
Proof and conclusion
Background

Oren Mangoubi, Nisheeth K. VishnoiDimensionally Tight Bounds for Second-Order Hamiltonian Monte Carlo

Given a gradient oracle for 𝐹:ℝ𝑑ℝ, sample from the 

Gibbs distribution:        𝝅(𝒙) ∝ 𝒆−𝑭(𝒙)

Our Results

Applications: Optimization (via annealing), computing 

integrals/volumes, Bayesian inference, molecular dynamics

Assume: 1. 𝐹 is 𝑚-strongly convex and 𝑀-smooth, and let 𝜅 ≔  𝑀 𝑚
2. Lipschitz condition for 𝐿∞, 𝑟 > 0, 𝖷 ≔ 𝖷1, … , 𝖷𝑟 ∈ 𝕊𝑑𝑟:

𝛻2𝐹 𝑦 − 𝛻2𝐹 𝑥 𝑣
2
≤ 𝐿∞ 𝑟 𝖷⊤ 𝑦 − 𝑥 ∞ × 𝖷⊤𝑣 ∞

Then:  𝑂(max 𝑑
1

4𝜅2.75 , 𝑟
1

4𝜅2.25 𝐿∞ 𝜀−  1 2)gradients are sufficient    

for 2ndorder HMC to obtain a sample 𝜀-close to 𝜋, from a warm start

(We obtain slightly weaker bounds from a cold start)

For simplicity, let 𝑀,𝑚 = Θ 1 , 𝜀 ≤ 1, 𝑟 = 𝑑.  We couple our HMC 

chain 𝑋 to an “idealized” HMC chain 𝑌 with exact solutions by 

giving their trajectories the same initial velocity (Fig. 2). 

[Mangoubi, Smith ‘17] show that exact solutions with same initial velocity 

contract by a constant factor for 𝑇 = Θ(1).  We extend to 2nd order  

HMC by showing it approximates exact trajectories with error 𝑂(𝜀):

• We bound (inductively on 𝑗) the errors 𝑥𝑗 − 𝑥 𝜂𝑗
2

and 

𝑣𝑗 − 𝑣 𝜂𝑗
2

by 𝑂 𝜂𝑗𝜀 , where (𝑥 𝑡 , 𝑣 𝑡 ) is the continuous   

solution to Hamilton’s eqs with initial conditions (𝑋𝑖 , 𝑉𝑖):
• The error in the quadratic term of the velocity update is roughly 

(𝜂2𝛻2𝐹 𝑥 + 𝜂𝑣𝑗 − 𝜂2𝛻2𝐹 𝑥 )𝑣𝑗 2
≤ 𝜂3𝐿∞ 𝑑 𝖷⊤𝑣𝑗 ∞

2

• The invariance property of Hamiltonian mechanics implies 𝑣 is 

roughly 𝑁(0, 𝐼𝑑) at every point on the exact trajectory if HMC has 

a warm start (Fig. 3). Thus, 𝖷⊤𝑣𝑗 ∞
= 𝑂 log 𝑑 w.h.p., since 

by inductive assumption 𝑣𝑗 − 𝑣 𝜂𝑗
2
= 𝑂 𝜂𝑗𝜀 = 𝑂(1)

• After  𝑇 𝜂 iterations, the errors sum to  𝑂 𝜂2𝐿∞ 𝑟 .  Choosing 𝜂

to have error 𝜀, # of gradients is  𝑇 𝜂 =  Θ(𝜀  −1 2𝑑  1 4𝐿∞
 1 2)

For 𝒊 = 𝟎, 𝟏… , 𝒔 − 𝟏, do

1. Generate 𝑉𝑖 ∼ 𝑁 0, 𝐼𝑑
2. “Solve” Hamilton’s eqs for 𝑥0, 𝑣0 = (𝑋𝑖 , 𝑉𝑖) for time 𝑇:

For 𝒋 = 𝟎,… , 𝑻
𝜼
−𝟏, do

3. Set 𝑋𝑖+1 = 𝑥  𝑇 𝜂`

Some Markov chains used for sampling

2nd-order Hamiltonian Monte Carlo    [Duane et al., ‘87]

Input: 𝑋0, 𝛻𝐹, 𝑇, 𝜂, 𝑠
Output: 𝑋𝑠 which is 𝜺-close to 𝝅, for some 𝜀 > 0
(i.e., there is 𝑌 ∼ 𝜋 s.t. 𝑋𝑠 − 𝑌 2 < 𝜀 w.p. 1 − 𝜀)

• Random Walk Metropolis: 𝑑2 (conj: 𝑑)
• Unadjusted Langevin: 𝑑

• Underdamped Langevin: 𝑑  1 2

[Durmus, Moulines, ‘16]

Sampling problem

[Cheng et al. '17]

Previous conjectures and bounds for Hamiltonian Monte Carlo (HMC)

• Informal conjecture: 𝑑  1 4 gradient evaluations are sufficient for 

HMC with 2nd-order integrator if 𝐹 is 1-smooth, 1-strongly convex, 

with additional bounds on higher-order derivatives

• Metropolis 2nd-order leapfrog HMC requires Ω(𝑑  1 4) gradients 
for Gaussian and other replica product distributions

•  𝑂(𝑑  1 2) gradients sufficient for first-order HMC

[Creutz, '88]

[Mangoubi, Smith ‘17]

Application to Bayesian logistic “ridge” regression

• Given data 𝖷𝑖 , 𝖸𝑖 , sample from 𝜋(𝑥) ∝ 𝑒−  𝑖=0
𝑟 𝑓𝑖 𝑥 ,

𝑓𝑖 𝑥 = 𝖸𝑖log(𝜎 𝑥⊤𝖷𝑖 ) + (1 − 𝖸𝑖)log(𝜎 −𝑥⊤𝖷𝑖 ) ,
where 𝜎 𝑠 = 1 + 𝑒−𝑠 −1, prior: 𝑓0 𝑥 = 𝑥 2

2

• For logistic regression, 𝐿∞ = 𝐶, coherence 𝐶 ≔ max
𝑖∈ 𝑟

 𝑗=1
𝑟 𝖷𝑖

⊤𝖷𝑗

• For example, if 𝑟 = 𝑑 and 𝖷1, … , 𝖷𝑟 ∼ uniform 𝕊𝑑 , # of gradient 

calls is  𝑂(𝑑  3 8𝜀−  1 2) from a warm start

Main result

Simulations

• Simulations performed on logistic 

regression, 𝖷1, … , 𝖷𝑑 ∼ uniform 𝕊𝑑

suggest that 2nd order HMC (UHMC) 

has faster autocorrelation time1 than 

Metropolis HMC and Langevin in 

this setting (Fig. 1)

Proof highlights

• First faster-than- 𝑑 bound for sampling from a large class of 

logconcave distributions, including logistic regression posteriors

• Can we improve dependence on parameters 𝐶 and 𝜅?

• Can we generalize to nonconvex 𝐹 and higher-order integrators?
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[Gelman et al. ‘97]

# of gradient evaluations to sample from smooth, strongly 

logconcave 𝜋 (for smoothness/convexity parameters = Θ 1 ):

Invariant measure 𝒆−𝑭 𝒙 𝒆−
𝟏

𝟐
𝒗 𝟐

𝟐

Hamilton’s equations

𝑑𝑥

𝑑𝑡
= 𝑣,

𝑑𝑣

𝑑𝑡
= −𝛻𝐹 𝑥

If 𝑥 0 ∼ 𝜋, 𝑣 0 ∼ 𝑁(0, 𝐼𝑑), and solutions are computed with 

low error, can take long steps that (approximately) preserve 𝜋

𝑥𝑗+1 = 𝑥𝑗 + 𝜂𝑣𝑗 −
1
2
𝜂2𝛻𝐹(𝑥𝑗)

𝑣𝑗+1 = 𝑣𝑗 − 𝜂𝛻𝐹(𝑥𝑗) −
1
2
𝜂2

𝛻𝐹 𝑥𝑗+1 −𝛻𝐹(𝑥𝑗)

𝜂

𝑥(0) 𝑣(𝜂𝑗)

𝛻2𝐹 op

Assumption 2

Conclusion and future directions

-[Beskos et al. ‘10]

(1) Autocorrelation is the  correlation of points in the Markov chain with a delayed 

copy of themselves.    Autocorrelation time can be estimated as 1 + 2 𝑠=1
𝑠max 𝜌𝑠 for 

some large 𝑠max, where 𝜌𝑠 is autocorrelation with delay 𝑠
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Fig. 2: Second-

order HMC 

trajectories 

approximate 

exact solutions 

which contract if 

given same initial 

velocity

Fig. 3: Given a warm 

start, exact solutions 

have roughly 

𝑁(0, 𝐼𝑑) velocity at 

every point, meaning 

they are unlikely to 

travel in directions 

where Hessian 

changes most quickly

Fig. 1
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