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ABSTRACT
Given two Hermitian matrices Y and Λ, the Harish-Chandra–

Itzykson–Zuber (HCIZ) distribution is given by the density

eTr(UΛU ∗Y )
with respect to the Haar measure on the unitary group.

Random unitary matrices distributed according to the HCIZ dis-

tribution are important in various settings in physics and random

matrix theory, but the problem of sampling efficiently from this dis-

tribution has remained open. We present two algorithms to sample

matrices from distributions that are close to the HCIZ distribution.

The first produces samples that are ξ -close in total variation dis-

tance, and the number of arithmetic operations required depends

on poly(log 1/ξ ). The second produces samples that are ξ -close in
infinity divergence, but with a poly(1/ξ ) dependence. Our results
have the following applications: 1) an efficient algorithm to sample

from complex versions of matrix Langevin distributions studied

in statistics, 2) an efficient algorithm to sample from continuous

maximum entropy distributions over unitary orbits, which in turn

implies an efficient algorithm to sample a pure quantum state from

the entropy-maximizing ensemble representing a given density ma-

trix, and 3) an efficient algorithm for differentially private rank-k
approximation that comes with improved utility bounds for k > 1.
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1 INTRODUCTION
Let U(n) denote the group of n × n unitary matrices and let µ de-

note the Haar probability measure on U(n). Given n × n Hermitian

matrices Y and Λ, consider the following measure on U(n):

eTr(UΛU ∗Y )dµ(U ). (1)

The corresponding density is referred to as the Harish-Chandra–

Itzykson–Zuber (HCIZ) density and has been extensively studied,

implicitly and explicitly, in physics, randommatrix theory, statistics,

and theoretical computer science. A major result about the HCIZ

density is that its integral over U(n) admits an exact expression as

a determinant.

Theorem 1.1 (HCIZ integral formula). For n × n Hermitian
matrices Y and Λ with distinct eigenvalues y1 > · · · > yn and
λ1 > · · · > λn respectively, we have the following:1∫

U(n)
eTr(UΛU ∗Y )dµ(U ) =

©«
n−1∏
p=1

p!
ª®¬

det([eyiλj ]1≤i, j≤n )∏
i<j (yi − yj )(λi − λj )

. (2)

Theorem 1.1 was proved by Harish-Chandra [13] and by Itzykson

and Zuber [14]. See the post by Terry Tao [35] and the notes of the

second author [26] for more on the HCIZ integral.

Physics and Random Matrix Theory. Matrices distributed accord-

ing to the HCIZ density are important in various settings in physics

and randommatrix theory. For instance, they appear inmulti-matrix

models in quantum field theory and string theory [9, 14], and they

are also related to models of coupled Gaussian matrices [14] that

have been used to solve the Ising model on a planar random lat-

tice [4, 19]. In particular, the moments of HCIZ distributed unitary

matrices play a role in computing correlation functions for matrix

models of gauge theories and have been studied extensively since

the 1990’s [10, 11, 27, 32, 33].

The HCIZ integral also arises in many other places in random

matrix theory. Notably, it occurs in expressions for the joint spectral

densities of a number of matrix ensembles, such asWishart matrices

and off-center Wigner matrices [12]. However, the basic question

about sampling from the HCIZ distribution has remained open.

The problem of sampling from the HCIZ distribution can be

equivalently cast as the problem of sampling according to an expo-

nential density specified by Y on the U(n)-orbit of Λ. Let

OΛ := {UΛU ∗ | U ∈ U(n)}

1
Although (2) assumes that all yi and λi are distinct, when this is not the case one can

still use Theorem 1.1 to obtain an exact determinantal formula for the HCIZ integral,

simply by applying L’Hôpital’s rule to the right-hand side of (2).

https://doi.org/10.1145/3406325.3451094
https://doi.org/10.1145/3406325.3451094
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denote the orbit of Λ under the conjugation action of U(n). Every
such orbit contains a diagonal element diag(λ) where λ is the se-

quence of eigenvalues of Λ listed in non-increasing order, and thus

we always assume Λ = diag(λ). Further, one can write any X ∈ OΛ

asX = UΛU ∗
for someU ∈ U(n), so that the density of the measure

(1) can be rewritten as

e ⟨Y ,X ⟩ = eTr(UΛU ∗Y ),

where ⟨Y ,X ⟩ := Tr(Y ∗X ). Thus, we arrive at the following problem.

Problem 1.2 (Sampling from unitary orbits). Given two n ×n
Hermitian matrices Y and Λ = diag(λ), sample an X ∈ OΛ from the
probability distribution

dν (X ) ∝ e ⟨Y ,X ⟩dµΛ(X ), (3)

where µΛ is the U(n)-invariant probability measure on OΛ.

Statistics. Distributions of the kind mentioned in (3) have also

been studied under the name matrix Langevin or matrix Bingham
in statistics [7, 8]. The difference is that these distributions are

supported on orbits of the orthogonal group rather than the uni-

tary group. Obtaining efficient algorithms to sample from such

distributions was left as an open problem; see Section 2.5.2 of [8].

Continuous Maximum Entropy Distributions over Matrix Mani-
folds. In recent works [21, 22], distributions as in (3) arose as solu-

tions to maximum entropy problems over manifolds, with appli-

cations to computing the entropy-maximizing representation of

a quantum density matrix as an ensemble of “pure states”. Con-

cretely, the authors study the following problem: given a matrix

A in the convex hull of OΛ, compute the probability density sup-

ported on OΛ whose expected value is A and that minimizes the

Kullback–Leibler divergence to µΛ. As an example, if we let Λ be

the diagonal matrix with exactly one 1 and rest 0s, the convex

hull of OΛ is exactly the set of PSD matrices with trace one – den-

sity matrices. Thus, in this case, the solution to the above entropy

problem gives a way to “infer” an ensemble of pure states corre-

sponding to a given density matrix A, following the principle of

maximum entropy [1, 15, 16, 34]. The authors show that the solu-

tion to the above optimization problem gives rise to the distribution

of the form e ⟨Y
⋆,X ⟩dµΛ(X ) for some Y⋆. Their main result is a

polynomial-time algorithm to find this optimal solution that runs

in time, roughly, the number of bits needed to represent A and the

distance of A to the “boundary” of the convex hull of OΛ. While

[21, 22] gave polynomial-time algorithms to compute the optimal

valueY⋆
, designing an algorithm to sample from the corresponding

distribution was left as an open problem.

Differentially Private Algorithms for Low-Rank Approximation.
An important technique to obtain differentially private algorithms

is the exponential mechanism due to [25]. In the context of rank-k
approximation of a given matrix, it amounts to sampling from an

exponential density of the type (3) on the orbit corresponding to

rank-k projections [6, 18]. To the best of our knowledge, the only

result on this problem is an approximate algorithm for the rank-1

case given by [18]. They left it as an open problem to simplify their

rank-1 algorithm and also to come up with an algorithm to sample

from the corresponding exponential mechanism for the rank-k case

when k > 1.

Our Contributions. We present two efficient algorithms to ap-

proximately sample from HCIZ distributions or, equivalently, from

exponential densities on unitary orbits. The two algorithms differ in

how they approximate the target HCIZ distribution. Our first algo-

rithm approximates in the total variation distance and is sufficient

for many applications.

Theorem 1.3 (Main result – total variation distance).

There is an algorithm that, given a ξ > 0 and n × n Hermitian
matrices Λ = diag(λ) and Y = diag(y), outputs a matrix X that is
distributed according to a distribution that is ξ -close in total varia-
tion distance to dν (X ) ∝ e ⟨Y ,X ⟩dµΛ(X ). The number of arithmetic
operations required to run the algorithm is polynomial in log

1

ξ and
the number bits required to represent y and λ.

Our second algorithm approximates the target distribution in the

(stronger) infinity divergence (Definition 2.6) and is used for the

differential privacy application.

Theorem 1.4 (Main result – infinity divergence). There is
an algorithm that, given a ξ > 0 and n × n Hermitian matrices
Λ = diag(λ) and Y = diag(y), outputs a matrix X that is distributed
according to a distribution that is ξ -close in infinity divergence dis-
tance to dν (X ) ∝ e ⟨Y ,X ⟩dµΛ(X ). The number of arithmetic opera-
tions required to run the algorithm is polynomial in λmax − λmin,
ymax − ymin, 1

ξ , and the number bits required to represent y and λ.

Note that while the approximation guarantee of the second al-

gorithm (Theorem 1.4) is better, the number of arithmetic opera-

tions it performs depends polynomially on
1

ξ as opposed to poly-

logarithmically in
1

ξ as in the first algorithm (Theorem 1.3). We

leave it as an open problem to give an algorithm which samples

from a distribution that is ξ -close in infinity divergence, but with

arithmetic operations depending polynomially on log
1

ξ .

Theorem 1.3 enables efficient numerical simulation of models in

physics and random matrix theory where HCIZ densities arise. Our

algorithms also make progress on the open problems mentioned

earlier. In particular, Theorem 1.3 immediately gives efficient algo-

rithms to 1) sample from complex matrix Langevin distributions

[7, 8] and 2) sample from continuous maximum entropy distribu-

tions on unitary orbits studied by [21, 22], implying an efficient algo-

rithm to sample a pure quantum state from the entropy-maximizing

ensemble corresponding to a given density matrix. Moreover, The-

orem 1.4 implies an efficient algorithm for the exponential mecha-

nism for differentially private rank-k approximation [6, 18, 25]. As

a consequence, we show that Theorem 1.4 allows us to obtain an

efficient differentially private rank-k approximation with improved

utility.

Theorem 1.5 (Differentially private low-rank approxima-

tion). There is a randomized algorithm that, given a d × d positive
definite matrix A and its eigenvalues γ1 ≥ · · · ≥ γd > 0, an integer
1 ≤ k ≤ d , an ε > 0, and a small δ > 0, outputs a rank-k d × d

Hermitian projection P such that EP [⟨A, P⟩] ≥ (1 − δ )
∑k
i=1 γi as

long as
∑k
i=1 γi ≥ C · dkεδ · log 1

δ , whereC > 0 is a universal constant.
This algorithm is ε-differentially private and requires a number of
arithmetic operations which is polynomial in γ1 − γd ,

1

ε , and the
number of bits required to represent γ .
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Note that the utility bound promised by Theorem 1.5 is about
dk
ε ,

compared to the utility bound of roughly
dk3

ε due to [18] for k > 1.

The proofs of Theorems 1.3 and 1.4 are identical except for an

intermediate step that we mention below. One of the key difficulties

in sampling from an HCIZ distribution is that its domain, a unitary

orbit, is a non-convex algebraic manifold. The individual entries

of the desired sample matrix are highly correlated due to the al-

gebraic constraints that define the orbit, which makes it difficult

to break the problem into lower-dimensional subproblems. Our

main technical contribution is to reduce the problem of sampling

from an exponential density on a unitary orbit to sampling from an

exponential density on a bounded convex polytope. In particular,

we use an alternative parameterization of unitary orbits based on

the Rayleigh map, which sends a Hermitian matrix X to a natural

organization of the eigenvalues of all leading principal submatrices

of X . The image of each U(n)-orbit under the Rayleigh map is a

convex polytope called a Gelfand–Tsetlin (GT) polytope, which is

cut out by linear inequalities given by the interlacing properties

of the eigenvalues. This mapping reveals a recursive structure in-

trinsic to U(n)-orbits, which is hard to see directly in the ambient

space of matrices. The Rayleigh map from a given U(n)-orbit to
the corresponding GT polytope is not injective. However, one can

show that 1) the HCIZ density on the orbit pushes forward to an

exponential density on the polytope, and 2) the HCIZ density is

constant on the fibers of the Rayleigh map. Therefore, to solve the

sampling problem on the orbit, it suffices to sample a point from an

exponential density on the GT polytope, and then sample a Hermit-

ian matrix uniformly at random from the fiber of the Rayleigh map

over that point. To sample from the GT polytope, we use results of

[23] for Theorem 1.3 and results of [3] for Theorem 1.4.

We give a detailed technical overview of the algorithms and the

proofs of Theorems 1.3 and 1.4 in Section 3. The formal algorithms

and proofs appear in Sections 4, 5, and 6. Some proofs and details

have been omitted from this version of the paper due to space

constraints (see [20] for the full version).

2 RAYLEIGH TRIANGLES AND
GELFAND–TSETLIN POLYTOPES

In this section we introduce some definitions and facts that we will

need in what follows. In particular, we discuss two types of combi-

natorial objects that are fundamental to the geometry of Hermitian

matrices: Rayleigh triangles and Gelfand–Tsetlin polytopes.

Definition 2.1 (Rayleigh triangle). For an integer n ≥ 1,
a Rayleigh triangle is a triangular array of real numbers R =
(Ri, j )1≤i≤j≤n satisfying the interlacing relations

Ri, j ≥ Ri, j−1 ≥ Ri+1, j for all 1 ≤ i < j ≤ n. (4)

The vector R•, j = (R1, j , . . . , Rj, j ) ∈ Rj is called the jth row, and
R•,n ∈ Rn is called the top row. If we fix R•,n , we can regard the
numbers Ri, j , j ≤ n − 1 as coordinates of a point in Rn(n−1)/2.

Note that the indexing for the Rayleigh triangle is different from

that of matrix notation: the top row is indexed by n.

Definition 2.2 (Gelfand–Tsetlin polytope). Given a vector
λ ∈ Rn with λ1 ≥ · · · ≥ λn , the Gelfand–Tsetlin polytope GT (λ) is

the convex polytope in Rn(n−1)/2 consisting of all Rayleigh triangles
with top row equal to λ.

Thus, GT (λ) is the polytope cut out by the interlacing inequalities

(6), with R•,n = λ fixed. In other words, the following system of n
equalities and n × (n − 1) inequalities determines GT (λ):

Ri,n = λi for all 1 ≤ i ≤ n, (5)

Ri, j −Ri, j−1 ≥ 0 and Ri, j−1 −Ri+1, j ≥ 0 for all 1 ≤ i < j ≤ n. (6)

Note that if all of the entries of λ are distinct, then GT (λ) is full-
dimensional in Rn(n−1)/2 (with coordinates Ri, j for 1 ≤ i ≤ j ≤
n−1), and every inequality given by (6) above is essential. However

if entries of λ coincide, then some of the inequalities of (6) become

equalities, and GT (λ) lies in some affine subspace of Rn(n−1)/2. In
particular, if λp = λp+1 = · · · = λq then for any R ∈ GT (λ) we
have that Ri, j = λp for all i, j such that p ≤ i ≤ q + j − n. On the

other hand, every inequality of (6) not associated to such a fixed

entry Ri, j is essential. Using this observation, for any fixed λ it is

straightforward to determine the affine subspace in which GT (λ)
has non-empty interior.

The following is then a corollary of a classical result of linear

algebra known as the Cauchy–Rayleigh interlacing theorem.

Proposition 2.1 (Interlacing and Rayleigh triangles).

Given an n × n Hermitian matrix X , denote by X [k] its kth lead-
ing principal submatrix (that is, the k × k submatrix in the upper
left corner of X ). Let λ

1,k ≥ · · · ≥ λk,k be the eigenvalues (which
are real) of X [k]. Then the eigenvalues (λj,k )1≤j≤k≤n of the leading
submatrices of X form a Rayleigh triangle, which we write as R(X ).

We now need a few definitions.

Definition 2.3 (Type vector). The type vector of R is defined by

type(R) =
(
R1,1, R1,2 + R2,2 − R1,1, . . . ,

n∑
i=1

Ri,n −

n−1∑
j=1

Rj,n−1
)
.

If R = R(X ) for some Hermitian X , then type(R) = (X11, . . . ,Xnn )
is the diagonal of X .

Definition 2.4 (Orbits ofU(n)). Given a vector λ ∈ Rn as above,
write Λ = diag(λ) and let OΛ = {UΛU ∗ | U ∈ U(n)} be the unitary
conjugation orbit of Λ. Let µΛ be the uniform probability measure
on OΛ, i.e., the unique probability measure on OΛ that is invariant
under the conjugation action of U(n).

It can be shown that the imageR(OΛ) isGT (λ). In fact, the following
stronger result is true: the uniform measure on OΛ maps to the

uniform measure on GT (λ); see e.g. [2, 29, 30, 38].

Proposition 2.2 (Pushforward of Haar measure). The push-
forward of the Haar measure µΛ on OΛ by the map R is the uniform
probability measure on GT (λ).

Note that in the above result, the pushforward distribution is a

restriction of the Lebesgue measure on the affine span of GT (λ),

which is the minimal affine subspace of Rn(n−1)/2 containingGT (λ).
This distinction only matters when not all λi are distinct, since in
this caseGT (λ) has dimension less thann(n−1)/2 so that its volume

in the ambient space Rn(n−1)/2 is zero.
Proposition 2.2 allows us to prove the following crucial fact

that the image of an exponential density on a unitary orbit is an

exponential density on the GT polytope.
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Theorem 2.3 (Pushforward of the HCIZ density). If Y =
diag(y) for some real vector y, then the pushforward of the measure
e ⟨Y ,X ⟩dµΛ(X ) through the map R is

R∗

[
e ⟨Y ,X ⟩dµΛ(X )

]
= Vol(GT (λ))−1e ⟨y, type(P )⟩dP ,

where dP denotes the Lebesgue measure on the affine span of GT (λ).

Proof. First note that (X11, . . . ,Xnn ) = type(R(X )), as men-

tioned in Definition 2.3. Thus, we have

⟨Y ,X ⟩ =

n∑
i=1

yiXii = ⟨y, type(R(X ))⟩.

The result then follows from the fact that the pushforward of µΛ
through R is uniform on GT (λ) by Proposition 2.2.

Finally, to prove the correctness of our sampling algorithm, we will

need to describe the set of Hermitian matrices that map to a given

Rayleigh triangle under R.

Definition 2.5 (Fiber over a Rayleigh triangle). Given R ∈

GT (λ), the fiber of the map R over R is the set R−1(R) = {X ∈

OΛ | R(X ) = R}.

The fiber R−1(R) is a compact subset of OΛ. The uniform proba-
bility measure on R−1(R) is characterized by the property that if

X is uniformly distributed in R−1(R), then for 1 < k ≤ n, X [k] is
uniformly distributed on the compact manifold H(X [k − 1];R•,k )
of k × k Hermitian matrices with eigenvalues R•,k and leading

(k − 1) × (k − 1) submatrix equal to X [k − 1]. We will show below

in Lemma 4.10 that H(X [k − 1];R•,k ) is a product of spheres.
Before moving on, we formally define the notions of distance

between distributions which are relevant to our main results.

Definition 2.6 (Notions of distance between distribu-

tions). Given two distributions (i.e., Borel probability measures) µ,ν
on S ⊆ Rn , we define the total variation distance between µ and ν
as ∥µ − ν ∥TV := supS ⊂S |µ(S) − ν (S)|. When µ,ν have continuous
density functions f ,д respectively (with respect to the same base mea-
sure) on S, we further define the infinity divergence between µ and
ν as D∞(µ∥ν ) := log supx ∈S

f (x )
д(x ) .

3 TECHNICAL OVERVIEW
In this section, we give an overview of the algorithms and the proof

of our main results (Theorems 1.3 and 1.4), leaving the full details to

Sections 4 and 5. Here we will emphasize the important ideas and

and concepts from the various parts of the proof without going into

too much detail. For the interested reader, we will provide links to

other relevant sections of the full proof throughout this overview.

Throughout, Λ and Y will always be n ×n real diagonal matrices.

The unitary orbit OΛ is defined as the set of all matrices UΛU ∗

obtained by conjugating Λ by any unitary matrix. The measure

dµΛ(X ) is the unitarily-invariant probability measure on OΛ, which

means that ∫
OΛ

f (X )dµΛ(X ) =

∫
OΛ

f (UXU ∗)dµΛ(X )

for all integrable functions f and all unitary matricesU ∈ U(n). The
goal of our algorithms is to return a sampleX from the unitary orbit

OΛ, such that the distribution ofX is proportional to e ⟨Y ,X ⟩dµΛ(X ).

3.1 The Uniform Case
Let us first consider a simple case, when Y = 0. In this case the

distribution we want to sample from is precisely the unitarily invari-

ant (uniform) distribution on OΛ. Unitary invariance implies that

sampling X from this distribution on OΛ is equivalent to sampling

U from the Haar probability measure on U(n) and takingUΛU ∗
as

our sample in OΛ. Sampling U from the Haar probability measure

on U(n) then has a classical solution: Inductively sample orthogonal

unit vectors u1,u2, . . . ,un from Cn by projecting and normalizing

random Gaussian vectors. We can then construct a random matrix

U ∈ U(n) by setting u1,u2, . . . ,un as the columns ofU . This shows

that sampling from OΛ in the case of Y = 0 has a simple, intuitive

solution.

Difficulty in Extending the Algorithm for the Uniform Case. For
generalY however, the situation quickly becomesmore complicated.

The first observation is that unitary invariance is immediately lost,

since generically we have

e ⟨Y ,X ⟩ , e ⟨Y ,UXU ∗ ⟩ .

This means the method used for Y = 0 breaks down, as there is no

clear way to generalize the above simple algorithm to exponential

weightings of the Haar measure. This is even true in the most

basic case when OΛ is the set of rank-one projections (when Λ =
diag(1, 0, . . . , 0)), and the difficulty in this case was already realized

in several previous works [8, 18, 22].

Even though the density is not unitarily invariant, there is still

significant symmetry coming from the structure of the orbit OΛ.

This symmetry leads to the HCIZ integral formula (Theorem 1.1),

which gives an efficiently computable formula for the partition

function of the HCIZ density. (It should be noted that the proof of

this formula is highly non-trivial: Harish-Chandra’s original proof

from 1957 can be viewed as a starting point for much of the modern

theory of quantum integrable systems [13, 26].) Typically, such an

explicit formula for the partition function can be translated into

an algorithm for sampling, but it is not clear how to do this for the

unitary orbit OΛ.

3.2 Searching for Self-Reducibility
In the world of discrete distributions, the seminal work of [17] gives

a general way to sample from a distribution using an oracle for the

associated partition function. The key property needed to utilize

their results is that the distribution needs to be self-reducible. A
problem is said to be self-reducible if, roughly speaking, a problem

instance with input size n can be efficiently reduced to another

instance of the same problem with input size n − 1.

As an example of where the ability to compute the partition

function can lead to an efficient sampling algorithm, consider the

case of sampling matchings from a graph. To uniformly sample a

matching, one can first choose an edge e in the graph and then

compute the numberke ofmatchings that contain e , and the number

le of matchings that do not contain e . The edge e is then included

in the output matching with probability ke/le , and the original

problem can be reduced to finding a perfect matching in the smaller

graph obtained by removing the vertices joined by e . To sample

non-uniform matchings, the values of ke and le are replaced by

evaluations of the partition function.
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In our world of continuous distributions on unitary orbits, it is

not obvious how to perform a self-reduction similar to that of the

discrete world, even though we have a formula for the partition

function. The obstacle is that self-reducibility depends on preserv-

ing the original problem structure: we must reduce to an instance

of the same problem, but with smaller input.

One approach towards this is to iteratively sample the individual

entries or columns of thematrix, and then to interpret the remaining

entries of the matrix as a smaller instance of the original problem

conditioned on the previously selected entries. The issue with this

approach is that the entries of a matrixX in the unitary orbit OΛ are

highly correlated due to the algebraic constraint that X = UΛU ∗

for someUU ∗ = I . This means that the problem of sampling from

a given distribution on the orbit conditional on one or more matrix

entries is a priori very different from the original problem, and

much more complicated.

There is an alternative way to view a matrix X ∈ OΛ: in terms of

its eigenvalues. The eigenvalues and eigenvectors together deter-

mine the matrixX completely. Further, one can (almost) recover the

eigenvectors ofX using the eigenvalues of the principal submatrices

of X (see [36]). When eigenvalues are distinct, one finds

|vi, j |
2 =

∏n−1
k=1(λi (X ) − λk (X j ))∏
k,i (λi (X ) − λk (X ))

,

where λi (X ) is the ith largest eigenvalue of X , Xk is the principal

submatrix of X with the kth row and column removed, and vi is
the eigenvector corresponding to λi (X ). That is, with the extra

information of the eigenvalues of the principal submatrices of X ,
one can determine the eigenvectors of X up to the (complex) sign

of the entries.

This is a good sign for us, as it hints at some inductive structure

in the eigenvalues of X . Can we now understand this relationship

between the eigenvectors and eigenvalues of principal submatrices

in some recursive manner? As a matter of fact, by considering the

matrix X in terms of all of its leading principal submatrices, we are

able to prove a similar result (see Section 4.4). And not only that,

but it turns out that this eigenvector information is sufficient for

our purposes.

Self-Reducibility in the Space of Eigenvalues. This suggests a nat-
ural self-reducible structure for the unitary orbit OΛ via the prin-

cipal submatrices. The Rayleigh map R (Definition 2.1) maps a

matrix X ∈ OΛ to the length-

(n+1
2

)
vector of the eigenvalues of

all the leading principal minors of X . These eigenvalues are orga-
nized in the form of a triangle called the Rayleigh triangle, denoted
R(X ) = (Ri, j )1≤i≤j≤n where Ri, j is the i

th
largest eigenvalue of the

top left j× j principal submatrix. (Note that R•,n are the eigenvalues

of Λ, and counter to matrix indexing intuition, we refer to R•,n is

the top row of the Rayleigh triangle.) Organizing eigenvalues into

a triangle like this then makes the self-reducible structure clear:

fixing the top n − k + 1 rows of the triangle, R•,n , . . . ,R•,k , and
leaving the bottom k rows free gives a lower-dimensional space of

Rayleigh triangles that corresponds precisely to the U(k)-orbit of
the k × k matrix diag(R•,k ).

We now have a self-reducible way to view the elements X ∈ OΛ

in terms of their eigenvalues, but how does this help us to sample

from OΛ? By the Cauchy–Rayleigh interlacing theorem, for all

X ∈ OΛ the Rayleigh triangle R(X ) is a element of a polytope in

R(
n+1
2
)
cut out by the inequalities

Ri, j ≥ Ri, j−1 ≥ Ri+1, j for all valid i, j .

In fact the converse is also true: the image R(OΛ) is the whole poly-

tope cut out by these inequalities, called the Gelfand–Tsetlin (GT)
polytope and denotedGT (λ) where λ is the vector of eigenvalues of

Λ. What is special about the Rayleigh map R is then that it projects

the uniformmeasure dµΛ on OΛ to the Lebesgue (uniform) measure

on the GT polytope. This leaves a few questions.

(1) How does the Rayleigh map R project the HCIZ density

from the unitary orbit to GT (λ)?
(2) How do we sample from the corresponding distribution on

the GT polytope?

(3) How do we transfer that sample back to the unitary orbit?

The answers here are reasonable: for (1) the Rayleigh map projects

the exponential HCIZ density to an exponential density on the GT

polytope (see Theorem 2.3), for (2) we can use powerful tools ([23]

and [3]) to sample from this exponential density on a polytope

cut out by polynomially many inequalities, and for (3) we have

algorithms that utilize the symmetry of the orbit OΛ and the HCIZ

density (see Section 4.1). For the understanding of the reader, we

first demonstrate this explicitly in the case of rank-one projections.

3.3 The Case of Rank-One Projections
Let us now look at the simplest choice of Λ: the case where Λ is the

diagonal matrix with entries 1, 0, 0, . . . , 0. This means that OΛ is the

set of Hermitian positive semidefinite (PSD) rank-one projections.

In this case, each leading principal submatrix of a givenX ∈ OΛ has

at most one non-zero eigenvalue. Thus, the entries of the Rayleigh

triangle of X are all zero except for R1, j , for which we have

1 = R1,n ≥ R1,n−1 ≥ · · · ≥ R1,1 ≥ 0.

This means that the GT polytope in this case is isomorphic to a

simplex by considering the values of R1,n − R1,n−1, . . ., R1,2 − R1,1,
and R1,1, which sum to 1. Since the principal submatrices are all

rank at most 1, these differences are the differences of the traces

of the submatrices of X , which are precisely equal to the diagonal

entries of X . Hence the map diag(X ), which picks out the diagonal

entries ofX , is equivalent to the RayleighmapR in this case, and the

image diag(OΛ) is the standard simplex∆n . Therefore diag(X )maps

the uniform measure µΛ(X ) to the Lebesgue (uniform) measure

on ∆n , and we can determine the measure on the GT polytope

corresponding to the HCIZ density via

e ⟨Y ,X ⟩dµΛ(X ) = e ⟨y,diag(X )⟩dµΛ(X )
diag

−−−→ e ⟨y,x ⟩dx ,

where y is the vector of diagonal entries of Y (which is itself a

diagonal matrix). This suggests a method for sampling from our

distribution e ⟨Y ,X ⟩dµΛ(X ) on OΛ when Y is diagonal:

(1) Sample x from ∆n according to the distribution e ⟨y,x ⟩ dx
where y = diag(Y ).

(2) Convert x into a rank-one PSD projection X ∈ OΛ.

This sampling problem is a special case of sampling from a log-

concave density on a convex polytope, and there is a significant

body of work which is geared towards coming up with algorithms

for this general problem. In particular, to obtain a algorithm which
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gives the TV distance bound promised by Theorem 1.3, we can

appeal to Corollary 1.2 of [23]. To obtain an algorithm which gives

the infinity divergence bound promised by Theorem 1.4, we appeal

to Lemma 6.5 of the arXiv version of [3]. Since our function is

log-linear, to use these results we just need to establish bounds on

the outer and inner radius of the polytope (the simplex in this case)

and the Lipschitz constant of the exponent. This is trivial in the

case of the simplex, but it is also straightforward for the case of a

general GT polytope; see Section 4.3.

However, we still need to convert x into a rank-one PSD projec-

tion X ∈ OΛ in a way which is compatible with our exponentially

weighted distribution on OΛ. Towards this, we first observe that

the set of all X for which diag(X ) = x is given by

diag
−1(x) = {X ∈ OΛ : X = vv∗, v∗ = (e−iθ1

√
x1, . . . , e

−iθn√xn )}.

Second, for diagonal Y the density e ⟨Y ,X ⟩
does not depend on the

choice of θ1, . . . ,θn . Therefore if we restrict our distribution on

OΛ to the subset diag
−1(x), we obtain the uniform distribution.

This means we can convert x into a rank-one PSD projection by

uniformly randomly sampling eiθ1 , . . . , eiθn independently from

the unit circle and setting X := vv∗ where

v∗ = (e−iθ1
√
x1, . . . , e

−iθn√xn ).

Combining these two steps—sampling from the simplex and then

transferring that sample to OΛ—gives us an algorithm for sampling

from OΛ according to our exponentially weighted density.

What remains is then to show that our bounds between the sam-

pled and target distributions on the simplex (either TV distance or

infinity divergence) transfer back to the respective distributions on

OΛ. In this case, the algorithm to transfer a sample from the simplex

to a sample from OΛ is very simple and explicit, as demonstrated

above. In particular, given a point x of the simplex, we can sample

exactly from the target (uniform) distribution on the associated

fiber of x in OΛ. This means that transferring from the simplex to

OΛ accumulates no extra error between the sampled and target

distributions. Therefore the TV distance and infinity divergence

bounds between the sampled and target distributions on OΛ are

exactly equal to the bounds achieved on the simplex ∆n (see Ap-

pendix A of the arXiv version [20] for more details). Thus we have

achieved our desired error bounds for the sampled distribution on

OΛ, completing the proof of the main results in the rank-one case.

Obstacles to Extending to General Λ. Unfortunately, extending
this algorithm beyond the rank-one case immediately runs into

issues. First, we need to know how the HCIZ density on a general

orbit OΛ transfers to the GT polytope through the Rayleigh map. In

the case of rank-one projections, we obtained a log-linear density

which was crucial to our sampling error bounds, and we need to

be able to emulate this in the general case.

Beyond this, converting a sample from the GT polytope back

to the unitary orbit is now more complicated. In the case of rank-

one projections, determining the fiber diag
−1(x) � R−1(x) was

straightforward and led to a simple method for sampling an element

of the orbit OΛ. For general Λ, the fiber R
−1(x) does not have such

a clear description. We will need to study further the relationship

between the unitary orbit OΛ and the corresponding GT polytope

to understand how to generalize the sampling technique used for

rank-one projections.

3.4 Moving to the GT Polytope in the Case of
General Λ

In the case of general Λ, we can utilize the same overarching al-

gorithm that was used in the rank-one case: sample from the GT

polytope, and then transfer back to the unitary orbit. The first

question we need to answer is what the distribution on the GT

polytope should look like. We know that the Rayleigh map trans-

fers the uniform distribution dµΛ(X ) on the unitary orbit to the

uniform distribution on the polytope, but what about the distribu-

tion e ⟨Y ,X ⟩dµΛ(X )?

Since Y is diagonal we can write

e ⟨Y ,X ⟩dµΛ(X ) = e ⟨y,diag(X )⟩dµΛ(X ),

where y = diag(Y ). In the rank-one case, the Rayleigh map R was

equivalent to the diag(X ) map, and this meant that the projected

measure was given by e ⟨y,x ⟩dx . To handle the general case, we need
a map which takes a Rayleigh triangle R ∈ GT (λ) to the diagonal

vector of the corresponding X ∈ OΛ. This is precisely the type(R)
map (Definition 2.3), which computes differences of the traces of

the successive principal submatrices:

type(R) =
(
R1,1, R1,2 + R2,2 − R1,1, . . . ,

n∑
i=1

Ri,n −

n−1∑
j=1

Rj,n−1
)
.

This definition implies type(R) = diag(X ) whenever R = R(X ).

With this, we can more precisely state our sampling algorithm at a

high level.

(1) Sample a Rayleigh triangle R = (Ri, j ) from the associated GT

polytope according to the distribution e ⟨y, type(R)⟩ dR, where
y = diag(Y ).

(2) Convert R into an element X ∈ OΛ of the unitary orbit.

As in the simplex case, we can use the powerful tools of [23] and

[3] to sample from the log-linear density on the GT polytope (see

Section 4.3 for more details). However, we still must convert this

into a sample from the HCIZ density on the orbit OΛ.

3.5 From the GT Polytope back to the Unitary
Orbit

Supposing we have a sample R distributed according to the log-

linear density on the GT polytope, the final step is to convert R
into a sample from the unitary orbit OΛ. In the case of the simplex,

this was easy because it is easy to describe the fiber diag
−1(x) as

well as the uniform distribution on this fiber. In the case of the GT

polytope and the Rayleigh map however, determining R−1(R) and
the associated distribution is more complicated.

Fortunately though, we can break the problem down into more

manageable pieces corresponding to the row-by-row self-reducible

structure discussed above. Observe that for any k we can identify

U(k − 1) with the subgroup of U(k) consisting of unitary matrices

that have a 1 in the bottom right corner and zeros in all other

positions of the last row and column. Inducting on this observation,

we obtain inclusions

U(1) ↪→ U(2) ↪→ · · · ↪→ U(n − 1) ↪→ U(n),
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and these inclusions correspond precisely to sub-triangles of our

sampled Rayleigh triangle R (the bottom 1, 2, . . . ,n − 1,n rows of

the triangle respectively).

This allows us to induct on the rank of the unitary group. As-

suming that we have an (n − 1) × (n − 1) matrix sample X0 from

the U(n − 1) orbit associated to the bottom n − 1 rows of R, we just
need to sample an X ∈ OΛ which has X0 as its top-left principal

submatrix. That is, given such an X0, we need to sample some

X =

[
X0 v
v∗ c

]
∈ OΛ.

To sample such an X , first note that the top row of R (that is, the

eigenvalues of Λ) determines the trace of X , which specifies deter-

ministically the value of c . This leads to a crucial observation: all
possible values of the matrix X have the same diagonal entries, and

hence our density function e ⟨Y ,X ⟩
is constant since Y is a diagonal

matrix. This means that we may sample X uniformly from the set

of all X with the above block form.

Having made this observation, we now describe in detail how to

sample such a matrix X (see Section 4.4).

The Case of Distinct Eigenvalues. We first demonstrate how to do

this in a simplified case: when X0 is a diagonal matrix with distinct

eigenvalues. In this case, we make the following easy observation

forU ∈ U(n) where v,w are any vectors:

U

[
X0 v
v∗ c

]
U ∗ =

[
X0 w
w∗ c

]
⇐⇒ U = diag(eiθ1 , . . . , eiθn ).

This immediately gives rise to an algorithm for sampling X of the

above block form:

(1) Construct any X ∈ OΛ.

(2) Sample eiθ1 , . . . , eiθn uniformly and independently from the

unit circle.

(3) Defining U := diag(eiθ1 , . . . , eiθn ), our sample isUXU ∗
.

What remains to be done then is to construct some X ∈ OΛ, which

is equivalent to constructing a valid value of v . To this end, we use

the special form of X to write down its characteristic polynomial.

LettingX0 = diag(R1,n−1, . . . ,Rn−1,n−1), we want to choosev such

that

n∏
i=1

(t − λi ) = det

(
tI −

[
X0 v
v∗ c

] )
= (t − c)

n−1∏
i=1

(t − Ri,n−1) +
n−1∑
i=1

|vi |
2

∏
j,i

(t − Rj,n−1).

Since the values of R•,n−1 are distinct, we obtain n − 1 equations

by plugging in t = Rk,n−1 for each value of k ∈ {1, . . . ,n − 1}:

n∏
i=1

(Rk,n−1 − λi ) = |vk |
2

∏
i,k

(Rk,n−1 − Ri,n−1).

This then implies |vk |
2 =

∏n
i=1(Rk,n−1−λi )∏

i,k (Rk,n−1−Ri,n−1)
, which gives us a

formula for a choice of vk so long as this ratio of products is non-

negative. In fact, it is always non-negative because the values of

λ• and R•,n−1 are interlacing by the Cauchy–Rayleigh theorem. By

choosing vk ≥ 0 which satisfy the above equalities, we have con-

structed a valid X from our orbit, and applying the above algorithm

gives the desired sample of OΛ.

The General Case. Handling the cases of non-distinct eigenvalues
and non-diagonal X0 is then straightforward. First, if X0 is diagonal

with non-distinct ordered eigenvalues, the set of unitary matrices

which preserves the block form of X becomes larger:

distinct:UXU ∗ ∈ OΛ ⇔ U ∈ U(1) × U(1) × · · · × U(1)

non-distinct:UXU ∗ ∈ OΛ ⇔ U ∈ U(m1) × · · · × U(mp ) × U(1),

wherem1,m2, . . . ,mp are the multiplicities of the eigenvalues of

X0. That is, we need to replace step 2 of the above algorithm with

(2) Sample unitary matrices U1, . . . ,Up ,Up+1 uniformly from

U(m1), . . . ,U(mp ),U(1) respectively.

Algorithms to sample uniformly from unitary groups are well-

known and were discussed above.

Finally, handling the non-diagonal case is even easier. Letting

U0 ∈ U(n − 1) be such thatU0X0U
∗
0
= D0 is diagonal, we reduce to

the previous cases by considering[
U0 0

0 1

]
X

[
U ∗
0

0

0 1

]
=

[
U0X0U

∗
0

U0v
(U0v)

∗ c

]
=

[
D0 U0v

(U0v)
∗ c

]
.

We then first sample a matrix X ′
by applying the above algorithm

to the right-hand side matrix above, since D0 is diagonal. We then

obtain our desired sample via the inverse conjugation byU0:

X =

[
U ∗
0

0

0 1

]
X ′

[
U0 0

0 1

]
.

Combining all of this then yields an algorithm which constructs a

matrix X in the unitary orbit OΛ from the given Rayleigh triangle

R in the GT polytope.

Sampling Error Bounds. The last thing we must do is show that

our bounds between the sampled and target distributions on the GT

polytope (either TV distance or infinity divergence) transfer back

to the respective distributions on OΛ. In the case of the simplex,

the exact bounds transferred from the simplex to the orbit because

we were able to exactly sample from the fibers R−1(x) for any x in

the simplex. Specifically, sampling from the fiber boiled down to

sampling uniformly from a torus.

In the general case, we saw above that this torus sampling in the

case of the simplex is replaced by an inductive sampling of unitary

matrices from the uniform (Haar) distribution. There is a simple

exact algorithm for sampling Haar-distributed unitary matrices,

as discussed in Section 3.1. Therefore the same argument applies

to the general case as applied to the case of rank-one projections

and the simplex. Specifically, the bounds we achieve between the

sampled and target distributions on the GT polytope transfer back

exactly to the respective distributions on the orbit OΛ.

This concludes the overview of the proofs of Theorems 1.3 and

1.4. To summarize, we first considered the pushforward measure of

the HCIZ distribution on a unitary orbit OΛ through the Rayleigh

map R onto the GT polytope GT (λ). This gave a density function

on the GT polytope that was a log-linear function of the type vector.

We then sampled a Rayleigh triangle R ∈ GT (λ) according to this
density using very general techniques for sampling from log-linear

distributions on convex polytopes. Finally, we converted this sample

R ∈ GT (λ) into a sample from the orbit OΛ by inductively sampling

k × k matrices according to the bottom k rows of R. We refer the

reader to Sections 4 and 5 for the remaining details of the proof.
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4 THE SAMPLING ALGORITHMS OF
THEOREMS 1.3 AND 1.4

In this section, we describe the main steps of the algorithms claimed

in Theorems 1.3 and 1.4. We then prove that the steps produce the

correct output and determine the number of arithmetic operations

they require. We will mostly treat the two algorithms together,

since they differ only in the procedure used to sample from the

Gelfand–Tsetlin polytope.

Remark 4.1. Throughout we assume that we can exactly unitarily
diagonalize Hermitian matrices for convenience. That said, the algo-
rithms given in [31] approximate the eigenvalues and eigenvectors of
a Hermitian n × n matrix H within relative error 2−LH in a number
of arithmetic operations which is polynomial in n and logLH , where
LH is the number of bits required to represent H . To use this result,
there is some extra error accounting which is required. In our case this
can be handled, and we omit the details.

Further, under this assumption we may also assume that the matrix
Y which appears in the exponent of our density function e ⟨Y ,X ⟩ is not
diagonal but just Hermitianwith eigenvaluesy1, . . . ,yn . Indeed ifY =
U ·diag(y) ·U ∗, then the fact that µΛ(X ) is unitarily invariant implies
e ⟨Y ,X ⟩dµΛ(X ) = e ⟨diag(y),U

∗XU ⟩dµΛ(X ) = e ⟨diag(y),X ⟩dµΛ(X ). Af-
ter sampling X according to this distribution on OΛ, we then simply
conjugate X byU to obtain a sample from the original target distri-
bution on OΛ.

4.1 Description of the Algorithms
Formally, the input and output of the algorithms are as follows.

• Input:
(1) A vector λ = (λ1, . . . , λn ) ∈ R

n
, with λ1 ≥ · · · ≥ λn .

(2) A vector y = (y1, . . . ,yn ) ∈ R
n
, with y1 ≥ · · · ≥ yn .

Write Λ = diag(λ), Y = diag(y).
• Output: An n × n Hermitian matrix with eigenvalues λ,

distributed according to dν (X ) ∝ e ⟨Y ,X ⟩dµΛ(X ) on OΛ.

At a high level, both algorithms then consist of the following steps.

(1) Reduce sampling from OΛ to sampling from GT (λ).
Construct a membership oracle for GT (λ) and an evalua-

tion oracle for the correct exponential density on GT (λ).
(2) Sample a Rayleigh triangle from GT (λ). Sample a

Rayleigh triangle P = (Pj,k )1≤k≤j≤n from the density pro-

portional to e ⟨y, type(P )⟩ on the polytope GT (λ).
(3) Sample from the fiber over P . Sample a uniformly random

matrix S from the fiber R−1(P) = {X ∈ OΛ | R(X ) = P}.
(4) Output S .

We now describe Steps 1 and 3 in detail, and we also discuss the

algorithms we cite and invoke for Step 2. In Section 5, we then

complete the proofs of Theorems 1.3 and 1.4. Before describing the

steps, we give one result which demonstrates that the steps of the

above algorithm sample correctly from the orbit under the assump-

tion that, in Step 2, we are able to sample exactly from the desired

distribution with no error. We refer the reader to Appendix A of

the arXiv version [20] for the straightforward details on handling

the case where the distribution on GT (λ) only approximates the

target distribution.

Proposition 4.2 (Correctness of the ideal algorithm). Let P
be a random Rayleigh triangle distributed according to the distribution
given by the density proportional to e ⟨y, type(P )⟩ onGT (λ), and let S be
a uniform random element of R−1(P). Then S is distributed according
to the measure ν (X ) ∝ e ⟨Y ,X ⟩dµΛ(X ) on OΛ.

Proof. By Theorem 2.3, the density function e ⟨Y ,X ⟩
is constant

on the fibers of R, since e ⟨Y ,X ⟩ = e ⟨y, type(R(X ))⟩
. Using Theorem

2.3 again, the statement then follows immediately from the disinte-

gration theorem for probability measures; see [5].

4.2 Step 1: Reduce Sampling from the Orbit to
Sampling from the GT Polytope

In this section we describe the algorithm for constructing mem-

bership and evaluation oracles for the (unnormalized) exponential

density function on the polytope GT (λ).
Recall the following system of n equalities and n × (n − 1) in-

equalities which determine if a Rayleigh triangle P is an element of

GT (λ) (see Equations 5 and 6):

Pi,n = λi for all 1 ≤ i ≤ n,

Pi, j − Pi, j−1 ≥ 0 and Pi, j−1 − Pi+1, j ≥ 0 for all 1 ≤ i < j ≤ n.

Note that whenever some of the values of λi are actually equal,

some of the inequalities will become equalities. In particular, if

λp = λp+1 = · · · = λq then for any P ∈ GT (λ) we have that

Pi, j = λp for all i, j such thatp ≤ i ≤ q+j−n. Using this observation,
for any fixed λ it is straightforward to determine the ambient affine

space in which GT (λ) has non-empty interior.

The unnormalized density function on the polytope is then also

easily described. Given a real vector y, Theorem 2.3 implies that

the density function on GT (λ) that we want to sample from is

proportional to

f0(P) = e ⟨y, type(P )⟩ .

Recall from Definition 2.3 that type(P) ∈ Rn is defined by

type(P)k :=

k∑
i=1

Pi,k −

k−1∑
j=1

Pj,k−1.

Using this definition, we can write down the exponent of f0 as a
linear functional on P . We first have

⟨y, type(P)⟩ = yn ·

[ n∑
i=1

λi

]
+

n−1∑
k=1

(yk − yk+1) ·

[ k∑
i=1

Pi,k

]
.

Notice that for fixed y and λ, we have that yn ·
[∑n

i=1 λi
]
is a

constant in P . Therefore we can push this part of the exponent into

the normalization factor. (For other entries of Pi, j that are fixed by

equalities in the λ vector, this can also be done.) We now define

a triangle of values via y∆i, j := yj − yj+1 for 1 ≤ i ≤ j ≤ n − 1.

With this, we want to sample from a density function on GT (λ)
proportional to

f (P) = e ⟨y
∆,P ⟩

with y∆i, j := yj − yj+1, (7)

where the top row of P is ignored. In particular, this means that

the density function we want to sample from on GT (λ) is in fact

log-linear. Note further that shifting y by a multiple of the all-ones

vector does not change the value of y∆. Therefore we may assume

that y1 ≥ 0 ≥ yn if desired.
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The above discussion then implies the following algorithmic

guarantees for construction and running of the oracles.

Lemma 4.3 (Membership and exact evaluation oracles).

There exists an algorithm such that, given n ∈ N, λ ∈ Rn , and
y ∈ Rn , outputs a membership oracle for GT (λ) and an evaluation
oracle for f (P) = e ⟨y, type(P )⟩ . The number of arithmetic operations
required to run this algorithm is polynomial in n and the number
of bits required to represent y and λ. Further, the number of arith-
metic operations required to then run these oracles with input P is
polynomial in the number of bits needed to represent λ, y, and P .

4.3 Step 2: Sample a Rayleigh Triangle from
the GT Polytope

To sample a Rayleigh triangle P ∈ GT (λ) according to the log-linear
density discussed above, we appeal to powerful tools for sampling

from log-concave and log-Lipschitz densities on convex polytopes.

Here we discuss two particular ways to do this, in terms of TV

distance error and in terms of infinity divergence error.

Sampling from GT (λ) with TV Distance Error. To sample from

a distribution within TV distance ξ from the target exponential

density on GT (λ), we appeal to a result of Lovász and Vempala.
2

Theorem 4.4 (Follows from Corollary 1.2 of [23]; see also

Section 2.1 of [24]). Let K ⊂ Rd be a convex polytope, and for
ℓ ∈ Rd let µℓ denote the distribution on K defined by the density
function proportional to fℓ(x) := e ⟨ℓ,x ⟩ . There is an algorithm that,
given a membership oracle for K , a vector ℓ ∈ Rd , a point x0 ∈ K ,
an outer radius R of K , an inner radius r of K , and a ξ > 0, samples
from a distribution µ̃ℓ on K with the property that

∥µ̃ℓ − µℓ ∥TV < ξ .

The algorithm makes poly(d, log ∥ℓ∥, log R
r , log

1

ξ ) calls to the mem-
bership and evaluation oracles.

Given the membership and evaluation oracles from Step 1 of the

algorithm above, we can apply this result to sample from GT (λ).
Beyond the oracles, we also need the starting point x0 and outer

and inner balls for GT (λ), which we discuss below.

Sampling fromGT (λ) with Infinity Divergence Error. To achieve

the infinity divergence bound claimed in Theorem 1.4, we use a

result of Bassily, Smith, and Thakurta. We state a simplified version

of this result here for the convenience of the reader. Note that the

dependence on log
1

r appears because of the need to first putGT (λ)
in isotropic position; see Section 3.2 of the arXiv version of [3].

Theorem 4.5 ([3], see Lemma 6.5). Let K ⊂ Rd be a convex
polytope, and for ℓ ∈ Rd let µℓ denote the distribution on K defined
by the density function proportional to fℓ(x) := e ⟨ℓ,x ⟩ . There is an
algorithm that, given a membership oracle for K , a vector ℓ ∈ Rd , an
outer radius R of K , an inner radius r of K , and a ξ > 0, samples from
a distribution µ̃ℓ on K with the property that D∞(µ̃ℓ ∥µℓ) < ξ . The
algorithm makes poly(d, ∥ℓ∥,R, log 1

r ,
1

ξ ) calls to the membership
and evaluation oracles.
2
The precise statement that we invoke here is not explicitly stated in their papers,

but follows readily from the cited results and has been confirmed to us in personal

correspondence [37].

Given the membership and evaluation oracles from Step 1 of the

algorithm above, we can apply this result to sample from GT (λ).
Beyond the oracles, we also need the outer and inner balls forGT (λ),
which we discuss below.

Before moving on, we note the main distinction between Theo-

rems 4.5 and 4.4 above. That is, Theorem 4.5 achieves a stronger

notion of approximation of the target exponential density at the

cost of a larger number of oracle calls. Specifically, the number of

oracle calls in Theorem 4.5 depends polynomially on ∥ℓ∥, R, and 1

ξ ,

whereas in Theorem 4.4 these dependencies are polylogarithmic.

We leave it as an open problem whether or not one can achieve

infinity divergence error of ξ in poly(d, log ∥ℓ∥, log R
r , log

1

ξ ) oracle

calls.

Extra Inputs Required for the Polytope Sampling Algorithms. As
discussed above, we also need to be able to compute some extra

data to apply the above polytope sampling algorithms to the tar-

get exponential density function on GT (λ). Specifically, we need a

starting point P0 for the algorithm, an outer radius R, and an inner

radius r . We give this data in the following three lemmas. Note

that by using a simpler argument than that of Lemma 4.8, one can

achieve a worse bound on r which is good enough for our purposes;

see Remark 4.9 below. For the proofs of these lemmas, see the arXiv

version [20].

Lemma 4.6 (Starting point for sampling from GT (λ)). There
is an algorithm that, given λ ∈ Rn , samples uniformly from the
polytope GT (λ). The number of arithmetic operations required to
run this algorithm is polynomial in the number of bits required to
represent λ.

Lemma 4.7 (Outer ball for GT (λ)). The polytope GT (λ) is con-
tained by a ball of radius R =

√
n · (λ1 − λn ).

Lemma 4.8 (Inner ball for GT (λ)). Let q > 0 be the minimal
integer such that λi =

pi
q for some integers p1, . . . ,pn . The polytope

GT (λ), considered as a subset of its affine span, contains a ball of
radius r = 1

8n2q .

Remark 4.9. One can obtain a cheaper bound on the radius r of a
small ball contained in GT (λ), by defining P ∈ GT (λ) inductively by
simply choosing Pi, j to be the midpoint between Pi, j+1 and Pi+1, j+1
for all valid i, j. Using this as the center of a small ball, one obtains
a bound of r ≥ 1

2
O (n)q

. Since the number of arithmetic operations

required by our algorithms depends polylogarithmically on 1

r , this
bound would be enough for our purposes.

4.4 Step 3: Sample a Uniformly Random Matrix
from the Fiber

Once we have sampled P , it remains to sample a matrix S uniformly

at random from the fiber R−1(P). The uniform distribution on the

fiber is defined by the property that if X is uniformly distributed

in R−1(P), then for 1 < k ≤ n, X [k] is uniformly distributed on the

compact manifold H(X [k − 1]; P•,k ) of k × k Hermitian matrices

with eigenvalues P•,k and leading (k − 1) × (k − 1) submatrix equal

to X [k − 1]. Equivalently, the uniform measure on R−1(P) is the
disintegration (via the Rayleigh map) of the uniform measure on

OΛ, in the sense of [5]. We construct a uniform sample S ∈ R−1(P)
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using an inductive procedure, successively sampling the last row

and column of each leading submatrix S[k]. We first define S[1]
to be the 1 × 1 matrix [P1,1], and we then sample each submatrix

S[k], for 1 < k ≤ n, such that S[k] is uniformly distributed on

H(S[k−1]; P•,k ). Explicitly, we sample S[k] given S[k−1] as follows.

Sampling Procedure for S[k] given S[k − 1] and P•,k :

(1) Diagonalize S[k−1]:Compute a unitarymatrixU ∈ U(k−1)
such thatU ∗ · S[k − 1] ·U is diagonal.

(2) Compute the new diagonal entry of S[k]:Write

S[k] =

[
S[k − 1] Uv
(Uv)∗ c

]
, (8)

where v ∈ Ck−1 and c ∈ R are to be determined. Since the

diagonal entries of S[k] are just the type vector of R(S[k]),
we can compute

c =
k∑
i=1

Pi,k −

k−1∑
j=1

Pj,k−1.

(3) Compute the magnitudes of the new off-diagonal en-
tries of S[k]: It remains to sample v uniformly at random

from the set of vectors in Ck−1 such that the matrix S[k]
in (8) has spectrum P•,k . We prove below in Lemma 4.10

that this can be done using the following procedure. Let

δ1 > · · · > δm be the distinct entries of P•,k−1, where δi has
multiplicity ni , so that n1 + · · ·+nm = k − 1. The interlacing

relations (6) imply that each value δi occurs in P•,k with

multiplicity at least ni − 1. Let (µ1, . . . , µm+1) be the vector
obtained by removing ni − 1 entries equal to δi from P•,k ,
for each i . Then define

ri =

√√
−

∏m+1
j=1 (δi − µ j )∏
j,i (δi − δj )

.

The interlacing relations guarantee that the quantity under

the square root above is non-negative, so that ri is well de-
fined. As shown below, the vector v is distributed uniformly

on a product of complex spheres of radii r1, . . . , rm .

(4) Sample the phases of the new off-diagonal entries of
S[k]: For each i = 1, . . . ,m, we then sample the ni coordi-
nates (

v
1+

∑i−1
j=1 nj

, . . . , vni+
∑i−1
j=1 nj

)
∈ Cni

uniformly at random from the sphere of radius ri in C
ni
.

This last step can be accomplished by well-known methods;

see e.g. [28].

Output: Finally, after iteratively sampling all of the leading sub-

matrices, we output S = S[n].

Correctness and Number of Operations of the Iterative Algorithm.
We now prove that the above algorithm samples from the correct

distribution on the fiberR−1(P) of P , and thenwe bound the number

of operations the algorithm requires.

Lemma 4.10 (Sampling from the fiber over P : Correctness).
The above algorithm, given a Rayleigh triangle P ∈ GT (λ), returns a
uniform random element of the fiber R−1(P) = {S ∈ OΛ : R(S) = P}.

Proof. Again we write H(S[k − 1]; P•,k ) for the set of k × k
Hermitian matrices with eigenvalues P•,k and (k − 1)th leading

submatrix equal to S[k − 1]. It only remains to show that H(S[k −

1]; P•,k ) is a product of spheres as described above. Specifically, let

U ∈ U(k − 1) be a unitary matrix diagonalizing S[k − 1], so that

U ∗ · S[k − 1] ·U = diag(P•,k−1).We will show

H(S[k−1]; P•,k ) =

{ [
S[k − 1] Uv
(Uv)∗ c

] ���� ni∑
ℓ=1

|vℓ+
∑i−1
j=1 nj

|2 = r2i ,∀i
}
,

(9)

where we necessarily have

c =
k∑
i=1

Pi,k −

k−1∑
j=1

Pj,k−1

due the the fact that the diagonal of any Hermitian matrix X is

equal to type(R(X )). Write D = diag(P•,k−1). To establish (9), we

must show that a matrix of the form

S =

[
U 0

0 1

] [
D v
v∗ c

] [
U ∗

0

0 1

]
=

[
S[k − 1] Uv
(Uv)∗ c

]
has eigenvalues P•,k if and only if

∑ni
l=1 |vl+

∑i−1
j=1 nj

|2 = r2i for i =

1, . . . ,m. We prove this by writing the characteristic polynomial of

S in two different ways. First, if S has eigenvalues P•,k then

det(tI − S) =
k∏
i=1

(t − Pi,k ). (10)

On the other hand, we must have

det(tI − S) = det

(
tI −

[
D v
v∗ c

] )
= det

[
tI − D v
v∗ t − c

]
,

and expanding along the last row and column we find that this

equals

(t − c)
m∏
j=1

(t − δj )
nj

−

m∑
i=1

( ni∑
ℓ=1

|vn1+· · ·+ni−1+ℓ |
2

)
(t − δi )

ni−1
∏
j,i

(t − δj )
nj .

(11)

We have S ∈ H(S[k − 1]; P•,k ) exactly when (10) equals (11). Equat-

ing these two expressions for the characteristic polynomial and

recalling that interlacing of P•,k and P•,k−1 implies that P•,k con-

tains the value δi with multiplicity at least ni − 1 for all i , we can
divide through both sides by (t − δi )

ni−1
for all i to obtain

m+1∏
i=1

(t − µi ) = (t − c)
m∏
j=1

(t − δj )

−

m∑
i=1

( ni∑
ℓ=1

|vn1+· · ·+ni−1+ℓ |
2

) ∏
j,i

(t − δj ).

(12)

Note that both sides of (12) are monic polynomials of degreem + 1,
and

c =
k∑
i=1

Pi,k −

k−1∑
j=1

Pj,k−1 =
m+1∑
i=1

µi −
m∑
j=1

δj

implies the coefficients of tm+1 and tm on both sides are equal.

Therefore the polynomials in (12) are equal if and only if they
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are equal atm distinct points. Evaluating both sides at t = δi for
i = 1, . . . ,m, we find that they are equal exactly when

ni∑
l=1

|vl+
∑i−1
j=1 nj

|2 = r2i

for i = 1, . . . ,m, which is the desired result.

Lemma 4.11 (Sampling from the fiber over P : Number of op-

erations). The number of arithmetic operations the above algorithm
requires to sample uniformly from the fiber R−1(P) is polynomial in
the number of bits required to represent the entries of P .

Proof. To determine the number of arithmetic operations re-

quired by this part of the algorithm, we first determine the number

of operations for each of the steps described above. Step 1 amounts

to unitarily diagonalizing a Hermitian matrix H = U ∗DU , and this

can be done in a number of operations which is polynomial in the

size of the matrix k and the bit complexity of the entries of the

matrixH . (We will discuss below the bit complexity ofH .) Step 2 in-

volves basic matrix operations withU and elements of the Rayleigh

triangle P , which again depends polynomially on k and the bit

complexity of H and P . Step 3 does basic arithmetic on the entries

of P , requiring a number of operations which is polynomial in k
and the bit complexity of the entries of the Rayleigh triangle P . Step
4 requires sampling of elements of the unit sphere and multiplying

those samples by the magnitudes computed in step 3, and this also

can be done in a number of operations which is polynomial in k
and the bit complexity of the entries of P .

The whole iterative process to construct S = S[n] then requires n
iterations of the above 4 steps, where the output to each iteration is

S[k] and the input to each iteration is the Rayleigh triangle P along

with the output S[k − 1] of the previous iteration. Note that steps 2,

3, and 4 only refer to the entries of P and not to the output of the

previous iteration. The new entries of S[k] constructed from steps

2, 3, and 4 then require poly(n,LP ) bits to represent, where LP is

the number of bits needed to represent the entries of P . Thus in
each iteration we add new entries, with bit complexity poly(n,LP ),
to S[k −1] to construct the output S[k]. The unitary diagonalization
of S[k − 1] in step 1 then requires a number of operations which is

polynomial in the number of bits needed to represent the entries

of S[k − 1]. And since we are only adding new entries to S[k − 1]

to construct S[k] (not changing previously constructed entries),

after each iteration the entries of S[k] require poly(n,LP ) bits to
represent. After all n iterations, the algorithm has sampled S = S[n]
in a number of arithmetic operations that is polynomial in n and in

the number of bits required to represent the entries of P .

5 PROOFS OF THEOREMS 1.3 AND 1.4
In this section, we complete the proofs of Theorems 1.3 and 1.4 using

the results of the previous section. We first prove correctness of the

algorithms, and then we prove bounds on the required number of

arithmetic operations.

5.1 Correctness
For Theorem 1.3, we want to show that the algorithm from the

previous section samples from OΛ according to the exponential

density proportional to e ⟨Y ,X ⟩dµΛ(X ). Recall that the algorithm

consists of two main steps: sampling P from GT (λ) (called Step

2 above), and then sampling from the fiber R−1(P) (called Step 3

above). To sample from GT (λ), we use one of two algorithms: the

algorithm given by Theorem 4.4 for TV distance error claimed in

Theorem 1.3, or the algorithm given by Theorem 4.5 for infinity

divergence error claimed in Theorem 1.4. These algorithms require

a membership oracle for GT (λ) (given by Lemma 4.3), a vector ℓ

and an evaluation oracle for the target density д(P) ∝ e ⟨ℓ,P ⟩ on
GT (λ) (also given by Lemma 4.3), a starting point for the algorithm

(given by Lemma 4.6), and outer and inner balls for GT (λ) (given
by Lemmas 4.7 and 4.8 respectively).

Once we have our sample P from GT (λ), we use it to sample

uniformly from the fiber R−1(P) via Lemma 4.10. The last thing

we need to prove then is that, by sampling from GT (λ) and then

from the corresponding fiber, we are in fact sampling from OΛ

according to the exponential density proportional to e ⟨Y ,X ⟩dµΛ(X )

as claimed. For this, we handle the cases of Theorems 1.3 and 1.4

separately.

Correctness for Theorem 1.3. Let ν be the target distribution on

GT (λ) associated to the unnormalized density function f (P) =

e ⟨y, type(P )⟩ . Equation 7 shows that f (P) = e ⟨y
∆,P ⟩

, and thus we

can apply Theorem 4.4 to f to sample P from GT (λ) according to a

distribution ν̂ for which ∥ν̂ − ν ∥TV < ξ .
Now given P inGT (λ), Lemma 4.10 then says that the algorithm

of Section 4.4 samples uniformly from the fiber of P . By standard

arguments, the uniform distribution on the fiber R−1(P) is the
disintegrated measure of the target distribution on OΛ, and the

overall algorithm samples from OΛ according to a distribution

which is within TV distance error ξ of the target. (See Appendix

A in the arXiv version [20] for more discussion of these standard

arguments, and see also Proposition 4.2 for a similar result in the

ideal case.) This completes the proof of correctness of the algorithm

of Theorem 1.3.

Correctness for Theorem 1.4. Let ν be the target distribution on

GT (λ) associated to the unnormalized density function f (P) =

e ⟨y, type(P )⟩ . Equation 7 shows that f (P) = e ⟨y
∆,P ⟩

, and thus we

can apply Theorem 4.5 to f to sample P from GT (λ) according to a

distribution ν̂ for which D∞(ν̂ ∥ν ) < ξ .
Given P in GT (λ), Lemma 4.10 then says that the algorithm of

Section 4.4 samples uniformly from the fiber of P . As above, the uni-
form distribution on the fiber R−1(P) is the disintegrated measure

of the target distribution on OΛ, and the overall algorithm samples

from OΛ according to a distribution which is within infinity diver-

gence error ξ of the target. (See Appendix A in the arXiv version

[20] for more discussion, and see also Proposition 4.2 for a similar

result in the ideal case.) This completes the proof of correctness of

the algorithm of Theorem 1.4.

5.2 Number of Operations
We now determine the number of arithmetic operations required of

the algorithms of Theorems 1.3 and 1.4. For both algorithms we are

given n ∈ N, λ ∈ Rn , y ∈ Rn , and a desired error bound ξ > 0. As

described in Section 4.1, we need to (1) construct the membership

oracles, (2) use them to sample P from the polytope GT (λ), and (3)

then sample uniformly from the fiber R−1(P) over P . Steps 1 and 3



STOC ’21, June 21–25, 2021, Virtual, Italy Jonathan Leake, Colin McSwiggen, and Nisheeth K. Vishnoi

are exactly the same for both algorithms. Lemma 4.3 implies the

necessary oracles can be constructed using a number of operations

which is polynomial in n and in the number of bits required to

representy and λ. Lemma 4.11 implies we can sample from the fiber

over P in a number of operations which is polynomial in n and in

the number of bits required to represent P . We now discuss the

number of arithmetic operations required of the algorithms used

to sample P from GT (λ).
Recall from Section 4.2 that the target distribution on GT (λ) is

given by a density proportional to

f (P) = e ⟨y
∆,P ⟩

withy∆i, j := yj − yj+1.

From this we achieve the bound

∥y∆∥ ≤ n2(y1 − yn ).

Further, we also have the outer and inner balls forGT (λ) via Lemmas

4.7 and 4.8, given as

R =
√
n · (λ1 − λn ) and

1

r
= 8n2q,

where q > 0 is an integer such that λi =
pi
q for some integers

p1, . . . ,pn . We now use these bounds in order to finish the analysis

of the algorithms.

Number of Operations for Theorem 1.3. For Theorem 1.3, we ap-

ply Theorem 4.4 as described above which implies we can sample

from a distribution on GT (λ) within TV distance error ξ of the tar-

get distribution in poly(n, log 1

ξ , log(y1 − yn ), log(λ1 − λn ),Ly ,Lλ)

calls to the membership and evaluation oracles, where Ly and Lλ
are the number of bits required to represent y and λ respectively.

Since log(y1 − yn ) and log(λ1 − λn ) are bounded above by Ly and

Lλ respectively, we have that the above sampling can be done in

poly(n, log 1

ξ ,Ly ,Lλ) calls to the membership and evaluation ora-

cles. The bits then required to represent the sample P from GT (λ)
can then be no larger than the number of oracle calls. Combining

this with Lemma 4.3 and the above discussion implies the num-

ber of arithmetic operations required to run the algorithm claimed

by Theorem 1.3 is polynomial in n, log 1

ξ , and the number of bits

needed to represent y and λ. Since the number of bits needed to

represent y (or λ) is at least n, we can drop the explicit dependence

on n.

Number of Operations for Theorem 1.4. For Theorem 1.4, we ap-

ply Theorem 4.5 as described above which implies we can sample

from a distribution on GT (λ) within infinity divergence error ξ of

the target distribution in poly(y1 − yn , λ1 − λn ,
1

ξ ,Ly ,Lλ) calls to

the membership and evaluation oracles, where Ly and Lλ are the

number of bits required to represent y and λ respectively. As above,

the bits then required to represent the sample P from GT (λ) can
then be no larger than the number of oracle calls. Combining this

with Lemma 4.3 and the above discussion implies the number of

arithmetic operations required to run the algorithm claimed by

Theorem 1.4 is polynomial in y1 − yn , λ1 − λn ,
1

ξ , and the number

of bits needed to represent y and λ.

6 DIFFERENTIALLY PRIVATE RANK-k
APPROXIMATION

We consider the problem of differentially private low-rank approx-

imation. In the low-rank approximation problem, we are given a

d × d real positive semidefinite (PSD) matrix A and 1 ≤ k ≤ n, and
the goal is to output the space spanned by the top k eigenvectors of

A. Let Pk denote the set of d × d rank-k Hermitian PSD projection

matrices, considered as a subset of the space of complex Hermitian

matrices. It is easy to see that

max

P ∈Pk
⟨P ,A⟩ =

k∑
i=1

γi ,

where γ1 ≥ · · · ≥ γd ≥ 0 are the eigenvalues of A.

Differential Privacy. Let U be the universe of users. For each

u ∈ U, we have a vector vu ∈ Rd such that ∥vu ∥2 ≤ 1. Given a

dataset D ⊆ U, define A :=
∑
u ∈D vuv

∗
u .

Definition 6.1. Given an ε > 0 and a set R, a randomized mecha-
nismM : Rd×d → R is said to be (ε, 0)-differentially private if for all
S ⊆ R and for all D,D ′ ⊆ U such that the symmetric set difference
D∆D ′ has cardinality 2, one has

Pr[M(A) ∈ S] ≤ eε Pr[M(A′) ∈ S].

Here A :=
∑
u ∈D vuv

∗
u and A′

:=
∑
u ∈D′ vuv

∗
u .

In our setting, R is the space of d×d and rank-k Hermitian matrices.

We now copy Theorem 1.5 from the introduction, which we prove

in this section.

Theorem 6.1 (Differentially private low-rank approxima-

tion). There is a randomized algorithm that, given a positive semi-
definite d × d matrix A and its eigenvalues γ1 ≥ · · · ≥ γd , an in-
teger 1 ≤ k ≤ d , and an ε > 0, outputs a rank-k d × d Hermitian
projection P that is (ε, 0)-differentially private. Moreover, there is a
universal constant C > 0 such that, if there is a δ > 0 satisfying∑k
i=1 γi ≥ C · dkεδ · log 1

δ , then we have:

EP [⟨A, P⟩] ≥ (1 − δ )
k∑
i=1

γi .

The number of arithmetic operations required by this algorithm is
polynomial in 1

ε , γ1 − γd , and the number of bits needed to represent
γ .

This result generalizes a Hermitian version of Theorem 1.1 of [18],

where the above result is given in the case of k = 1 for real sym-

metric rank-one matrices. Specifically their Theorem 1.1 gives an

algorithmwhich outputs an (ε, 0)-differentially private real unit vec-
tor v for which the expected value of v⊤Av = ⟨A,vv⊤⟩ is bounded

below by (1 − δ )γ1 whenever γ1 ≥ Ω( dεδ · log 1

δ ). They then use

the rank-one case to prove a somewhat similar result in the general

rank-k case, which we state now. The main difference here is that

their Theorem 1.2 stated below outputs a real symmetric positive

semidefinite matrix which approximates A, while our Theorem

6.1 above outputs a Hermitian projection P which projects onto a

k-dimensional subspace for which ⟨A, P⟩ approximates the sum of

the top k eigenvalues of A.
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Theorem 6.2 (Theorem 1.2 of [18]). Let A be a d × d real sym-
metric positive semidefinite matrix with eigenvalues γ1 ≥ · · · ≥ γd .
There exists an (ε, 0)-differentially private polynomial-time algorithm
for computing a matrix Ak of rank at most k so that ∥A − Ak ∥2 ≤

γk+1 + δγ1 as long as γ1 ≥ Ω(dk
3

εδ 6
).

We now compare the respective utility bounds for the two differen-

tially private rank-k mechanisms. For their mechanism the “utility”

can be described by the error term δγ1, which is bounded below by

δγ1 ≥ Ω

(
dk3

εδ5

)
.

For our mechanism the “utility” can be described by the error term

δ
∑k
i=1 γi , which is bounded below by

δ
k∑
i=1

γi ≥ Ω

(
dk

ε
· log

1

δ

)
.

Since δ is assumed to be small, our rank-k mechanism improves

upon the utility (error bound) of the rank-k mechanism from [18].

The Proof of Theorem 6.1. We now prove Theorem 6.1 by com-

bining the exponential mechanism framework due to [25] with

Theorem 1.4. Given a σ > 0, we define M ′ = M ′(A) to be the

mechanism which is given by the sampling algorithm of Theorem

1.4 with λ being the vector that has k ones and d − k zeros, y be-

ing the eigenvalues of A multiplied by
ε
4σ , and ξ = ε

2
. Therefore

M ′ =M ′(A) outputs a sample from a distribution ν̃ ′A on the set of

n × n rank-k PSD projections which is within infinity divergence

error
ε
2
of the distribution ν ′A given by the density e

ε
4σ ⟨diag(γ ),P ⟩

.

Next we diagonalize A to determine the unitary matrix U for

which A = U · diag(γ ) ·U ∗
. With this, we define M =M(A) to be

the mechanism which is given by sampling P fromM ′(A) and then
outputting UPU ∗

. Since ⟨A,UPU ∗⟩ = ⟨U · diag(γ ) · U ∗,UPU ∗⟩ =

⟨diag(γ ), P⟩ and Pk is unitarily invariant, we have that M outputs

a sample from a distribution ν̃A on the set of n × n rank-k PSD

projections which is within infinity divergence error
ε
2
of the target

distribution νA given by the density e
ε
4σ ⟨A,P ⟩

.

Now suppose σ is an upper bound on the following “sensitivity”

of the function ⟨A, P⟩:

sup

A,A′

sup

P
|⟨A, P⟩ − ⟨A′, P⟩|,

where A,A′
are such that

A′ = A −v1v
∗
1
+v2v

∗
2

for some ∥v1∥2, ∥v2∥2 ≤ 1 and P is a rank-k PSD projection matrix.

Then Lemma 6.3 says that we can choose σ = 1, and with this

Lemma 6.4 implies that M is (ε, 0)-differentially private.

The number of arithmetic operations required for this algorithm

then can be bounded by applying Theorem 1.4 directly with our

specified inputs. The number of operation required in Theorem

1.4 is polynomial in d , λ1 − λd , y1 − yd ,
1

ε , and the number of bits

required to represent λ and y. In our case, λ is a vector of 0’s and

1’s, and y = γ is the sequence of eigenvalues of A. Therefore the
number of arithmetic operations required to run the algorithm is

polynomial in
1

ε ,γ1−γd , and the number of bits needed to represent

γ (which is at least d).

6.1 Correctness: Privacy Guarantee
The privacy guarantee given below in Lemma 6.4 requires the

following lemma on the sensitivity of the function ⟨A, P⟩. For the
proofs of these lemmas, see the arXiv version [20].

Lemma 6.3 (Sensitivity). For allA,A′ PSD withA′ = A−v1v
∗
1
+

v2v
∗
2
for some v1,v2 such that ∥v1∥2, ∥v2∥2 ≤ 1 and for all rank-k

PSD projection matrices P , we have that |⟨A, P⟩ − ⟨A′, P⟩| ≤ 1 =: σ .

Lemma 6.4 (Privacy via the exponential mechanism). For
σ = 1, the mechanismM is (ε, 0)-differentially private.

6.2 The Utility Bound
The utility bound given below in Lemma 6.6 requires the following

lemma on the covering number for the orbit Pk . See the arXiv

version [20] for the proof of Lemma 6.5.

Lemma 6.5 (Covering number for Pk ). Let Pk denote the set
of d × d rank-k Hermitian PSD projection matrices, considered as
a subset of the space of Hermitian matrices equipped with the ℓ2

operator norm. For any ζ > 0, the number of balls centered in Pk of

radius ζ required to cover the set Pk is at most
(
1 + 8

ζ

)
2dk

.

Lemma 6.6 (Utility bound). The rank-k exponential mechanism,
given a d × d Hermitian positive definite matrix A with eigenvalues
γ1 ≥ γ2 ≥ · · · ≥ γd , outputs a d ×d rank-k Hermitian PSD projection
P such that

EP [⟨A, P⟩] ≥ (1 − δ )
k∑
i=1

γi

as long as
∑k
i=1 γi ≥ C · dkεδ · log 1

δ for small δ > 0 and an absolute
constant C > 0.

Proof. We first define “good” and “bad” sets via

G :=

{
P ∈ Pk : ⟨A, P⟩ ≥

(
1 −

δ

2

) k∑
i=1

γi

}
,

B :=

{
P ∈ Pk : ⟨A, P⟩ ≤ (1 − δ )

k∑
i=1

γi

}
.

Let P0 be the projection associated to the top k eigenvectors of A,
and define A0 := AP0 so that the top k eigenpairs of A0 agree with

that of A and the rest of the eigenvalues are 0. Now fix any P ∈ Pk
such that ∥P −P0∥2 <

δ
2
, where ∥ · ∥2 denotes the ℓ

2
operator norm.

Since the ℓ2 operator norm is the∞-norm on the singular values,

we can apply Hölder’s inequality to get

⟨A, P⟩ ≥ ⟨A0, P⟩ = ⟨A0, P0⟩ − ⟨A0, P0 − P⟩

≥

k∑
i=1

γi − ∥P0 − P ∥2

k∑
i=1

γi >

(
1 −

δ

2

) k∑
i=1

γi .

That is, every P ∈ Pk contained in the ball of radius
δ
2
about P0 is

also contained in G.
Letting µk be the unitarily invariant probability measure on

Pk , the covering number lemma (Lemma 6.5) implies there is

some ball Bδ/2(P
′) centered at P ′ ∈ Pk of radius

δ
2
is such that
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µk (Bδ/2(P
′)) ≥ (1+ 16

δ )−2dk . By unitary invariance of µk , we have

µk (G) ≥ µk (Bδ/2(P0)) = µk (Bδ/2(P
′))

≥ e−2dk log(1+ 16

δ ) ≥ e−C
′ ·dk log

1

δ

for some absolute C ′ ≥ 2 whenever δ is small. Now let

fA(P) := e
ε
2
⟨A,P ⟩

denote the unnormalized probability density function of the expo-

nential mechanism, and let Z be the normalization constant. Then

whenever

∑k
i=1 γi ≥ 8C ′ · dkεδ · log 1

δ , we have

P[P ∈ B]

P[P ∈ G]
≤

µk (B) ·maxP ∈B
fA(P )
Z

µk (G) ·minP ∈G
fA(P )
Z

≤
1 · e

ε
2
(1−δ )

∑k
i=1 γi

e−C
′ ·dk log

1

δ · e
ε
2
(1− δ

2
)
∑k
i=1 γi

=
e
ε
2
(− δ

2
)
∑k
i=1 γi

e−C
′ ·dk log

1

δ

≤
e−2C

′ ·dk log
1

δ

e−C
′ ·dk log

1

δ

= e−C
′ ·dk log

1

δ .

For C ′ ≥ 2 and δ > 0 small, a basic computation then yields

EP [⟨A, P⟩] ≥ (1 − δ )
k∑
i=1

γi .

(See the arXiv version [20] for the full computation.)
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