Dimensionally Tight Bounds for Second-Order Hamiltonian Monte Carlo

Sampling problem

Given a gradient oracle for $F : \mathbb{R}^d \to \mathbb{R}$, sample from the $\pi(x) \propto e^{-F(x)}$ Gibbs distribution:

Applications: Optimization (via annealing), computing integrals/volumes, Bayesian inference, molecular dynamics

Some Markov chains used for sampling

of gradient evaluations to sample from smooth, strongly logconcave π (for smoothness/convexity parameters = $\Theta(1)$): Random Walk Metropolis: d^2 (conj: d) [Gelman et al. '97] • Unadjusted Langevin: d [Durmus, Moulines, '16] [Cheng et al. '17]

- Underdamped Langevin: $d^{1/2}$

Hamilton's equations

dx

dv

Position x, velocity v, potential F

Invariant measure $e^{-F(x)}e^{-\frac{1}{2}||v||_2^2}$

If $x(0) \sim \pi, v(0) \sim N(0, I_d)$, and solutions are computed with low error, can take long steps that (approximately) preserve π

2nd-order Hamiltonian Monte Carlo [Duane et al., '87]

Input: $X_0, \nabla F, T, \eta, s$ **Output:** X_s which is ε -close to π , for some $\varepsilon > 0$ (i.e., there is $Y \sim \pi$ s.t. $||X_s - Y||_2 < \varepsilon$ w.p. $1 - \varepsilon$)

For
$$i = 0, 1 ..., s - 1$$
, do
1. Generate $V_i \sim N(0, I_d)$
2. "Solve" Hamilton's eqs for $(x_0, v_0) = (X_i, V_i)$
For $j = 0, ..., \frac{T}{\eta} - 1$, do
 $\begin{vmatrix} x_{j+1} = x_j + \eta v_j - \frac{1}{2}\eta^2 \nabla F(x_j) \\ v_{j+1} = v_j - \eta \nabla F(x_j) - \frac{1}{2}\eta^2 \frac{\nabla F(x_{j+1})}{\eta} \end{vmatrix}$
3. Set $X_{i+1} = x_T/\eta$

 $\frac{\partial f}{\partial t} = v, \frac{\partial f}{\partial t} = -\nabla F(x)$

for time *T*:

 $-\nabla F(x_j)$

Previous conjectures and bounds for Hamiltonian Monte Carlo (HMC)

- **Informal conjecture:** $d^{1/4}$ gradient evaluations are sufficient for HMC with 2^{nd} -order integrator if F is 1-smooth, 1-strongly convex, with additional bounds on higher-order derivatives
- Metropolis 2nd-order leapfrog HMC requires $\Omega(d^{1/4})$ gradients for Gaussian and other replica product distributions -[Beskos et al. '10
- $\tilde{O}(d^{1/2})$ gradients sufficient for first-order HMC

Main result

Assume: 1. *F* is *m*-strongly convex and *M*-smooth, and let $\kappa := M/m$

Then: $\tilde{O}(\max\left(d^{\frac{1}{4}}\kappa^{2.75}, r^{\frac{1}{4}}\kappa^{2.25}\sqrt{L_{\infty}}\right)\varepsilon^{-1/2})$ gradients are sufficient

for 2^{nd} order HMC to obtain a sample ε -close to π , from a warm start (We obtain slightly weaker bounds from a cold start)

Application to Bayesian logistic "ridge" regression

- Given data (X_i, Y_i) , sample from $\pi(x) \propto e^{-\sum_{i=0}^{\prime} f_i(x)}$, $f_i(x) = Y_i \log(\sigma(x^{\mathsf{T}} X_i)) + (1 - Y_i) \log(\sigma(-x^{\mathsf{T}} X_i)),$ where $\sigma(s) = (1 + e^{-s})^{-1}$, prior: $f_0(x) = ||x||_2^2$
- For example, if r = d and $X_1, ..., X_r \sim uniform(\mathbb{S}^d)$, # of gradient calls is $\tilde{O}(d^{3/8}\varepsilon^{-1/2})$ from a warm start

Simulations performed on logistic regression, $X_1, \dots, X_d \sim \text{uniform}(\mathbb{S}^d)$ suggest that 2nd order HMC (UHMC) has faster autocorrelation time¹ than Metropolis HMC and Langevin in this setting (Fig. 1)

1) Autocorrelation is the correlation of points in the Markov chain with a delayed copy of themselves. Autocorrelation time can be estimated as $1 + 2 \sum_{s=1}^{s_{max}} \rho_s$ for some large s_{max} , where ρ_s is autocorrelation with delay s

Oren Mangoubi, Nisheeth K. Vishnoi

Fig. 2: Secondorder HMC trajectories approximate exact solutions which contract if given same initial velocity

NeurIPS 2018

Proof highlights

For simplicity, let $M, m = \Theta(1), \varepsilon \leq 1, r = d$. We couple our HMC chain X to an "idealized" HMC chain Y with exact solutions by giving their trajectories the same initial velocity (Fig. 2). [Mangoubi, Smith '17] show that exact solutions with same initial velocity contract by a constant factor for $T = \Theta(1)$. We extend to 2^{nd} order HMC by showing it approximates exact trajectories with error $O(\varepsilon)$: • We bound (inductively on *j*) the errors $||x_j - x(\eta j)||_2$ and $\|v_j - v(\eta j)\|_2$ by $O(\eta j\varepsilon)$, where (x(t), v(t)) is the continuous solution to Hamilton's eqs with initial conditions (X_i, V_i) : The error in the quadratic term of the velocity update is roughly $\left\| (\eta^2 \nabla^2 F(x + \eta v_j) - \eta^2 \nabla^2 F(x)) v_j \right\|_2^{\text{Assumption 2}} \leq \eta^3 L_{\infty} \sqrt{d} \left\| X^{\mathsf{T}} v_j \right\|_{\infty}^2$ The invariance property of Hamiltonian mechanics implies v is roughly $N(0, I_d)$ at every point on the exact trajectory if HMC has a warm start (Fig. 3). Thus, $\|X^{\mathsf{T}}v_j\|_{\infty} = O(\log(d))$ w.h.p., since by inductive assumption $||v_j - v(\eta j)||_2 = O(\eta j\varepsilon) = O(1)$ • After T/η iterations, the errors sum to $\tilde{O}(\eta^2 L_{\infty}\sqrt{r})$. Choosing η to have error ε , # of gradients is $T/\eta = \widetilde{\Theta}(\varepsilon^{-1/2}d^{1/4}L_{\infty}^{1/2})$

Fig. 3: Given a warm start, exact solutions have roughly $N(0, I_d)$ velocity at every point, meaning they are unlikely to travel in directions where Hessian changes most quickly

Conclusion and future directions

First faster-than- \sqrt{d} bound for sampling from a large class of logconcave distributions, including logistic regression posteriors • Can we improve dependence on parameters C and κ ? Can we generalize to nonconvex F and higher-order integrators?

Simulations