Dimensionally Tight Bounds for Second-Order Hamiltonian Monte Carlo

Given a gradient oracle for F: R - R, sample from the
Gibbs distribution: m(x) < e F®)

Applications: Optimization (via annealing), computing
integrals/volumes, Bayesian inference, molecular dynamics

# of gradient evaluations to sample from smooth, strongly
logconcave m (for smoothness/convexity parameters = 0(1) ):

« Random Walk Metropolis: d* (conj: d) [Gelman et al. 97"
* Unadjusted Langevin: d [Durmus, Moulines, ‘16

» Underdamped Langevin: d1/? [Cheng et al. '17]

| Hamilton’s equations

Position x, velocity v, potential F dx dv
1 e
Invariant measure e F®e™2 dt _ dt

If x(0) ~m,v(0) ~N(0,I,), and solutions are computed with
low error, can take long steps that (approximately) preserve i

= —VF(x)

2
[vll2

[Duane et al., ‘87]

| 2nd_order Hamiltonian Monte Carlo

Input: Xy, VF,T,n,s
Output: X; which 1s &€-close to 1, for some € > 0
(i.e.,thereisY ~ms.t. | X = Y|, <ewp.1—¢)

Fort=0,1..,s—1,do

1. Generate V; ~ N(0, ;)

2. “Solve” Hamilton’s eqs for (xy, vy) = (X;, V;) for time T
Forj=0,..,2-1, do

n

.X'j_|_1 — )i —+ 7’]17] — %HZVF(X])
Viy1 = Vj — UVF(Xj) — %UZVF(xj+17)7_VF(xj)

3. Set X;pq = X7/’

Previous conjectures and bounds for Hamiltonian Monte Carlo (HMC)

» Informal conjecture: d1/* gradient evaluations are sufficient for
HMC with 2™-order integrator if F is 1-smooth, 1-strongly convex,

with additional bounds on higher-order derivatives [Creutz, '88]

 Metropolis 2"-order leapfrog HMC requires Q(d'/#) gradients
for Gaussian and other replica product distributions -[Beskos et al. 10]

«  0(d'/?) gradients sufficient for first-order HMC

[Mangoubi, Smith “17]

Assume: 1. F is m-strongly convex and M-smooth, and let ¥ := M /m
2. Lipschitz condition for Lo, 7 > 0, X := [X4, ..., X, ] € S

|(72F () = 72F@))v|[, < LonTIXT (7 = Dlleo X X7l

~ 1 1
Then: O (max (d4K2'75 , T4K2'25,/LOO) £~1/2) gradients are sufficient

for 2"order HMC to obtain a sample e-close to m, from a warm start
(We obtain slightly weaker bounds from a cold start)

* (Given data (X;,Y;), sample from w(x) < e” Yizo fi(%),
fi(x) = Yilog(o(x X)) + (1 = Yplog(a(—x"X;)),
where o(s) = (1 + e~ 571, prior: fo(x) = ||x]|5

» For logistic regression, Ly, = V/C, coherence C := Helfl)]( Z§=1‘Xi X ‘
lc|r

* Forexample,if r = d and Xy, ..., X, ~ uniform(Sd), # of gradient
calls is 0(d3/871/2) from a warm start

* Simulations performed on logistic 1505
regression, Xy, ..., Xg ~ uniform($%)
suggest that 2" order HMC (UHMC)
has faster autocorrelation time! than
Metropolis HMC and Langevin in
this setting (Fig. 1)

(1) Autocorrelation is the correlation of points in the Markov chain with a delayed
copy of themselves. Autocorrelation time can be estimated as 1 + 2 Zzﬁix ps for

Autocorrelation Time

some large syax, Where pg is autocorrelation with delay s
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Proof highlights

For simplicity, let M,m = 0(1),e < 1,r =d. We couple our HMC
chain X to an “idealized” HMC chain Y with exact solutions by
giving their trajectories the same 1nitial velocity (Fig. 2).

'Mangoubi, Smith ‘17] Show that exact solutions with same 1nitial velocity
contract by a constant factor for T = 0(1). We extend to 2™ order
HMC by showing it approximates exact trajectories with error O (&):

e We bound (inductively on j) the errors Hx] — x(nj) Hz and
ij —v(nj) Hz by O(nje), where (x(t), v(t)) is the continuous

solution to Hamilton’s eqs with 1nitial conditions (X;, V;):

* The error in the quadratic term of the velocity update 1s roughly
Assumption 2 2

v
J oo

|(n?V2F (x + nv;) — 772\72F(x))ij2 < n3L,Vd|X
* The invariance property of Hamiltonian mechanics implies v 1s
roughly N (0, ;) at every point on the exact trajectory if HMC has

a warm start (Fig. 3). Thus, HXTUJ-HOO = 0(log(d)) w.h.p., since
by inductive assumption ij — v(nj)HZ = 0(nje) = 0(1)

o After T /7 iterations, the errors sum to O(n?L.+/T). Choosing n
to have error &, # of gradients is T/n = 0(s~/2d1/4 L1/ ?)

Fig. 3: Given a warm
start, exact solutions

Y, have roughly
N(0,1;) velocity at
every point, meaning o

Fig. 2: Second-
order HMC
trajectories
approximate |/
exact solutions
which contract 1f
given same 1nitial
velocity

they are unlikely to
travel in directions
where Hessian

changes most quickly -s,,

Conclusion and future directions

» First faster-than-v'd bound for sampling from a large class of
logconcave distributions, including logistic regression posteriors

* (Can we improve dependence on parameters C and k?

* (Can we generalize to nonconvex F and higher-order integrators?




