the Exponential

For all integers d > 0, there is a degree-d polynomial S4(x) s.t.
Supx6[07oo) ‘G_X %‘ <2- Q(d )

Sa(x )def Zk 0 3T- (Proof by induction.) J

@ No dependence on the length of the interval!



Example: Approximating the Exponential

For all integers d > 0, there is a degree-d polynomial S4(x) s.t.
Supx6[07oo) ‘G_X %‘ <2- Q(d )

Sa(x )def Zk 0 3T- (Proof by induction.) J

@ No dependence on the length of the interval!

@ Hence, for any § > 0, we have a rational function of degree
O(log1/5) that is a d-approximation to e *. For most applications,
an error of & = 1/poly(n) suffices, so we can choose d = O(log n).



Example: Approximating the Exponential

For all integers d > 0, there is a degree-d polynomial S4(x) s.t.
Supx6[07oo) ‘G_X %‘ <2- Q(d )

Sa(x )def Zk 0 3T- (Proof by induction.) J

@ No dependence on the length of the interval!

@ Hence, for any § > 0, we have a rational function of degree
O(log1/5) that is a d-approximation to e *. For most applications,
an error of & = 1/poly(n) suffices, so we can choose d = O(log n).

@ Thus, (S4(A)) "' v d-approximates e Av.



Example: Approximating the Exponential

—X

SUPx¢[0,00) ‘e - Sd%x) ),

For all integers d > 0, there is a degree-d polynomial S4(x) s.t. I

Sa(x )def Zk 0 3T- (Proof by induction.) J

@ No dependence on the length of the interval!

@ Hence, for any § > 0, we have a rational function of degree
O(log1/5) that is a d-approximation to e *. For most applications,
an error of & = 1/poly(n) suffices, so we can choose d = O(log n).

@ Thus, (S4(A)) "' v d-approximates e Av.

How do we compute (S4(A)) ! v? J
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Factor Sq(x) = ao []%_,(x — B) and output ag [, (A — B,-I)_lv.J

e Since d is O(log n), it suffices to compute (A — 3;1)~tu.
@ When A is Laplacian, and 3; <0, then A — 3,/ is SDD!

Saff-Schonhage-Varga 1975

For every d, there exists a degree-d polynomial py s.t.,
-x _ 1 —Q(d)
sup ’e X — pd ( = ) <2 .
x€[0,00) R
Proof uses properties of Legendre, Laguerre polynomials!

<

Sachdeva-V. 2014

Moreover, the coefficients of py are bounded by d©(9), and can be
approximated up to an error of d~©(4) using poly(d) arithmetic
operations, where all intermediate numbers use poly(d) bits.
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Computing the Matrix Exponential- Summary

Orecchia-Sachdeva-V. 2012, Sachdeva-V. 2014

Given an SDD A - 0, a vector v with ||v|| =1 and , we compute
a vector u s.t. ||exp(—A)v — u|| <4, in time O (mlog||A|l log/s).

Corollary [Orecchia-Sachdeva-V. 2012]

\/7-approximation for Balanced separator in time é(m). Spectral
guarantee for approximation, running time independent of

SDD Solvers

Given Lx = b, L is SDD, and € > 0, obtainNa vector u s.t.,
|lu—L7tb|| < e||L71b||. . Time required O (mlog1/z)

Are Laplacian solvers necessary for the matrix exponential? J




Matrix Inversion via Exponentiation

Belykin-Monzon 2010, Sachdeva-V. 2014

For €,8 € (0,1], there exist poly(log(1/z6)) numbers 0 < w;, t; s.t.
for all symm. el < A=/, (1-86)A <Y wje 54 X (1+ )AL

Weights w; are O(poly(/s¢)), we lose only a polynomial factor in
the approximation error.

@ For applications polylogarithmic dependence on both 1/s and the
condition number of A (/e in this case).

@ Discretizing x ! = fooo e~ *tdt naively needs poly(1/(=s)) terms.

@ Substituting t = ¥ in the above integral obtains the identity
x7l= [ e7xtydy.

@ Discretizing this integral, we bound the error using the
Euler-Maclaurin formula, Riemann zeta fn.; global error analysis!



Conclusion

@ Uniform approx. the right notion for algorithmic applications.



Conclusion

@ Uniform approx. the right notion for algorithmic applications.

@ Taylor series often not the best.



Conclusion

@ Uniform approx. the right notion for algorithmic applications.
@ Taylor series often not the best.

e Often reduce computations of f(A)v to a small number of
sparse matrix-vector computations.

o Mere existence of good approximation suffices (see V. 2013).



Conclusion

@ Uniform approx. the right notion for algorithmic applications.
@ Taylor series often not the best.

e Often reduce computations of f(A)v to a small number of
sparse matrix-vector computations.

o Mere existence of good approximation suffices (see V. 2013).

@ Constructing and analyzing best approximations heavily rely
on the theory of orthogonal polynomials.



Conclusion

@ Uniform approx. the right notion for algorithmic applications.

Taylor series often not the best.

Often reduce computations of f(A)v to a small number of
sparse matrix-vector computations.

o Mere existence of good approximation suffices (see V. 2013).

@ Constructing and analyzing best approximations heavily rely
on the theory of orthogonal polynomials.

Looking forward to many more applications ..



Conclusion

@ Uniform approx. the right notion for algorithmic applications.

Taylor series often not the best.

Often reduce computations of f(A)v to a small number of
sparse matrix-vector computations.
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Looking forward to many more applications ..

Thanks for your attention! J
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