
Mathematical Programming
https://doi.org/10.1007/s10107-021-01644-z

FULL LENGTH PAPER

Series A

Iteratively reweighted least squares and slimemold
dynamics: connection and convergence

Damian Straszak1 · Nisheeth K. Vishnoi2

Received: 5 December 2019 / Accepted: 12 March 2021
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021

Abstract
We present a connection between two dynamical systems arising in entirely different
contexts: the Iteratively Reweighted Least Squares (IRLS) algorithm used in com-
pressed sensing and sparse recovery to find a minimum �1-norm solution in an affine
space, and the dynamics of a slime mold (Physarum polycephalum) that finds the
shortest path in a maze. We elucidate this connection by presenting a new dynamical
system –Meta-Algorithm – and showing that the IRLS algorithms and the slime mold
dynamics can both be obtained by specializing it to disjoint sets of variables. Sub-
sequently, and building on work on slime mold dynamics for finding shortest paths,
we prove convergence and obtain complexity bounds for the Meta-Algorithm that
can be viewed as a “damped” version of the IRLS algorithm. A consequence of this
latter result is a slime mold dynamics to solve the undirected transshipment problem
that computes a (1 + ε)−approximate solution in time polynomial in the size of the
input graph, maximum edge cost, and 1

ε
– a problem that was left open by the work

of (Bonifaci V et al. [10] Physarum can compute shortest paths. Kyoto, Japan, pp.
233–240).
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1 Introduction

In the last few years, various connections between algorithms, optimization, and nature
have been discovered. Algorithmic techniques have been used to understand biological
phenomena such as how birds flock [20], how slime molds can solve a maze [10]
and, when evolution is efficient [63,66]. Sometimes, such endeavors have resulted in
development of genetic or bio-inspired algorithmic paradigms, one of themost famous
being deep learning [3,17,28,35,43]. Evenmore surprisingly, these pursuits have often
revealed similarities between natural and artificial algorithms, a striking example is
a result of [19] that shows that the mathematical description of sexual evolution is
equivalent to the multiplicative weight updates algorithm.

Here we present another such similarity – the Iteratively Reweighted Least Squares
(IRLS) algorithm for the problem of finding the sparsest solution to an underdeter-
mined system of linear equations is intimately related to the dynamics of the slime
mold (Theorem 1). To establish this, we present a Meta-Algorithm (Fig. 1) and show
that both the IRLS algorithm and the slime mold dynamics can be recovered from it
by setting its “step-size” parameter h ∈ (0, 1] and restricting it to a subset of variables.
In particular, setting h = 1 gives the IRLS algorithm and letting h → 0 results in
the slime mold dynamics. Subsequently, we prove convergence and obtain complexity
bounds for the Meta-Algorithm for some h > 0 (Theorem 2). A corollary of our result
is a polynomial bound (with respect to the graph size, maximum edge cost and 1

ε
, with

ε being the desired precision) on the convergence of the discretization of the slime
mold dynamics for the transshipment problem (Theorem 3); a problem that was open
since [10].

1.1 The basis pursuit problem

A classical problem in signal processing is to recover a sparse signal from a small
number of linear measurements. Mathematically, this can be formulated as finding a
solution to a linear system Ax = b where A ∈ R

n×m, b ∈ R
n are given and A has

fewer rows than columns (i.e. n � m). Among all the solutions, one would like to
recover one with the fewest non-zero entries.1

This problem, known as sparse recovery, is NP-hard and we cannot hope to find an
efficient algorithm in general. However, it has been observed that, when dealing with
real-world data, a solution to the following �1-minimization problem, also known as
basis pursuit:

minx∈Rm

m∑

i=1
|xi | s.t. Ax = b (1)

is typically quite sparse, if not of optimal sparsity. It was first shown in [26,27] that
the �1-norm objective is in fact equivalent to sparsity for a specific family of matrices

1 We assume that the matrix A has rank n, i.e., all of its rows are linearly independent. Every linear system
can be efficiently brought into this form by removing certain equations.
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IRLS and slime mold

and, later, the same was argued for a class of randommatrices [15]. Finally, the notion
of Restricted Isometry Property (RIP) was formulated in [16] and shown to guarantee
sparse recovery via (1). Consequently, optimization problems of the form (1) became
important building blocks for applications in signal processing and statistics. Thus, fast
algorithms for solving such problems are desired. Note that (1) can be cast as a linear
program of size linear in n and m and, hence, any linear programming algorithm
can be used to solve it. However, because of the special structure of the problem,
many algorithms were developed which outperform standard LP solvers in terms of
efficiency on real-world instances.

1.2 The transshipment problem

A fundamental problem in combinatorial optimization called the transshipment prob-
lem [22] is a special case of basis pursuit. In this problem one is given on input an
undirected graph G = (V , E), a demand bv ∈ Z for every vertex v ∈ V and a positive
cost ce ∈ Z>0 for every edge e ∈ E . The goal is to find a flow vector f ∈ R

E that
minimizes the cost 〈| f |, c〉 = ∑

e∈E | fe|ce. Since the constraint of f being a flow
w.r.t. demands b can be written as B f = b, where B ∈ R

V×E is the signed incidence
matrix of G, the transshipment problem indeed matches the form of (1) with the small
difference that the objective is a weighted �1-norm. We note that such a weighted
basis pursuit problem, with objective min

∑
i ci |xi |, is not more general than the basic

variant (1) since one can simply substitute yi ← xi ci and rewrite the program in
terms of y ∈ R

m by incorporating the weights in the matrix A. The transshipment
problem generalizes several classical problems in combinatorial optimization, such
as perfect matchings in bipartite graphs, maximum flow or minimum cost flow (see
e.g. [22]). The history of work on these problems is especially rich and begins with
the discovery of such fundamental combinatorial algorithms as the Ford-Fulkerson
method [33], leads via its highly efficient refinements [30,34,38] and finally reaches
the recent work on methods based on continuous optimization that currently achieve
the best known asymptotic complexity bounds [44,54,56].

1.3 The two algorithms

We now describe the two approaches for solving the basis pursuit problem: the IRLS
algorithm and the slime mold or Physarum dynamics. These two methods also operate
in different spaces and the Physarum dynamics is a continuous-time dynamical system
while the IRLS algorithm is a discrete-time dynamical system. However, they are
both defined in terms of weighted �2-minimization, a problem where for a matrix
A ∈ R

n×m, a vector b ∈ R
n and weights w ∈ R

m
>0, one would like to find

minx∈Rm summ
i=1w

−1
i x2i s.t. Ax = b. (2)

It is well-known (see Fact 2) that a solution to the above always exists (unless the
linear system Ax = b is unsatisfiable), is unique and can be written explicitly as
W A�(AW A�)−1b (see Fact 2), and from now on we denote it by q(w) ∈ R

m .
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The IRLS algorithm is defined as a discrete dynamical system for solving 1. It is ini-
tialized at any solution z(0) of Ax = b. Subsequently, given z(k), z(k+1) is determined2

as follows:

z(k+1) := argminx∈Rm

m∑

i=1

x2i∣
∣
∣z

(k)
i

∣
∣
∣

s.t. Ax = b. (3)

In other words, z(k+1) = q
(∣
∣z(k)

∣
∣
)
. This gives rise to a sequence of vectors

(
z(k)
)
k∈N

that we denote by IRLS
[
A, b, z(0)

]
. The resulting algorithm does not require any

preprocessing of the data or any special rules for choosing a starting point. These
properties make the algorithm particularly attractive for practical use and, indeed, the
IRLS algorithm is quite popular; see for instance [18,37]. However, from a theoretical
viewpoint, the algorithm is still far from being understood.

It is known that no general global convergence analysis is possible since there
are well-known examples to show that there are starting points for which the IRLS
algorithm does not converge (see also Appendix B). The book [51] presents a local
convergence result for the IRLS algorithm that assumes the starting point is sufficiently
close to the optimum and no zero-entries appear in the iterates. To bypass this “zero”
problem, the following regularized variant of the IRLS algorithm has been considered
in the literature: fix a parameter η > 0 and replace |z(k)i | in the denominator of (3) by
√

(z(k)i )2 + η2. [24] gave a non-constructive local convergence result for this scheme
when the matrix A satisfies a variant of RIP [7] proved that the sequence of points

produced by this variant optimizes
∑n

i=1

(
x2i + η2

)1/2
in the affine space Ax = b; a

problem related to, but not the same as the basis pursuit problem.
Historically, the Physarum dynamics was introduced in [62] as a mathematical

model of the behavior of a slime mold [47]. In this work we propose an extension of
the Physarumdynamics for solving the basis pursuit problem. The Physarumdynamics
is defined by the following system of differential equations, with σ(t) ∈ R

m≥0

d

dt
σ(t) = |ϕ(t)| − σ(t), (4)

where ϕ(t) := Σ(t)A�(AΣ(t)A�)−1b andΣ(t) denotes a diagonal matrix with σ(t)
on the diagonal. (We note that ϕ(t) = q(σ (t)), i.e., it is the solution to a weighted
�2-minimization problem.)

The above is a generalization of the Physarum dynamics for the shortest s − t
path problem in an undirected graph [62], where the φ and σ vectors have physical
interpretations as flux and tube diameters in a network of tubular elements. For the
shortest s − t path case, it was shown by [10] that σ(t) converges to the characteristic
vector of the shortest s − t path in G. Prior to this work, however, it was not known
whether a discretization of this dynamics can also yield a finite algorithm, even for
special case of the undirected transshipment problem.

2 Note that if for some i and some k ∈ N it happens that z(k)i = 0 then the transition to z(k+1) is not well

defined. In such a case the i th coordinate is ignored and z(k+1)
i is set to 0. See Remark 1 for more details.
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1.4 Organization of the paper

We begin with a short Sect. 1.5 that lists basic notation used in this paper. In Sect. 2
we introduce the necessary background and we state the main results of this paper.
Subsequently, we discuss related work in Sect. 3. Sect. 4 is devoted to the proofs of
our main results (some proofs were also moved to the Appendix). We conclude and
state open problems in Sect. 5. Finally, in Appendix B we provide an example for
which the IRLS algorithm fails to converge.

1.5 Notation

Throughout the paper A denotes a real n by m matrix, i.e., A ∈ R
n×m . In our bounds

the following quantity occasionally shows up:

D(A) := max
{| det(A′)| : A′ is a square submatrix of A

}
. (5)

For a vector x ∈ R
m we denote by |x | the entry-wise absolute value of x , i.e., a vector

whose i th entry is |xi | for each i ∈ {1, 2, . . . ,m}. A capitalized version of a vector
is used to denote the diagonal matrix with this particular vector on the diagonal. For
instance for X (capitalized x ∈ R

m) denotes a matrix in R
m×m such that Xi,i = xi

and Xi, j = 0 for i �= j . Occasionally for a finite set A we use RA to denote the set of
vectors of dimension |A| indexed by elements of A. Thus an element x ∈ R

A has an
entry xa for each a ∈ A. This notation naturally extends to matrices.

2 Our results

The main conceptual contribution of our paper is the discovery and formalization of
a connection between the continuous Physarum dynamics and the IRLS algorithm. It
is best explained via what we introduce as the Meta-Algorithm for solving the basis
pursuit problem (1); see also Fig. 1.

2.1 Meta-Algorithm

For a given step size h ∈ (0, 1] the Meta-Algorithm is initialized with a candidate
solution y(0) ∈ R

m that satisfies Ay(0) = b and a vector of weights w(0) ∈ R
m
>0, and

proceeds according to the update rule:

(y(k+1), w(k+1)) := (1 − h)(y(k), w(k)) + h(q(k), |q(k)|), (6)

where q(k) = q(w(k)) (as defined in (2)). We denote the sequence
(
(y(k), w(k))

)
k∈N

by

MA
[
A, b, h, y(0), w(0)

]
.
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Fig. 1 An illustration of how the Physarum dynamics and the IRLS algorithm are derived as special cases
of the Meta-Algorithm. The vectors y and w denote the current choices and y′ and w′ denote the vectors
at the next time step. The update equations for y and w are written in two equivalent ways to make the
connection apparent. The IRLS algorithm is obtained by taking the step size h = 1; for such an h the weight
vector w is always equal to |q| = |y|. The Physarum algorithm is obtained in the limit as h tends to 0. The
vector of weights corresponds to tube diameters σ and the weighted �2-minimizer q is equivalent to the
flux ϕ

Note that
(
w(k)

)
k∈N depends only on h and w(0) and not on y(0).

Therefore, we also use MA
[
A, b, h, w(0)

]
to denote the resulting sequence of

weights
(
w(k)

)
k∈N.

One can immediately see that for h = 1 the sequence {y(k)}k∈N coincides with the
IRLS algorithm.

Remark 1 Note that when one sets h = 1 in the Meta-Algorithm, it might happen
that the weight vector w(k) ends up having a zero coordinate, i.e., w(k)

i = 0 for some
i ∈ {1, 2, . . . ,m} and k ∈ N. In such a case, the corresponding weight in the �2-
minimization problem should be treated as +∞ and, hence, forces q(k)

i = 0. In other
words, in the presence of zeros in w(k), we set every zero-coordinate to 0 in q(k) and
solve a weighted �2-minimization problem over the remaining coordinates. In fact,
this is how the algorithm is formally defined.

Our first technical result asserts that both the IRLS and the Physarum dynamics can be
seen as special cases of the Meta-Algorithm; this establishes the claimed connection
between them. The Euler discretization of the Physarum dynamics that shows up in
part 2 of this result has been studied in the past for the special case of the shortest path
problem and flow problems [5,10].

Theorem 1 (Connection) Let (A, b) be any instance of the basis pursuit problem.

1. Let y(0) be any solution to the linear system Ax = b and let

(
y(k), w(k)

)

k∈N := MA
[
A, b, 1, y(0),

∣
∣
∣y(0)

∣
∣
∣
]
.
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IRLS and slime mold

Then IRLS
[
A, b, y(0)

] = (y(k)
)
k∈N .

2. Let σ(0) ∈ R
m
>0 be an arbitrary positive vector.

(a) For any h ∈ (0, 1], the Meta-AlgorithmMA [A, b, h, σ (0)] coincides with the
Euler discretization of the Physarum dynamics (4) initialized at σ(0) for step
size h.

(b) Let σ : [0,∞) → R
m
>0 be a solution to the Physarum dynamics (4) starting

at σ(0). For any t > 0 we have

lim
h→0+ w

(k(h))
h = σ(t),

where k(h) :=  t
h � and (w

(k)
h )k∈N := MA [A, b, h, σ (0)]. In words, for any

fixed t, if the Meta-Algorithm and the Physarum dynamics are initiated at the
same initial point σ(0) then, as h → 0, the value of the Physarum dynamics
at time t is the same as that of the Meta-Algorithm after “infinitely many”
steps.

Once the suitable Meta-Algorithm has been defined, the proof of Theorem 1 is not
hard. The first part follows from the definition of the Meta-Algorithm. In the second
part, for (a) one just needs to write down the Euler discretization for the Physarum
dynamics. Part 2 (b) requires showing that this discretization indeed closely tracks
the continuous trajectory. While this is a standard task in the field of differential
equations, this instance does not directly follow from classical convergence results,
as the dynamics is not well behaved near the boundary of the domain. We refer to
Appendix A for a detailed proof.
Our second technical result gives a quantitative convergence bound for the Meta-
Algorithm.

Remark 2 In the quantitative convergence result below we assume that all the entries
of A and b are integer. This allows us to state a clear and concrete bound depending
on the maximum subdeterminant of A. In the general case, when A is not-necessarily
integer or rational, the bound depends on the quantity

μA := max

{

wi

∣
∣
∣
∣a

�
i

(
AW A�)−1

a j

∣
∣
∣
∣ : w ∈ R

m
>0, i, j ∈ {1, 2, . . . ,m}

}

,

where ai denotes the i th column of A; μA is finite by Lemma 3.

Theorem 2 (Convergence and complexity) Let (A, b) be any integral instance to the
basis pursuit problem and let x	 ∈ R

m be any optimal solution to this instance.
Suppose that y(0) and w(0) are chosen so as to satisfy Ay(0) = b and w(0) ≥ ∣

∣y(0)
∣
∣.

Furthermore, assume w
(0)
i ≥ 1 for every i ∈ {1, 2, . . . ,m} and ∥∥w(0)

∥
∥
1 ≤ M ‖x	‖1

for some M ∈ R. Let ε ∈ (0, 1/2) and h ≤ ε
20mD(A)

. Then, for every � ∈ N we have

that Ay(�) = b and for k = O
(
lnM+ln‖x	‖1

hε2

)
we have that

∥
∥y(k)

∥
∥
1 ≤ (1+ ε) ‖x	‖1 ,

where
(
(y(k), w(k))

)
k∈N := MA

[
A, b, h, y(0), w(0)

]
.
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In the above statement D(A) stands for the maximum subdeterminant of A (see
Eq. (5)). A few remarks are in order. The assumptions on the starting point (y(0), w(0))

thatwemake in the statement are not crucial.However, they allowus to state the bounds
in a simple form and make the proof much cleaner. Note that by taking any feasible
solution y(0) (i.e., Ay(0) = b) and defining w

(0)
i := max(1, |y(0)

i |) for i = 1, 2, . . . ,m
we obtain an initial solution which trivially satisfies the condition of the theorem. For
instance, one can obtain y(0) by solving the least squares problem over the subspace
Ax = b, i.e., minimize ‖x‖2 instead of ‖x‖1 as in basis pursuit. Since the norms ‖·‖1
and ‖·‖2 differ only by at most a

√
m multiplicative factor, one can take M = O

(√
m
)

in the statement of Theorem 2. We remark that to guarantee convergence we require
the step size to be O(ε(mD(A))−1) which might be exponentially small even when A
has entries from a bounded interval. Thus in general, it does not follow that the Meta-
Algorithm solves the basis pursuit problem in polynomial time. This can be deduced
only for certain special cases, such as when A is a totally unimodular matrix (every
subdeterminant of A is either 1 or −1).

We note that the Meta-Algorithm can be viewed as an h-dampening of the IRLS
algorithm and, thus, Theorem 2 contributes to the mathematical understanding of the
IRLS algorithm. The choice of h in Theorem 2 follows directly from our analysis and
is not likely to be optimal. Our preliminary numerical simulations to test convergence
of the Meta-Algorithm with random A, b show that even for constant h > 0 the
algorithm converges and the number of iterations is much smaller than the theoretical
upper bounds would suggest.

Our results on the Meta-Algorithm can be applied to obtain an iteration bound
for the discrete Physarum dynamics for the transshipment problem, and thus derive
Theorem 1.1 of [61]. For this result we use the Weighted Meta-Algorithm, i.e., the
q(k) vector is now computed as

q(k) := q

(
w

(k)
1

c1
, . . . ,

w
(k)
m

cm

)

= q(C−1w(k)).

For an instance (G, b, c) of the transshipment problem (where G is an n-node undi-
rected graph) we denote by bP = ‖b‖1 the total demand and by cmax = maxe∈E ce
the maximum cost. Let also f 	 ∈ R

E be any optimal solution to this instance.

Theorem 3 (Iteration bound for the undirected transshipment problem) Let (G, b, c)
be an instance of the undirected transshipment problem and let f 	 be an optimal
solution to this instance. Choose the initial weight vector to be w

(0)
e = bP for every

e ∈ E. Then

1. There exists an initial solution y(0) that satisfies Ay(0) = b and
∣
∣y(0)

∣
∣ ≤ w(0) and

it can be found in nearly linear time with respect to |E |. Every subsequent iterate
y(k), for k ∈ N, satisfies Ay(k) = b.
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2. For every ε > 0, by picking the step size h := ε
10ncmax

after k = O
(
ncmax ln(nCbP )

ε3

)

iterations of the Weighted Meta-Algorithm we have

∑

e∈E
ce
∣
∣ f 	

e

∣
∣ ≤

∑

e∈E
ce
∣
∣
∣y(k)

e

∣
∣
∣ ≤ (1 + ε)

∑

e∈E
ce
∣
∣ f 	

e

∣
∣ .

Remark 3 Onemight observe that the iteration bound is not scale invariant with respect
to c, even though the problem is (multiplying the cost by a constant does not change
the instance, only multiplies the result by the same constant). This is a consequence
of the fact that we require all the entries of c to be integer, and in particular the choice
of the step size relies on this assumption.

By comparing the above to Theorem 2 for the case when c ≡ 1, one can see that up to
logarithmic factors, the number of iterations is linear in n, as opposed to linear in m,
which is a significant speed-up for dense graphs (since n is the number of vertices and
m is the number of edges). This improvement is obtained by taking advantage of the
fact that the weighted �2-minimization problem underlying the Physarum dynamics is
intimately related to electrical flows (see e.g. [65]). Then, using properties of electrical
flows we manage to obtain better bounds on the so-called potential differences on
edges and in consequence arrive at an improved iteration bound. Also importantly the
Spielman-Teng solver [56] allows us to execute each iteration3 in Õ(m) time giving
yet another instance of the “Laplacian paradigm” [55,61,65].

Remark 4 This paper makes no claim (or attempt) to improve on the state-of-the-art
algorithms for the basis pursuit and transshipment problem. The novelty of the paper
lies in making the connection between IRLS algorithms and the slime mold dynamics
and analyzing these natural dynamical systems. The fact that such simple and natural
dynamics can solve fundamental problems such as the basis pursuit problem and the
transshipment problem is surprising, and, prior to this work, was only known for the
shortest path problem [5,10].

3 Related work

Basis pursuit and �p-regression. The basis pursuit and more generally the �p-
regression problem, where one is asked to solve

min
x∈Rm

‖x‖p s.t. Ax = b, (7)

are among the most studied optimization problems. The cases p = 1 and p = ∞ can
be seen as linear programs and thus can be solved using the fastest known algorithm
for LP, i.e., roughly (ignoring the logarithmic dependency on the precision) in time

3 We remark that Laplacian solvers output only approximate solutions, hence one would need to prove an
equivalent of our results where the q vector is computed only approximately. The details of such a proof
are long and not very enlightening. The reader is referred to the paper of Daitch and Spielman [23], where
such an analysis has been carried out (see also [6,50]).
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proportional to solving
√
m linear systems of size m × m (here for simplicity we

assume that the number of constraints in A is n ≈ m). The remaining cases p ∈
(1,∞) are also convex programs hence can be solved using the Interior-point method
framework developed by [48] also in time proportional to solving

√
m linear systems.

Interestingly, the Euclidean case p = 2 is special as it is equivalent to solving just
a single linear system. The recent result of [12] improved the above running times
for all cases p /∈ {1, 2,∞} and showed that in fact only ≈ m|1/2−1/p| linear systems
are required. This was further improved in [1] to the current state-of-the-art: just

≈ m
|p−2|

2p+|p−2| ≤ m1/3 linear systems. Even more recently, a novel adaptation of the
IRLS methods proposed in [2] has been shown to yield a very practical algorithm and

achieve only a slightly worse theoretical bound of m
|p−2|
2p−2 .

3.1 Transshipment problem

This problem is equivalent to the well known problem in combinatorial optimization:
minimum cost flow. In particular, it generalizes several classical tasks in combinatorial
optimization such as maximum bipartite matching or maximum flow. Starting from
the influential work of Ford and Fulkerson [33] a host of combinatorial algorithms for
these tasks have been developed [34], for a detailed history of these developments we
refer to the book [22]. The construction of a nearly-linear time solver for Laplacian
linear systems by Spielman and Teng [56] led to the state-of-the-art exact algorithm for
minimum cost flow [44] (using interior point methods) with complexity of Õ(m

√
n)

and a nearly linear time algorithm for approximate maximum flow [54] (using a non-
Euclidean gradient descent). We refer to [44] for the history of algorithms based on
convex optimization and Laplacian solvers. A different family of methods based on
convex optimization for more general flow problems, based on rescaling, has been
proposed and studied by [49,64].

3.2 IRLS

A number of different algorithms based on IRLS have been proposed for solving a
variety of optimization problems. The book [51] presents (among others) the IRLS
method for �1-minimization and proves a local convergence result (assuming the start-
ing point is sufficiently close to the optimum and no zero-entries appear in the iterates).
The paper [36] discusses a number of different IRLS schemes for finding sparse solu-
tions to underdetermined linear systems. A general IRLS scheme for �p-regression
(matching the setting of this paper for p = 1) has been proposed by [41]. There has
been a significant amount of study on this scheme, see e.g., the survey [13] and [53],
and a number of practical adjustments have been proposed [14,40,57]. Still, besides
empirical evaluations suggesting that this method reliably converges in the regime
p ∈ (1.5, 3) not much is known about its global convergence.

We now discuss another line of work, for which rigorous convergence results are
known. To circumvent mathematical difficulties related to zero-entries appearing in
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IRLS iterates one can choose a small positive constant η > 0 and define a modified
version of the IRLS update:

x (k+1) = argmin

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1

x2i√∣
∣
∣x

(k)
i

∣
∣
∣
2 + η2

: x ∈ R
n, Ax = b

⎫
⎪⎪⎬

⎪⎪⎭

. (8)

Note that the above minimization problem makes perfect sense even when x (k)
i = 0

for some i . Consequently, it has a unique solution, for every choice of x (k). It was
proved in [7] that the sequence of points produced by scheme (8) converges to the
optimal solution of

min
n∑

i=1

(
x2i + η2

)1/2

s.t. Ax = b.

(9)

The number of iterations required to get ε-close to the optimal solution is bounded

by O

(

m

(∥
∥y(0)

∥
∥
1‖y	‖1

)2

ε−1η−1

)

, where y(0) is the initial solution and y	 is the optimal

solution.
The function

∑n
i=1

(
x2i + η2

)1/2
approximates the �1-norm in the following sense:

∀x ∈ R
n ‖x‖1 ≤

n∑

i=1

(
x2i + η2

)1/2 ≤ ‖x‖1 + n · η.

In the case when the matrix A satisfies a variant of RIP (Restricted Isometry Property),
[24] showed that a scheme similar to (9) (with ηk → 0 in place of constant η) converges
to the �1-optimizer. The proof relies on non-constructive arguments (compactness is
repeatedly used to obtain certain accumulation points) hence no quantitative bounds
on the global convergence rate follow from this analysis.

Subsequent to this work, a different regularization of the IRLS algorithm has been
derived in [29] in order to come up with fast algorithms for basis pursuit (i.e., �1-
minimization) and �∞-minimization. The authors show that their regularized IRLS
solves both these problems up to multiplicative error (1+ ε) in Õ

(
m1/3ε−2/3 + ε−2

)

iterations.
The IRLS paradigm is also a popular choice in the design of effective heuristics for

solving robust regression problems (see e.g. [4,9,11,21,25]). The recent result of [46]
gives the first rigorous analysis of IRLS-based regression in adversarial settings.

123



D. Straszak, N. K. Vishnoi

3.3 Physarum dynamics

The discrete Physarum dynamics we propose for the basis pursuit problem can be seen
as an analogue of the similarly looking, but technically very different, dynamics for
linear programming studied in [39,58]. Its special case for the shortest path problem
and for the transshipment problem have been studied in [5,10,45] respectively (yet
the latter only studies the continuous-time dynamics and not the discretization). A
generalization of Physarum dynamics from the discrete to continuous space and its
connections to the Monge-Kantorovich problem were studied in [31].

Several follow-upworks on Physarumdynamics appeared after publishing an initial
version of thismanuscript. In thework [8] the continuous-time Physarumdynamics for
weighted basis pursuit is studied. The results of [8] generalize existence of solutions
and convergence to the casewhen theweight vector is not strictly positive, but just non-
negative (as long as a certain condition on the kernel of A is satisfied). The works [42]
and [32] present convergence results for the “non-uniform” variant (roughly, different
coordinates are updated at different rates) of the continuous Physarum dynamics.

4 Proofs

4.1 Structural results

In this section some structural results regarding the weighted �2-minimization and
the behavior of the Meta Algorithm are presented. The first fact establishes a certain
useful geometric condition that is maintained by the Meta-Algorithm throughout all
steps of its execution, whenever it is initialized to satisfy it.

Fact 1 (Positivity and boundedness) Suppose

(
(y(k), w(k))

)

k∈N := MA
[
A, b, h, y(0), w(0)

]

is a sequence produced by the Meta-Algorithm for some h ∈ (0, 1). If w(0) > 0 and∣
∣y(0)

∣
∣ ≤ w(0) then w(k) > 0 and

∣
∣y(k)

∣
∣ ≤ w(k) for every k ∈ N.

Proof The proof proceeds by induction.When k = 0, the claim is valid by the assump-
tion on y(0) and w(0). For k ≥ 0, we have

w
(k+1)
i = (1 − h)w

(k)
i + h

∣
∣
∣q

(k)
i

∣
∣
∣ > 0

because h ∈ (0, 1). Similarly

∣
∣
∣y(k+1)

i

∣
∣
∣ =

∣
∣
∣(1 − h)y(k)

i + hq(k)
i

∣
∣
∣

≤ (1 − h)

∣
∣
∣y(k)

i

∣
∣
∣+ h

∣
∣
∣q(k)

i

∣
∣
∣

≤ (1 − h)w
(k)
i + h

∣
∣
∣q

(k)
i

∣
∣
∣
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= w
(k+1)
i .

��
The next fact summarizes some well known and useful properties of the weighted
�2-minimization problem.

Fact 2 (Unique solution and its norm) Let A ∈ R
n×m be a matrix of rank n, b ∈ R

n

and w ∈ R
m
>0. Then, there exists a unique solution q = q(w) ∈ R

m to the weighted
�2-minimization problem (2) and it is given by

q = W A�(AW A�)−1b.

Moreover, its weighted �2-norm satisfies

m∑

i=1

q2i
wi

= b�L−1b,

where L := AW A� ∈ R
n×n is invertible.

The following lemma plays an important role in the proof of Theorem 2. Below, the
columns of A ∈ R

n×m are denoted by a1, a2, . . . , am ∈ R
n .

Lemma 3 (Uniform upper bound) Let A ∈ R
n×m be a matrix of rank n and w ∈ R

m
>0

be a weight vector. Then

∀i, j ∈ {1, 2, . . . ,m} wi · |a�
i L−1a j | ≤ α

where L := AW A� and α ∈ R is a constant that depends only on A. In case when A
has integer entries, one can choose α := D(A).

The fact that the upper bound is a constant (α) and does not depend on the weight
vector w is instrumental in proving the convergence of the Meta-Algorithm for a fixed
step size h (which, in turn, depends on α).

Proof of Lemma 3 Fix i and denote by p the solution to the system Lp = ai . We can
assume that p�a j ≥ 0 for every j ∈ [m] by replacing the column a j by −a j if
necessary. One can easily see that such a change does not alter the problem, because
L remains the same.

Let us first show that a�
i L−1ai ≤ 1

wi
. Note that

wi ai a
�
i �

m∑

j=1

w j a j a
�
j = L,

where � is the PSD order. This means that wi u�aia�
i u ≤ u�Lu, for every u ∈ R

n .
Let us pick u = L−1ai . We get

wi u
�aia�

i u ≤ u�Lu
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wi a
�
i L−1aia

�
i L−1ai ≤ a�

i L−1LL−1ai

wi (a
�
i L−1ai )

2 ≤ a�
i L−1ai

a�
i L−1ai ≤ 1

wi
.

It remains to argue that for some α and for every k ∈ [n],

a�
k p ≤ αa�

i p.

Fix k ∈ [n], assume k �= i . If a�
k p = 0, then we are done, assume a�

k p > 0. From
Lp = ai we get

m∑

j=1

w j a j (a
�
j p) = ai .

Hence the set Sk
def= {s ∈ R

m≥0 : As = ai ∧ sk > 0} is nonempty (W A� p belongs to
it).

To give some intuition about the set Sk note that it represents the set of all non-
negative linear combinations of columns of A that giveai as a result,with the restriction
that the coefficient of ak is positive. In the case when the considered basis pursuit
instance corresponds to a shortest path problem in a graph, ai is simply an edge
(v0, v1) in the graph and the set Sk , roughly speaking, corresponds to all paths (and
convex combinations of them) that start at v0 and end in v1 and traverse the edge
number “k”.

Take s ∈ Sk with sk maximum possible (it can be seen that sk is bounded over all
s ∈ Sk). Then

∑m
j=1 s j a j = ai , hence

∑m
j=1 s j a

�
j p = a�

i p. Since s j a�
j p ≥ 0 for all

j , we can deduce that ska�
k p ≤ a�

i p and hence a�
k p ≤ a�

i p
sk

= αka�
i p. It is enough

to choose α = maxk αk .
For the quantitative bound one needs to note that α is chosen according to the

following values: εk = max{sk : As = ai , s ≥ 0}. In fact α = maxk 1
εk
. Because

linear programs attain optimal values in vertices, one can argue that s	 – the optimal
solution to max{sk : As = ai , s ≥ 0} (for some fixed k) can be chosen to be a vertex
of the polyhedron {s : As = ai , s ≥ 0}. By the Cramer’s rule, every positive entry of
s	 is lower-bounded by D(A)−1. ��
The following corollary of the above lemma is used multiple times in our proofs.

Corollary 1 Let A ∈ Z
n×m be a matrix of rank n, let w ∈ R

m
>0 be a weight vector,

and let q = q(w) be the corresponding weighted �2-minimizer. Let y ∈ R
m be any

solution to Ay = b such that |yi |
wi

≤ K for every i = 1, 2, . . . ,m. Then

∀i ∈ {1, 2, . . . ,m} |qi |
wi

≤ K · D(A) · m.
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Proof Let L = AW A� (note that both L and L−1 are symmetric matrices), then
q = W A�L−1b and hence

|qi |
wi

=
∣
∣
∣a�

i L−1b
∣
∣
∣ .

Since Ay = b, we obtain

|qi |
wi

=
∣
∣
∣a�

i L−1Ay
∣
∣
∣

≤
m∑

j=1

∣
∣
∣y j · a�

i L−1a j

∣
∣
∣

=
m∑

j=1

∣
∣y j
∣
∣ ·
∣
∣
∣a�

j L
−1ai

∣
∣
∣

Lemma 3≤
m∑

j=1

∣
∣y j
∣
∣ · α

w
(k)
i

≤ K · α · m.

Since A is assumed to have integer entries, we can replace α by D(A). ��

4.2 Convergence and complexity of themeta-algorithm

In this section we present a proof of Theorem 2. In the rest of this section, we assume
that the starting vectors (y(0), w(0)) satisfy the condition stated in Theorem 2. It then
follows from Fact 1 that w(k) > 0 and

∣
∣y(k)

∣
∣ ≤ w(k) for every k ∈ N. Our goal is to

prove that y(k) approaches an optimal solution to the problem (1). Since Ay(k) = b for
every k, the proof reduces to showing that

∥
∥y(k)

∥
∥
1 → ‖x	‖1. Towards this goal, we

first introduce the potential functions that are used in Sect. 4.2.1. Subsequently, we
show how these potential functions can be used to explain how the vector y(k) moves
towards optimality. The analysis has two cases: one when the energy is significantly
smaller than the cost (see Sect. 4.4.1), and one where the energy is higher than the
optimal value (see Sect. 4.4.2).

4.2.1 Potential functions

Cost. We call
∥
∥w(k)

∥
∥
1 the cost of the current solution. It follows from Fact 1 that

∣
∣y(k)

∣
∣ ≤ w(k). Hence, proving that

∥
∥w(k)

∥
∥
1 → ‖x	‖1 implies the same for y(k). We

show, in particular, that the cost decreases with k. To reason about the rate at which it
decreases two additional potential functions are required.
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4.3 Energy

The energy of the current solution is defined to be

E(k) :=
m∑

i=1

(
q(k)
i

)2

w
(k)
i

.

It corresponds to the optimal value of the �2-minimization problem that is solved at
step k.

4.4 Entropy

The relative entropy of the current solution with respect to the optimal one, or the
generalized Kullback-Leibler divergence between x	 and w(k), is denoted by

I (k) := DKL

(∣
∣x	
∣
∣ , w(k)

)
=

m∑

i=1

∣
∣x	

i

∣
∣ ln

∣
∣x	

i

∣
∣

w
(k)
i

−
m∑

i=1

∣
∣x	

i

∣
∣+

m∑

i=1

w
(k)
i .

While the proof idea and its intuitive meaning is best understood in terms of I (k), it is
more convenient to use a simplified variant of I (k). Dropping the constant terms and
the
∥
∥w(k)

∥
∥
1 term, we arrive at the potential

B(k) :=
m∑

i=1

∣
∣x	

i

∣
∣ lnw

(k)
i (10)

which we call the barrier, as it resembles the logarithmic barrier function used in
interior point methods; see [67].

Figure 2 depicts the evolution of the various potentials during an example run of the
algorithm and illustrates the two possible cases that are discussed in the subsequent
subsections.

4.4.1 Case 1: Cost is far from energy

Lemma 4 For every k ∈ N it holds that
∥
∥w(k+1)

∥
∥
1 ≤ ∥

∥w(k)
∥
∥
1. Furthermore, if for

some ε ∈ (0, 1
2

)
,
∥
∥w(k)

∥
∥
1 >

(
1 + ε

3

)
E(k), then

∥
∥w(k+1)

∥
∥
1 ≤ (1 − hε

8

) ∥
∥w(k)

∥
∥
1.

Proof Start by noting that

∥
∥
∥w(k)

∥
∥
∥
1
−
∥
∥
∥w(k+1)

∥
∥
∥
1

= h
m∑

i=1

(
w

(k)
i −

∣
∣
∣q

(k)
i

∣
∣
∣
)

= h
(∥
∥
∥w(k)

∥
∥
∥
1
−
∥
∥
∥q(k)

∥
∥
∥
1

)
.
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Fig. 2 A diagram showing a possible evolution of the cost, energy and entropy throughout the execution of
theMeta-Algorithm. In Case 1, δ1 denotes the difference between the cost and energy; δ1 is large, which can
be used to prove that the drop in cost ρ1 in the next iteration will be large as well. In Case 2, the difference
between cost and energy is very small, in such a case δ2, the difference between energy and the optimal
cost, is large. This can be shown to imply a large drop of entropy ρ2 in the following iteration

Furthermore,

∥
∥
∥q(k)

∥
∥
∥
1

=
m∑

i=1

∣
∣
∣q

(k)
i

∣
∣
∣ =

m∑

i=1

√

w
(k)
i

|q(k)
i |

√
w

(k)
i

.

Thus, by applying the Cauchy-Schwarz inequality, we obtain

m∑

i=1

√

w
(k)
i

|q(k)
i |

√
w

(k)
i

≤
∥
∥
∥w(k)

∥
∥
∥
1/2

1
· E(k)1/2.

Consequently, the following holds:

h
(∥
∥
∥w(k)

∥
∥
∥
1
−
∥
∥
∥q(k)

∥
∥
∥
1

)
≥ h

∥
∥
∥w(k)

∥
∥
∥
1/2

1

(∥
∥
∥w(k)

∥
∥
∥
1/2

1
− E(k)1/2

)

.

Since q(k) minimizes the weighted �2-norm over the subspace Ax = b, it follows that:

E(k) =
m∑

i=1

(
q(k)
i

)2

w
(k)
i

≤
m∑

i=1

(
y(k)
i

)2

w
(k)
i

≤
m∑

i=1

(
w

(k)

i

)2

w
(k)
i

=
∥
∥
∥w(k)

∥
∥
∥
1
.
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This establishes the first part of the lemma.Assume now that
∥
∥w(k)

∥
∥
1 >

(
1 + ε

3

)
E(k).

As a consequence,

∥
∥
∥w(k)

∥
∥
∥
1
−
∥
∥
∥w(k+1)

∥
∥
∥
1

≥ h
∥
∥
∥w(k)

∥
∥
∥
1/2

1

(∥
∥
∥w(k)

∥
∥
∥
1/2

1
− E(k)1/2

)

≥ h

(

1 −
(
1 + ε

3

)−1/2
)∥
∥
∥w(k)

∥
∥
∥
1
.

To complete the proof of the lemma, it remains to note that 1 − (1 + ε
3

)−1/2 ≥ ε
8 . ��

4.4.2 Case 2: Energy is far from the optimal value

To track the convergence process for steps when the cost is close to energy we use the
barrier potential B(k). The following lemma characterizes its behavior.

Lemma 5 Suppose that h ≤ ε
20·m·D(A)

, then for every k it holds that

B(k + 1) ≥ B(k) + h
((

1 − ε

10

)
E(k) −

(
1 + ε

10

) ∥
∥x	
∥
∥
1

)
.

Here D(A) is as defined in Equation (5).

The proof uses the following simple inequality

∀x ∈ [−1/2, 1/2] x − x2 ≤ ln(1 + x) ≤ x . (11)

Proof Consider the change in the barrier potential:

B(k + 1) − B(k) =
m∑

i=1

∣
∣x	

i

∣
∣ ln

w
(k+1)
i

w
(k)
i

=
m∑

i=1

∣
∣x	

i

∣
∣ ln

⎛

⎝1 + h

⎛

⎝

∣
∣
∣q(k)

i

∣
∣
∣

w
(k)
i

− 1

⎞

⎠

⎞

⎠ .

We apply the left hand side of (11) to every summand. For simplicity let zi :=(∣
∣
∣q

(k)
i

∣
∣
∣

w
(k)
i

− 1

)

. Thus, we obtain that

B(k + 1) − B(k) ≥
m∑

i=1

∣
∣x	

i

∣
∣ (hzi − h2z2i )

= h
m∑

i=1

∣
∣x	

i

∣
∣ zi − h2

m∑

i=1

∣
∣x	

i

∣
∣ z2i .

(12)
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The linear and the quadratic terms are analyzed separately. For the linear term, note
that

h
m∑

i=1

∣
∣x	

i

∣
∣ zi = h

m∑

i=1

∣
∣x	

i

∣
∣

⎛

⎝

∣
∣
∣q(k)

i

∣
∣
∣

w
(k)
i

⎞

⎠− h
∥
∥x	
∥
∥
1 .

Henceforth, for brevity, denote the sum
∑m

i=1

∣
∣x	

i

∣
∣

( ∣
∣
∣q

(k)
i

∣
∣
∣

w
(k)
i

)

by Ẽ(k). Then the above

linear term becomes h · Ẽ(k) − h · ‖x	‖1 . To analyze the quadratic term in (12), we
apply Corollary 1 to obtain:

m∑

i=1

h2
∣
∣x	

i

∣
∣ z2i ≤ h2 · |mD(A) + 1| ·

m∑

i=1

∣
∣x	

i

∣
∣ |zi |

≤ h · ε

10
·

m∑

i=1

∣
∣x	

i

∣
∣

⎛

⎝

∣
∣
∣q(k)

i

∣
∣
∣

w
(k)
i

+ 1

⎞

⎠

= h · ε

10
Ẽ(k) + h · ε

10

∥
∥x	
∥
∥
1 .

Combining the linear and quadratic order bounds, we obtain:

B(k + 1) − B(k) ≥ h
(
1 − ε

10

)
Ẽ(k) − h

(
1 + ε

10

) ∥
∥x	
∥
∥
1 .

To complete the proof, it suffices to show that Ẽ(k) ≥ E(k). Towards this, note that

m∑

i=1

∣
∣x	

i

∣
∣

⎛

⎝

∣
∣
∣q(k)

i

∣
∣
∣

w
(k)
i

⎞

⎠ ≥
m∑

i=1

x	
i
q(k)
i

w
(k)
i

= (x	)�
(
W (k)

)−1
q(k) = (x	)�

(
W (k)

)−1
W (k)A�L−1b

= (x	)�A�L−1b = b�L−1b

where L := AW (k)A�. The above, together with Fact 2, gives

Ẽ(k) ≥ b�L−1b = E(k),

which concludes the proof of the lemma. ��
We note that the above lemma constrains the step size h to be small, of the order

ε(mD(A))−1. Technically, this bound is required to apply a second order lower bound
on the ln function, i.e., x − x2 ≤ ln(1 + x), which is used to show that B(k) cannot
drop too quickly with k. It seems that each step-by-step analysis that treats the B(k)
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and E(k) separately, and does not assume any kind of “centering” of w(k) (as is the
case in the analysis of Interior Point Methods), will necessarily require some such
worst-case lower bound on B(k + 1) − B(k). Thus a way to improve the iteration
bound should likely exploit more properties of the trajectories of the Meta-Algorithm.

4.4.3 Proof of Theorem 2

Wewould like to upper bound the number of steps until the first time when
∥
∥w(k)

∥
∥
1 ≤

(1 + ε) ‖x	‖1. From Lemma 4, the �1-norm of w(k) is non-increasing with k and
whenever

∥
∥w(k)

∥
∥
1 >

(
1 + ε

3

)
E(k) (i.e., Case 1 occurs),

∥
∥w(k)

∥
∥
1 decreases by a

multiplicative factor of (1 − hε
8 ). This means that there can be at most

ln
(

M
1+ε

)

ln(1 − hε)−1 = O

(
lnM

hε

)

such steps. Consider a step for which
∥
∥w(k)

∥
∥
1 ≤ (1 + ε

3

)
E(k). We obtain:

(1 + ε)
∥
∥x	
∥
∥
1 ≤

∥
∥
∥w(k)

∥
∥
∥
1

≤
(
1 + ε

3

)
E(k).

This implies in particular that

E(k) ≥
(
1 + ε

2

) ∥
∥x	
∥
∥
1 ,

i.e., Case 2 occurs. We apply Lemma 5 to conclude that in this case

B(k + 1) ≥ B(k) + hε

5

∥
∥x	
∥
∥
1 .

We now analyze how B(k) changes. Start by observing that B(0) ≥ 0 (since w
(0)
i ≥ 1

for every i ∈ {1, 2, . . . ,m}) and B(k) is upper bounded by ‖x	‖1 · (lnM + ln ‖x	‖1)
(this holds because

∥
∥w(k)

∥
∥
1 ≤ ∥

∥w(0)
∥
∥
1 ≤ M ‖x	‖1). At every step k for which

∥
∥w(k)

∥
∥
1 >

(
1 + ε

3

)
E(k), B(k) drops by at most

h
(
1 + ε

10

) ∥
∥x	
∥
∥
1 ≤ 2h

∥
∥x	
∥
∥
1

byLemma5.Note that by the reasoning above there are atmostO
( lnM

hε

)
such steps.On

the other hand, if
∥
∥w(k)

∥
∥
1 ≤ (1 + ε

3

)
E(k) then B(k) increases by at least hε

5 ‖x	‖1 .

This means that the total decrease of B(k) is at most

O

(
lnM

ε

∥
∥x	
∥
∥
1

)

.
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Therefore, the number of steps in which
∥
∥w(k)

∥
∥
1 ≤ (1 + ε

3

)
E(k) is at most

O

(
lnM

ε
‖x	‖1 + ‖x	‖1 · (lnM + ln ‖x	‖1)

hε
5 ‖x	‖1

)

which is bounded by O
(
lnM+ln‖x	‖1

hε2

)
. This completes the proof of Theorem 2.

4.5 Iteration bound for undirected transshipment problem

The main component of our improved iteration bound for the transshipment problem
is the following strengthening of Corollary 1 for the case where the matrix A is an
incidence matrix of a graph.

Lemma 6 Let B ∈ R
V×E be an incidence matrix of an undirected graph G = (V , E),

b ∈ Z
E be a demand vector and c ∈ Z

E
>0 a cost vector. Let w ∈ R

E
>0 be any weight

vector, and let q = q(C−1w) be the correspondingweighted �2-minimizer. Let y ∈ R
E

be any solution to By = b such that |ye|
we

≤ K for every e ∈ E. Then

∀e ∈ E
|qe|
we

≤ K · cmax · n,

where cmax := maxe∈E ce.

Proof By adapting the electrical network interpretation (see [65]) of the weighted
�2-minimization problem, observe that the vector p ∈ R

V defined as

p := (BC−1WB�)−1b

defines node potentials for the electrical flow on the graph G, where the resistance
of an edge e is ce

we
for all e ∈ E . This vector is not unique but any two such vectors

differ by a multiple of the all-one vector, hence in particular the potential differences
on edges: pu − pv for uv ∈ E are well defined.

The quantity of our interest is |qe|
we

for an edge e = uv ∈ E which is exactly

|qe|
we

= |pu − pv| .

Thus it is enough to prove that for any pair of vertices u, v ∈ V (not necessarily
connected by an edge) we have

|pu − pv| ≤ cmax · K · n.

For this, sort all the potentials in nondecreasing order and pick two neighbouring ones
pu, pv . In other words, take u, v, such that pu ≤ pv and for allw ∈ V either pw ≤ pu
or pw ≥ pv . We show that pv − pu ≤ K · cmax.
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Assume the contrary: pv − pu > K · cmax. Recall that cmax is the maximum cost
ce over all e ∈ E . We define a partition of V into two sets S, S̄:

S = {w ∈ V : pw ≤ pu}, S̄ = {w ∈ V : pw ≥ pv}.

Let ES ⊆ E be the set of edges going between S and S̄. Since the graph is connected
we know that ES �= ∅. Since the potentials in S̄ are higher than those in S, it is clear
that q sends some non-zero flow from S̄ to S, in other words bS = ∑

v∈S bv > 0.
Moreover, no flow is going back from S to S̄ (as it would violate the potentials) hence

∑

e∈ES

|qe| = bS .

On the other hand:

∑

e=u1v1∈ES

|qe| =
∑

e∈ES

∣
∣
∣
∣
(pu1 − pv1)we

ce

∣
∣
∣
∣ > K

∑

e∈ES

∣
∣
∣
∣
cmaxwe

ce

∣
∣
∣
∣ ,

since for every u1 ∈ S and every v1 ∈ S̄ we have |pu1 − pv1 | > K · cmax. Note now
that by our assumption there exists a solution y ∈ R

E , i.e., Ay = b such that for every
e ∈ E we have |ye| ≤ Kwe. Thus further we obtain:

bS > K
∑

e∈ES

∣
∣
∣
∣
cmaxwe

ce

∣
∣
∣
∣ ≥

∑

e∈ES

|ye| ≥ bS,

since y being a valid flow implies that y sends at least bS units of flow between S and
S̄. This contradiction concludes the proof. ��
We are now ready to give a proof of Theorem 3.

Proof of Theorem 3 The argument follows closely that in the proof of Theorem 2 pre-
sented in Sect. 4.2. In particular the same set of potential functions and the same two
cases are considered in the convergence analysis. Below we highlight where these
arguments differ, and hence where the improvement comes from.

Note first that by initializing the algorithm with w(0) ≡ bP we make sure that there
is a feasible solution y(0) such that

∣
∣y(0)

∣
∣ ≤ w(0) coordinatewise – such a solution

is easy to construct by repeatedly saturating vertices using arbitrary flow paths that
go from a positive demand to a negative demand. Such a solution can be efficiently
constructed by finding a spanning tree of G and adding flow on paths in the tree using
an efficient data structure that can support such queries in O(log |E |) time.

The only significant change in the argument occurs in Case 2: when energy is far
from the optimal value. The quantity of interest there is

∑

e∈E
ln

⎛

⎝1 + h

⎛

⎝

∣
∣
∣q

(k)
e

∣
∣
∣

w
(k)
e

− 1

⎞

⎠

⎞

⎠
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and in particular a bound on

∣
∣
∣q

(k)
e

∣
∣
∣

w
(k)
e

is required in order to use the approximation ln(1+
x) ≈ x . Given the bound from Lemma 6 one can pick h ≈ 1

n·cmax
for this to hold.

Indeed from our above observation it follows that the constant K in Lemma 6 can be
taken to be 1. Finally, in a later stage of this argument (for Case 2) one has to argue
that

h ·
⎛

⎝

∣
∣
∣q

(k)
e

∣
∣
∣

w
(k)
e

− 1

⎞

⎠ ≤ ε

10
.

This follows by choosing h = Θ
(

ε
n·cmax

)
. ��

5 Conclusion and future work

In this paper we have established convergence of a damped version of the IRLS
algorithm. It is then natural to ask whether the standard version of this algorithm
converges and what is its rate of convergence. The example presented in Appendix B
shows that it does not converge to optimal solutions for all instances. The following
two variants of the convergence question give a way to bypass this negative example:

(1) Does the IRLS algorithm converge from almost every starting point? Formally: is
the set of “bad” starting points of measure zero?

(2) Does a stochastic variant of IRLS converge? By a stochastic version we mean one
which perturbs the point in every iteration by a small amount of Gaussian noise.

A connection between physarum dynamics and IRLS

In this section we present a proof of Theorem 1. The proof has two parts that are
established in the two subsequent subsections. While the first is rather trivial, the
second takes some effort as it requires establishing several technical facts about the
Physarum dynamics.

A.1 IRLS as theMeta-Algorithm for h = 1

Proof of Theorem 1, Part 1 When h = 1, the Meta-Algorithm proceeds as follows:

(
y(k+1), w(k+1)

)
=
(
q(k),

∣
∣
∣q(k)

∣
∣
∣
)

,

where q(k) = q(w(k)). Therefore, at each step,w(k) = ∣∣y(k)
∣
∣. In particular, the dynam-

ics is guided only by the y variables and is given by y(k+1) = q(|y(k)|). This is exactly
the same update rule as IRLS whose iterations correspond to z(k+1) = q(|z(k)|). ��
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A.2 PhysarumDynamics as the limiting case (h → 0) of theMeta-Algorithm

Fix an instance of the basis pursuit problem: A ∈ R
n×m and b ∈ R

n . Note that by
Fact 1, the vector ϕ(t) defined in (4) can be equivalently characterized as q(σ (t)). Let
G(σ ) = |q(σ )| − σ so that the Physarum dynamics can then be written compactly
as

d

dt
σ(t) = G(σ (t)). (13)

In this section, we use the �2-norm to measure lengths of vectors and, hence, ‖σ‖
should be understood as

√∑m
i=1 σ 2

i . We now state some technical lemmas whose
proofs appear in A.3.

Lemma 7 (Properties of Physarum trajectories) Let T ∈ R>0 and σ : [0, T ) → R
m
>0

be any solution to the Physarum dynamics (13).

1. For every t ∈ [0, T ) and for all i ∈ {1, 2, . . . ,m}, σi (t) ≥ σi (0)e−t .

2. The solution stays in a bounded region, i.e., supt∈[0,T ) ‖σ(t)‖ < ∞.
3. The limit limt→T− σ(t) exists and is a point in R

m
>0.

The next lemma implies the existence of a global solution of Physarum trajectories
for all valid starting points.

Lemma 8 (Existence of global solution) For every initial condition σ(0) ∈ R
m
>0 there

exists a global solution σ : [0,+∞) → R
m
>0 to the Physarum dynamics (13).

The final lemma, whose proof relies on the previous lemmas, implies the proof The-
orem 1 part 2) b), trivially.

Lemma 9 (Error analysis) Given σ(0) ∈ R
m
>0 and T ∈ R≥0, let σ : [0, T ] →

R
m
>0 be the solution to (13) and σmin(0) = mini σi (0). Then, there exists a constant

K > 0, which depends on σ(0) and T , such that for every step size 0 < h ≤
σmin(0)

2 · (eK )−T , it holds for the sequence of weights
(
w(k)

)
k∈N produced by the

Meta-Algorithm initialized at w(0) = σ (0) with step size h that

∥
∥
∥w(�) − σ(h�)

∥
∥
∥ ≤ hKh�, for every � ∈ {0, 1, . . . , T /h�}.

Proof Fix any solution σ : [0, T ] → R
m
>0 and let

ε := σmin

2
e−T .

Take F to be the closed ε-neighborhood of {σ(t) : t ∈ [0, T ]}, i.e., the set of all points
of distance at most ε from any point on the solution curve. Note that by Lemma 7, F
is a compact subset of Rm

>0. Let L1, L2 > 0 be constants such that

‖G(x) − G(y)‖ ≤ L1 ‖x − y‖ for all x, y ∈ F,
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‖σ(t) − σ(s)‖ ≤ L2 |t − s| for all t, s ∈ [0, T ].

Such an L1 exists because G is locally Lipschitz (see Lemma 10). To see why L2
exists one can use the fact that G is bounded on F (as a continuous function on a
compact domain) together with the formula

σ(t) − σ(s) =
∫ t

s
G(σ (τ ))dτ.

We claim that for every h ∈ (0, 1) and � ∈ N such that h · � ≤ T and hL2eL1T ≤ ε,

∥
∥
∥w(�) − σ(h�)

∥
∥
∥ ≤ hL2e

L1T .

The above claim is enough to conclude the proof. Towards its proof, first define

dh(�) :=
∥
∥
∥w(�) − σ(h�)

∥
∥
∥

for any h ∈ (0, 1) and � ∈ N. Recall that

w(�+1) = w(�) + hG(w(�)).

We start by applying the triangle inequality to extract an error term

dh(� + 1) =
∥
∥
∥σ((� + 1)h) − w(�+1)

∥
∥
∥

=
∥
∥
∥σ(�h) − w(�) + σ((� + 1)h) − σ(�h) − hG(w(�))

∥
∥
∥

≤ dh(�) +
∥
∥
∥σ((� + 1)h) − σ(�h) − hG(w(�))

∥
∥
∥ .

Next, we analyze the error term:

∥
∥
∥σ((� + 1)h) − σ(�h) − hG(w(�))

∥
∥
∥ =

∥
∥
∥
∥
∥

∫ (�+1)h

�h
G(σ (τ ))dτ − hG(w(�))

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

∫ (�+1)h

�h

[
G(σ (τ )) − G(w(�))

]
dτ

∥
∥
∥
∥
∥

≤
∫ (�+1)h

�h

∥
∥
∥G(σ (τ )) − G(w(�))

∥
∥
∥ dτ

≤
∫ (�+1)h

�h
L1

∥
∥
∥σ(τ) − w(�)

∥
∥
∥ dτ.
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Where in the last inequality we used the fact that w(�) ∈ F (which will be justified
later). To bound the distance

∥
∥σ(τ) − w(�)

∥
∥ for any τ ∈ [�h, (� + 1)h], note that

∥
∥
∥σ(τ) − w(�)

∥
∥
∥ ≤ ‖σ(τ) − σ(�h)‖ +

∥
∥
∥σ(�h) − w(�)

∥
∥
∥ ≤ hL2 + dh(�).

Altogether, we obtain the following recursive bound on dh(� + 1)

dh(� + 1) ≤ dh(�) + hL1(hL2 + dh(�)) = dh(�)(1 + hL1) + h2L1L2.

By expanding the above expression, one can show that

dh(�) ≤ h2L1L2

�−1∑

i=0

(1 + hL1)
i ≤ hL2(1 + hL1)

� ≤ hL2e
h�L1 .

In particular, whenever h · � ≤ T , we obtain that dh(�) ≤ hL2etL1 . Note that the
above derivation is correct under the assumption that all the pointsw(0), w(1), . . . , w(�)

belong to F , however this is implied by the assumption that h is small: hL2eL1T ≤ ε,

hence the upper bound on h in the statement. ��

A.3 Technical lemmas and their proofs

Lemma 10 (Local Lipschitzness) The function G : Rm
>0 → R

m is locally Lipschitz,
i.e., for every compact subset F of Rm

>0, the restriction G�F is Lipschitz.

Proof Fix any compact subset F ⊆ R
m
>0. Since G(σ ) = |q(σ )| − σ and the identity

function is Lipschitz, it is enough to prove that σ �→ |q(σ )| is Lipschitz on F . It
follows from Fact 2 that

q(σ ) = Σ A�(AΣ A�)−1b

and, hence, Cramer’s rule, applied to the linear system (AΣ A�)ξ = b (with variables
ξ ∈ R

n), implies that qi (σ ) is a rational function of the form Qi (σ )

det(AΣ A�)
where Qi (σ )

is a polynomial. Since det(AΣ A�) is positive for σ ∈ R
m
>0, qi (σ ) is a continuously

differentiable function on R
m
>0. Further, since F is a compact set, the magnitude of

the derivative of q is upper bounded by a finite quantity, i.e.,

sup
σ∈F

‖∇qi (σ )‖ ≤ C for all i = 1, 2, . . . ,m

for some C ∈ R. Now, for any x, y ∈ F and any i ∈ {1, 2, . . . ,m}:

qi (x) − qi (y) =
∫ 1

0
〈∇qi (y + t(x − y)), x − y〉 dt
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and, thus, using the Cauchy-Schwarz inequality it follows that

|qi (x) − qi (y)| ≤ ‖x − y‖ · sup
σ∈[x,y]

‖∇qi (σ )‖ ≤ C ‖x − y‖ .

Thus, the Lipschitz constant of q on F is at most
√
m · C . ��

Proof of Lemma 7 The first claim follows directly from Gronwall’s inequality (see
Sect. 2.3 in [52]) since

d

dt
σi (t) = |qi (σ (t))| − σi (t) ≥ −σi (t).

For the second claim, it is enough to show that there exists a constant C1 > 0 such
that

|qi (σ (t))|
σi (t)

≤ C1 (14)

for all t ∈ [0, T ] and i = 1, 2, . . . ,m. Indeed, Gronwall’s inequality then implies that
σi (t) ≤ σi (0)eC1t , for all t ∈ [0, T ]. Towards the proof of (14), let y ∈ R

m be any
fixed solution to Ay = b. From the first claim of Lemma 7, for every t ∈ [0, T ] and
i = 1, 2, . . . ,m we obtain

|yi |
σi (t)

≤ |yi | σi (0)−1et ≤ |yi |σi (0)−1eT .

Hence, by Corollary 1, |qi (σ (t))|
σi (t)

is upper bounded by a quantity C1 that depends on
T , σ (0), A, b only; proving the second claim.

The last claim follows from the previous two and the continuity of G. Indeed, one
can deduce that the solution curve {σ(t) : t ∈ [0, T ]} is contained in a compact set
F ⊆ R

m
>0. Denote C2 := max {‖G(σ )‖ : σ ∈ F}. For any s, t ∈ [0, T ]

‖σ(t) − σ(s)‖ =
∥
∥
∥
∥

∫ t

s
G(σ (τ ))dτ

∥
∥
∥
∥ ≤ C2 |s − t | .

The above readily implies that limt→T− σ(t) exists. Since F is a compact set, the limit
σ(T ) belongs to F and thus σ(T ) ∈ R

m
>0. ��

Proof of Lemma 8 By Lemma 10, the function G(σ ) is locally Lipschitz and, hence,
there is amaximal interval of existence [0, T ) of a solution σ(t) to (13)where 0 < T ≤
+∞ (see Theorem 1, Sect. 2.4 in [52]). Suppose that x : [0, T ) → R

m is a solution
with T ∈ R>0.We show that it can be extended to a strictly larger interval [0, T +ε) for
some ε > 0.Letσ(T ) := limt→T− σ(t); the limit exists andσ(T ) ∈ R

m
>0 byLemma7.

SinceG(σ ) is locally Lipschitz, one can apply the Fundamental Existence-Uniqueness
theorem (see Sect. 2.2 in [52]) to obtain a solution τ : (T − ε, T + ε) → R

m
>0 with

τ(T ) = σ(T ) for some ε > 0. Because of uniqueness, τ and σ agree on (T − ε, T ]
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Fig. 3 The graph G together with a feasible solution y(0) ∈ R
V

and, hence, can be combined to yield a solution on a larger interval: [0, T + ε). This
concludes the proof of the lemma. ��

B Example of non-convergence of IRLS

In this section, we present an example instance of the basis pursuit problem for which
IRLS fails to converge to the optimal solution.

Theorem 4 There exists an instance (A, b) of the basis pursuit problem (1) and a
strictly positive point y(0) ∈ R

m
>0 (with Ay(0) = b) such that if IRLS is initialized at

y(0) (and {y(k)}k∈N is the sequence produced by IRLS) then
∥
∥y(k)

∥
∥
1 does not converge

to the optimal value.

The proof is based on the simple observation that if IRLS reaches a point y(k) with
y(k)
i = 0 for some k ∈ N, i ∈ {1, 2, . . . ,m} then y(l)

i = 0 for all l > k.
Consider an undirected graph G = (V , E) with V = {u0, u1, ..., u6, u7}, E =

{e1, e2, . . . , e9}, and also let s = u0, t = u7. G is depicted in Fig. 3.
Wedefine A ∈ R

8×9 to be the signed incidencematrix ofG with edges directed accord-
ing to increasing indices and let b := (−1, 0, 0, 0, 0, 0, 0, 1)�. Then the following
problem

min ‖x‖1 s.t. Ax = b

is equivalent to the shortest s − t path problem in G. The linear system Ax = b is
stated explicitly in Fig. 4. The unique optimal solution is the path s−u4 −u3 − t , i.e.,
y	 = (1, 0, 0, 0, 0, 0, 0, 1,−1)� (note that we work with undirected graphs here). In
particular, the edge (u3, u4) is in the support of the optimal vector (it corresponds to
the last coordinate of y	).

Consider an initial solution y(0) given below

y(0) = (3/4, 3/4, 3/4, 1/4, 3/4, 3/4, 3/4, 1/4, 1/2)� . (15)
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Fig. 4 The linear system that encodes the shortest path problem in Fig. 3

Claim IRLS initialized at y(0) produces in one step a point y(1) with y(1)
9 = 0.

The above claim implies that IRLS initialized at y(0) (which has full support) does
not converge to the optimal solution, which has 1 in the last coordinate. Thus to prove
Theorem 4 it suffices to show Claim B.

Proof of Claim B IRLS chooses the next point y(1) ∈ R
9 according to the rule:

y(1) = argmin
y∈R9

9∑

i=1

x2i
yi

s.t. Ax = b

which is the same as the unit electrical s−t flow inG corresponding to edge resistances
1
ye
. (This is due to the fact that electrical flows minimize energy, see [65].) In such an

electrical flow the potentials of u4 and u3 are equal (the paths s−u4 and s−u1−u2−u3
have equal resistances), hence the flow through (u3, u4) is zero. ��

C Remaining Proofs

Proof Of Fact 2 To prove the first claim, consider the strictly convex function f :
R
m → R given by f (x) := ∑m

i=1
x2i
wi
. The optimality conditions for the convex

program min{ f (x) : Ax = b} are then given by

{
AW A�λ = b

x = W A�λ
,

where λ ∈ R
n are Lagrangian multipliers for the linear constraints Ax = b. We claim

that L = AW A� is a full rank matrix. Indeed, suppose that u ∈ R
n is such that

Lu = 0, then

0 = u�Lu = u�AW A�u =
∥
∥
∥W 1/2A�u

∥
∥
∥
2
,
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hence u = 0, since A, and consequently W 1/2A, have rank n. For this reason L is
invertible and the optimizer is explicitly given by the expression W A�(AW A�)−1b.

The proof of the second claim starts with the formula q = W A�L−1b established

in the first claim. Thus,
∑m

i=1
q2i
wi

= q�W−1q and, hence:

q�W−1q = b�L−1AWW−1W A�L−1b

= b�L−1(AW A�)L−1b

= b�L−1b.

��
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