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ABSTRACT
We give a novel spectral approximation algorithm for the
balanced (edge-)separator problem that, given a graph G,
a constant balance b ∈ (0, 1/2], and a parameter γ, either
finds an Ω(b)-balanced cut of conductance O(

√
γ) in G, or

outputs a certificate that all b-balanced cuts in G have con-
ductance at least γ, and runs in time Õ(m). This settles the
question of designing asymptotically optimal spectral algo-
rithms for balanced separator. Our algorithm relies on a
variant of the heat kernel random walk and requires, as a
subroutine, an algorithm to compute exp(−L)v where L is
the Laplacian of a graph related to G and v is a vector. Algo-
rithms for computing the matrix-exponential-vector product
efficiently comprise our next set of results. Our main result
here is a new algorithm which computes a good approxima-
tion to exp(−A)v for a class of symmetric positive semidefi-
nite (PSD) matrices A and a given vector v, in time roughly

Õ(mA), independent of the norm of A, where mA is the
number of non-zero entries of A. This uses, in a non-trivial
way, the result of Spielman and Teng on inverting symmet-
ric and diagonally-dominant matrices in Õ(mA) time. Fi-
nally, using old and new uniform approximations to e−x we
show how to obtain, via the Lanczos method, a simple al-
gorithm to compute exp(−A)v for symmetric PSD matrices

that runs in time roughly O(tA ·√‖A‖), where tA is the time
required for the computation of the vector Aw for given vec-
tor w. As an application, we obtain a simple and practical
algorithm, with output conductance O(

√
γ), for balanced

separator that runs in time Õ(m/√γ). This latter algorithm
matches the running time, but improves on the approxi-
mation guarantee of the Evolving-Sets-based algorithm by
Andersen and Peres for balanced separator.
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1. INTRODUCTION AND OUR RESULTS

1.1 Balanced Edge Separator
The Balanced Separator problem (BS) asks the fol-

lowing decision question: given an unweighted graph G =
(V,E), V = [n], |E| = m, a constant balance parameter
b ∈ (0, 1/2], and a target conductance value γ ∈ (0, 1), does
G have a b-balanced cut S such that φ(S) ≤ γ? Here,

the conductance of a cut (S, S̄) is defined to be φ(S)
def
=

|E(S,S̄)|/min{vol(S),vol(S)}, where vol(S) is the sum of the de-
grees of the vertices in the set S. Moreover, a cut (S, S̄)
is b-balanced if min{vol(S), vol(S̄)} ≥ b · vol(V ). This is an
NP-hard problem and a central object of study for the de-
velopment of approximation algorithms. On the theoreti-
cal side, BS has far reaching connections to spectral graph
theory, the study of random walks and metric embeddings.
In practice, algorithms for BS play a crucial role in the de-
sign of recursive algorithms [32], clustering [16] and scientific
computation [29].

Spectral methods are an important set of techniques in
the design of graph-partitioning algorithms and are based
on the study of the behavior of random walks over the in-
stance graph. Spectral algorithms tend to be conceptually
appealing, because of the intuition based on the underly-
ing diffusion process, and easy to implement, as many of
the primitives required, such as eigenvector computation,
already appear in highly-optimized software packages. The
most important spectral algorithm for graph partitioning is
the Laplacian Eigenvector (LE) algorithm of Alon and Mil-
man [1], which, given a graph of conductance at most γ,
outputs a cut of conductance at most O(

√
γ), an approxi-

mation guarantee that is asymptotically optimal for spectral
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algorithms. A consequence of the seminal work of Spielman
and Teng [34] is that the LE algorithm can run in time

Õ(m) using the Spielman-Teng solver. Hence, LE is an
asymptotically optimal spectral algorithm for the minimum-
conductance problem, both for running time (up to poly-
log factors) and approximation quality. In this paper, we
present a simple random-walk-based algorithm that is the
first such asymptotically optimal spectral algorithm for BS.
Our algorithm can be seen as an analogue to the LE algo-
rithm for the balanced version of the minimum-conductance
problem and settles the question of designing spectral algo-
rithms for BS. The following is our main theorem on graph
partitioning.

Theorem 1. (Spectral Algorithm for Balanced Separa-
tor). We give a randomized algorithm BalSep such that,
given an unweighted graph G = (V,E), a balance parameter
b ∈ (0, 1/2], b = Ω(1) and a conductance value γ ∈ (0, 1),
BalSep(G, b, γ) either outputs an Ω(b)-balanced cut S ⊂ V
such that φ(S) ≤ O(

√
γ), or outputs a certificate that no b-

balanced cut of conductance γ exists. BalSep runs in time
O(m poly(log n)).

The algorithm for Theorem 1 relies on our ability to compute
the product of the matrix-exponential of a matrix and an ar-
bitrary vector in time essentially proportional to the sparsity
of the matrix. Our contribution to the problem of computing
the matrix-exponential-vector product appear in Section 1.2.
The algorithm required for Theorem 1 runs in time Õ(m)
and, notably, makes use of the Spielman-Teng solver in a
non-trivial way. We also prove an alternative result on how
to perform this matrix-exponential computation, which re-
lies just on matrix-vector products. This result, when com-
bined with our BS algorithm based on random walks, yields
the following theorem identical to Theorem 1 except that
the running time now increases to Õ(m/√γ).

Theorem 2. (Simple Spectral Algorithm for Balanced
Separator). We give a randomized algorithm that, given
an unweighted graph G = (V,E), a balance parameter b ∈
(0, 1/2], b = Ω(1) and a conductance value γ ∈ (0, 1), runs

in time Õ(m/√γ), that either outputs an Ω(b)-balanced cut
S ⊂ V such that φ(S) ≤ O(

√
γ) or outputs a certificate that

no b-balanced cut of conductance γ exists.

However, this latter algorithm not only turns out to be al-
most as simple and practical as the LE algorithm, but it
also improves in the approximation factor upon the result of
Andersen and Peres [4] who obtain the same running time
using Evolving-Sets-based random walk.

1.1.1 Comparison to Previous Work on Balanced Sep-
arator

The best known approximation for BS is O(
√
log n) ach-

ieved by the seminal work of Arora, Rao and Vazirani [6]
that combines semidefinite programming (SDP) and flow
ideas. A rich line of research has centered on reducing the
running time of this algorithm using SDP and flow ideas [17,
5, 21]. This effort culminated in Sherman’s work [30], which
brings down the required running time toO(nε) s-tmaximum-
flow computations.1 However, these algorithms are based

1Even though the results of [6] and [30] are stated for the
Sparsest Cut problem, the same techniques apply to the
conductance problem, e.g. by modifying the underlying flow
problems. See for example [3].

on advanced theoretical ideas that are not easy to imple-
ment or even capture in a principled heuristic. Moreover,
they fail to achieve a nearly-linear2 running time, which is
crucial in many of today’s applications that involve very
large graphs. To address these issues, researchers have fo-
cused on the design of simple, nearly-linear-time algorithms
for BS based on spectral techniques. The simplest spec-
tral algorithm for BS is the Recursive Laplacian Eigenvec-
tor (RLE) algorithm (see, for example, [16]). This algo-
rithm iteratively uses LE to remove low-conductance un-
balanced cuts from G, until a balanced cut or an induced
γ-expander is found. The running time of the RLE algo-
rithm is quadratic in the worst case, as Ω(n) unbalanced
cuts may be found, each requiring a global computation
of the eigenvector. Spielman and Teng [33] were the first
to design nearly-linear-time algorithms outputting an Ω(b)-
balanced cut of conductanceO(

√
γ polylogn), if a b-balanced

cut of conductance less than γ exists. Their algorithmic
approach is based on local random walks, which are used
to remove unbalanced cuts in time proportional to the size
of the cut removed, hence avoiding the quadratic depen-
dence of RLE. Using similar ideas, Andersen, Chung and
Lang [2], and Andersen and Peres [4] improved the approx-
imation guarantee to O(

√
γ log n) and the running time to

Õ(m/√γ).More recently, Orecchia and Vishnoi (OV) [22] em-
ployed an SDP formulation of the problem, together with
the Matrix Multiplicative Weight Update (MMWU) of [5]
and a new SDP rounding, to obtain an output conductance
of O(

√
γ) with running time Õ(m/γ2), effectively removing

unbalanced cuts in O(logn/γ) iterations. In Section 4.5, we
give a more detailed comparison with OV and discussion
of our novel width-reduction techniques from an optimiza-
tion point of view. Finally, our algorithm should also be
compared to the remarkable results of Madry [19] for BS,
which build up on Räcke’s work [25] to achieve a trade-
off between running time and approximation. For every
integer k ≥ 1, he achieves roughly O((log n)k) approxima-

tion in time Õ(m + 2k · n1+2−k

). Calculations show that

for γ ≥ 2−(log logn)2 , our algorithm achieves strictly better
running time and approximation than Madry’s for sparse
graphs. More importantly, we believe that our algorithm is
significantly simpler, especially in its second form mentioned
above, and likely to find applications in practical settings.

1.2 The Matrix Exponential, the Lanczos
Method, and Approximations to e−x

We first state a few definitions used in this section. We
will work with n × n, symmetric and positive semi-definite
(PSD) matrices over R. For a matrix M, abusing notation,
we denote its exponential by exp(−M), or by e−M , and de-

fine it as
∑

i≥0
(−1)i

i!
M i. M is said to be Symmetric and

Diagonally Dominant (SDD) if, Mij = Mji, for all i, j and
Mii ≥ ∑j �=i |Mij |, for all i. Let mM denote the number of
non-zero entries in M and let tM denote the time required to
multiply the matrix M with a given vector v. In general, tM
depends on how M is given as an input and can be Θ(n2).
However, it is possible to exploit the special structure of M
if given as an input appropriately: It is possible to just mul-
tiply the non-zero entries of M, giving tM = O(mM ). Also,

2Following the convention of [35], we denote by nearly-linear

a running time of Õ(m/poly(γ)).
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if M is a rank one matrix ww�, where w is known, we can
multiply with M in O(n) time. We move on to our results.
At the core of our algorithm for BS, and more gener-

ally of most MMWU based algorithms, lies an algorithm to
quickly compute exp(−A)v for a PSD matrix A and a unit
vector v. It is sufficient to compute an approximation u, to
exp(−A)v, in time which is as close as possible to tA. It can
be shown that using about ‖A‖ terms in the Taylor series
expansion of exp(−A), one can find a vector u that approx-
imates exp(−A)v. Hence, this method runs in time roughly
O(tA · ‖A‖). In our application, and certain others [5, 15,
14, 13], this dependence on the norm is prohibitively large.
The following remarkable result was cited in Kale [15].

Hypothesis.
Let A 	 0 and ε > 0. There is an algorithm that re-

quires O
(
log2 1/ε

)
iterations to find a vector u such that

‖exp(−A)v − u‖ ≤ ‖exp(−A)‖ ε, for any unit vector v. The
time for every iteration is O(tA).

This hypothesis would suffice to prove Theorem 1. But,
to the best of our knowledge, there is no known proof of
this result. In fact, the source of this unproved hypothe-
sis can be traced to a paper of Eshof and Hochbruck (EH)
[11]. EH suggest that one may use the Lanczos method (de-
scribed later), and combine it with a rational approximation
for e−x due to Saff, Schonhage and Varga [28], to reduce the
computation of exp(−A)v to a number of (I+αA)−1v com-
putations for some α > 0. Note that this is insufficient to
prove the hypothesis above as there is no known way to com-
pute (I+αA)−1v in time O(tA). They note this and propose
the use of iterative methods to do this computation. They
also point out that this will only result in an approximate
solution to (I + αA)−1v and make no attempt to analyze
the running time or the error of their method when the in-
verse computation is approximate. We believe that we are
quite distant from proving the hypothesis for all PSD ma-
trices and a significant part of this paper is devoted to a
proof of the above hypothesis for a class of PSD matrices
that turns out to be sufficient for the BS application. For
the norm-independent, fast-approximate inverse computa-
tion, we appeal to the result of Spielman and Teng [34] (also
see improvements by Koutis, Miller and Peng [18]). The
theorem we prove is the following.

Theorem 3. (SDD Matrix Exponential Computation).
There is an algorithm that, given an n × n SDD matrix A,
a vector v and a parameter 0 < δ ≤ 1, can compute a vec-
tor u such that ‖exp(−A)v − u‖ ≤ δ ‖v‖ in time Õ((mA +
n) log(2+‖A‖)). The tilde hides poly(log n) and poly(log 1/δ)
factors. 3

First, we note that for our application, the dependence of the
running time on the log(2+‖A‖) turns out to just contribute
an extra log n factor. Also, for our application δ = 1/poly(n).
Secondly, for our BS application, the matrix we need to
invert is not SDD or sparse. Fortunately, we can combine
Spielman-Teng solver with the Sherman-Morrison formula
to invert our matrices; see Theorem 7. A significant effort
goes into analyzing the effect of the error introduced due

3Note that ‖exp(−A)‖ = e−λn(A), where λn(A) is the small-
est eigenvalue of A. If ‖exp(−A)‖ is a very small factor, the
error guarantee of Theorem 3 could be significantly worse
than the guarantee from the hypothesis above. However, all
matrices A that we wish to exponentiate, have λn(A) = 0,
in which case, the two error guarantees are equivalent.

to approximate matrix inversion. This error can cascade
due to the iterative nature of our algorithm that proves this
theorem.

Towards proving the hypothesis above, when the only
guarantee we know on the matrix is that it is symmet-
ric and PSD, we prove the following theorem, which is the
best known algorithm to compute exp(−A)v for an arbitrary
symmetric PSD matrix A, when ‖A‖ = ω(poly(log n)).

Theorem 4. (PSD Matrix Exponential Computation).
There is an algorithm that, given an n× n symmetric PSD
matrix A, a vector v and a parameter 0 < δ ≤ 1, computes a

vector u in time Õ
(
(tA + n)

√
1 + ‖A‖ log(2 + ‖A‖)

)
, such

that ‖exp(−A)v − u‖ ≤ δ ‖v‖ . Here the tilde hides poly(log n)
and poly(log 1/δ) factors.

In the symmetric PSD setting we also prove the following
theorem which, for our application, gives a result compara-
ble to Theorem 4.

Theorem 5. (Simple PSD Matrix Exponential Compu-
tation). There is an algorithm that, given an n × n sym-
metric PSD matrix A, a vector v and a parameter δ ≤ 1,
computes a vector u such that ‖exp(−A)v − u‖ ≤ δ ‖v‖ , in
time O((tA+n) ·k+k2), where k

def
= Õ(

√
1 + ‖A‖). Here the

tilde hides poly(log 1/δ) factors.

As noted before, tA can be significantly smaller than mA.
Moreover, it only uses multiplication of a vector with the
matrix A as a primitive and does not require matrix inver-
sion. Consequently, it does not need tools like the SDD
solver or conjugate gradient, thus obviating the error anal-
ysis required for the previous algorithms. Furthermore, this
algorithm is very simple and when combined with our ran-
dom walk-based BalSep algorithm, results in a very simple
and practical O(

√
γ) approximation algorithm for BS that

runs in time Õ(m/√γ). Finally, we note that Theorem 5 is
also implied by an independent earlier work of Hochbruck
and Lubich (Theorem 2 in [12]) of which we were unaware
when we first wrote this paper.

Theorem 5 relies on the Lanczos method which can be
used to convert guarantees about polynomial approximation
from scalars to matrices. In particular, it uses the follow-
ing structural result (the upper bound) on the best degree
k polynomial δ-uniformly approximating e−x in an interval
[a, b]. We also prove a lower bound which establishes that
the degree cannot be improved beyond lower order terms.
This suggests that improving on the Õ(m/√γ) running time
in Theorem 5 requires more advanced techniques.

Theorem 6. (Uniform Approximation to e−x).

• Upper Bound. For every 0 ≤ a < b, and 0 < δ ≤ 1,
there exists a polynomial p that satisfies,

sup
x∈[a,b]

|e−x − p(x)| ≤ δ · e−a,

and has degree

O
(√

max{log 1/δ, (b− a)} · (log 1/δ)
3/2 · log log 1/δ

)
.

• Lower Bound. For every 0 ≤ a < b such that a +
loge 4 ≤ b, and δ ∈ (0, 1/8], any polynomial p(x) that
approximates e−x uniformly over the interval [a, b] up
to an error of δ · e−a, must have degree at least 1

2
·√

b− a .
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2. ORGANIZATION OF THE MAIN BODY
OF THE PAPER

In Section 3 we present an overview of our results. In the
following three sections, we give formal descriptions of our
algorithms and provide more details. Due to space restric-
tions, most of the proofs are deferred to the full version [20].
Section 4 describes our algorithm for the Balanced Separator
problem and related theorems (Theorems 1 and 2). Section
5 contains our results on computing the matrix exponential;
in particular proof details for Theorems 3, 5 and 7. Section
6 contains our structural results on approximating e−x and
the proof details for Theorem 6. Finally, in Section 7 we
discuss the open problems arising from our work.

3. OVERVIEW OF OUR RESULTS

3.1 Our Spectral Algorithm for Balanced Sep-
arator

In this section, we provide a high level idea of the the
algorithm BalSep mentioned in Theorem 1. As pointed out
in the introduction, our algorithm, BalSep, when combined
with the matrix-exponential-vector algorithm in Theorem 5
results in a very simple and practical algorithm for BS. A
more detailed and technical description of this part appears
in Section 4.

3.1.1 The RLE Algorithm
Before we introduce our algorithm, it is useful to review

the RLE algorithm. Recall that given G, γ and b, the goal of
the BS problem is to either certify that every b-balanced cut
in G has conductance at least γ, or produce a Ω(b) balance
cut in G of conductance O(

√
γ). RLE achieves this task by

applying LE iteratively to remove unbalanced cuts of con-
ductance O(

√
γ) from G. The iterations stop and the algo-

rithm outputs a cut, when it either finds a (b/2)-balanced
cut of conductance O(

√
γ) or the union of all unbalanced

cuts found so far is (b/2)-balanced. Otherwise, the algo-
rithm terminates when the spectral gap (of the normalized
Laplacian) of the residual graph is at least 2γ. In the latter
case, any b-balanced cut must have at least half of its volume
lie within the final residual graph, and hence, have conduc-
tance at least γ in the original graph. Unfortunately, this
algorithm may require Ω(n) iterations in the worst case. For
instance, this is true if the graph G consists of Ω(n) com-
ponents loosely connected to an expander-like core through
cuts of low conductance. This example highlights the weak-
ness of the RLE approach: the second eigenvector of the
Laplacian may only be correlated with one low-conductance
cut and fail to capture at all even cuts of slightly larger con-
ductance. This limitation makes it impossible for RLE to
make significant progress at any iteration.

3.1.2 High-Level Idea of BalSep

As in RLE, the algorithm BalSep iteratively removes un-
balanced cuts of conductance O(

√
γ) at every iteration until

an Ω(b)-balanced cut of conductance O(
√
γ) is found or a

certificate is produced that no b-balanced cut of conductance
less than γ exists. However, BalSep overcomes the limita-
tion of RLE by adopting a different cut-finding procedure
and a different way of removing unbalanced cuts of low con-
ductance. The goal of both these two modifications is to
make it easier to track the progress of the algorithm from

one iteration to the next in terms of a simple potential func-
tion. In turn, this allows us to show that BalSep removes
unbalanced cuts in only O(log n) iterations.

First, rather than working with the vertex embedding
given by the eigenvector, at iteration t we will consider
the multi-dimensional vector embedding represented by the
transition probability matrix P (t) of a certain continuous-
time random walk over the graph. The embedding given
by P (t) can be interpreted as a probabilistic version of the
second eigenvector of the Laplacian, as it consists of a distri-
bution over eigenvectors, with eigenvectors of low eigenvalue
assigned more weight. Hence, the embedding captures not
only the cut corresponding to the second eigenvector, but
also cuts associated with other eigenvectors of eigenvalue
less than γ or close to γ. This first modification of RLE will
enable our algorithm to find many different low-conductance
unbalanced cuts at once.

Secondly, if at iteration t an unbalanced cut S(t) of con-
ductance less than O(

√
γ) is found, BalSep departs from

RLE by only performing a soft removal of S(t), rather than
eliminating S(t) and all its adjacent edges from the graph.
This soft removal is achieved by increasing the transition

rates of P (t) across (S(t), S
(t)

). This increase ensures that at

the next iteration the new random walk P (t+1) will mix more
quickly across (S(t), S

(t)
) and the same cut will be unlikely

likely to be detected again.
The random walks and soft cut-removals, used in BalSep

in place of the eigenvectors and hard cut-removals of RLE,
share a common goal: to make P (t+1) a more stable ob-
ject with respect to P (t). In particular, this will allow us to
precisely quantify how the mixing of P (t) changes from one
iteration to the next. In fact, our potential function Ψ(t)

at time t will be a natural measure of the mixing of P (t).
We will show that every time an unbalanced cut is found
the mixing Ψ(t) improves by a constant multiplicative fac-
tor. This potential reduction will then yield that O(log n)
iterations suffice to either find a low-conductance balanced
cut or output a certificate that no such cut exists.

3.1.3 Sketch of the Algorithm and Its Analysis
In our algorithm BalSep, the random walk process de-

scribed by P (t) is a type of continuous-time random walk,
which we refer to as an Accelerated Heat Kernel Walk (ahk)
and described more completely in Section 4.2. ahk random
walks are a variation of the heat-kernel random walk [9],
i.e. the continuous-time natural random walk over G, in
which we now allow some vertices to have increased transi-
tion rates to all vertices in V. This has the effect of accel-
erating the converge to stationary from such vertices. We
use ahk random walks to accelerate the convergence to the
stationary distribution of random walks starting at vertices
inside the low-conductance unbalanced cuts {S(t)} detected
by BalSep. As discussed above, accelerating the mixing
across (S(t), St) plays the role of a soft removal of S(t).

Hence, at iteration t, P (t) can be thought of as a heat-
kernel random walk, modified by accelerating the conver-

gence over cuts S(1), . . . , S(t−1) and run for τ
def
= O(log n/γ)

time. This choice of τ ensures that the walk must mix across
all cuts of conductance much larger than γ, hence empha-
sizing cuts of the desired conductance.
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The Algorithm.
At iteration t, the algorithm considers the vector embed-

ding given by the columns of P (t), translated so that the
stationary distribution, i.e. the uniform distribution, takes
the place of the origin. If all vectors in this embedding are
short, P (t) has mixed well from all vertices in V . Using our
potential function, we will be able to show that in this case
we have a certificate that no b-balanced cut has conductance
less than γ in G.

Conversely, if a vector4 vi
def
= P (t)ei has large length, the

random walk started at i must be far from mixing, which
allows us to conclude that i must be contained in some cut
of conductance close to γ. In this case, BalSep uses SDP-
techniques from OV [22] to find a cut S(t) of conductance

at most O(
√
γ). As in RLE, if S(t) is Ω(b)-balanced or if

the union ∪t
i=1S

(i) is Ω(b)-balanced, BalSep can output an
Ω(b)-balanced cut of the required conductance. Otherwise,

BalSep constructs P (t+1) by accelerating the convergence
of S(t) and proceeds to the next iteration.

Potential Analysis.
For our analysis, the potential Ψ(t) is chosen to be the

sum over all vertices i of the 
22-distance between P (t)ei and
the stationary distribution over G. This potential function
measures how well P (t) mixes, so that high values of Ψ(t)

demonstrate the existence of low-conductance cuts and low
values of Ψ(t) can be used to certify that no b-balanced cut
of conductance γ exists.
As long as Ψ(t) is sufficiently large, the random walks

started at some vertices are not mixing, and we can use the
cut-finding procedure of OV to find an unbalanced cut S(t)

of conductance at most O(
√
γ). Using an argument from

OV, we are also able to show that most of the distance from
stationary Ψ(t) of P (t) can in fact be attributed to vertices in
S(t). In words, we can think of S(t) as the main reason why
P (t) is not mixing. Moreover, we can show that modifying
P (t) into P (t+1) has the effect of removing from Ψ(t) a large
fraction of the potential due to S(t). Hence, we can show the
total potential Ψ(t+1) of P (t+1) is at most just a constant
fraction of Ψ(t).
The potential reduction at every iteration allows us to ar-

gue that after T = O(log n) iterations, we must either find
an Ω(b)-balanced cut of conductance O(

√
γ) or a transition

matrix P (t) which has small distance from the stationary
distribution. We claim that, in the latter case, we can turn
P (t) into a certificate that G contains no b-balanced cuts of
conductance less than γ. To show this, we suppose that such
a low-conductance balanced cut T existed. Then, the heat-
kernel random walk, run for time τ , would not mix across
T. Hence, the only way P (t) could mix across T is by having
the increased rates across the cuts {S(i)} help the random
walk mix over (T, T ). However, as T is b-balanced, we can
show that many vertices must have their convergence accel-
erated for P (t) to mix across T . This yields a contradiction
as the only vertices accelerated in P (t) are those ∪t−1

i=1S
(i),

and ∪t−1
i=1S

(i) must have small volume, or BalSep would
have returned it as an Ω(b)-balanced cut of the required
conductance.

4Here ei denotes the ith standard unit vector in R
n.

Running time.
To ensure that each iteration requires only Õ(m) time,

we use the Johnson-Lindenstrauss Lemma to compute a
O(log n)-dimensional approximation to the embedding P (t).
To compute this approximation, we performO(log n) matrix-

vector multiplications of the form P (t)u where P (t) is a ma-
trix exponential and u is a unit vector. To complete these
computations in time Õ(m), we rely on our results on the
fast computation of matrix-exponentials.

3.2 Our Algorithms for Computing an Approx-
imation to exp(−A)v

In this section, we give an overview of the algorithms and
proofs for Theorems 3 and 5, deferring formal proof sketches
to Section 5. The algorithm for Theorem 4 is very similar
to the one for Theorem 3, and the details are given in Sec-
tion 5.2.2. A few quick definitions: A matrix M is called
Upper Hessenberg if, (M)ij = 0 for i > j + 1. M is called
tridiagonal if Mij = 0 for i > j + 1 and for j > i + 1. Let
λ1(M) and λn(M) denote the largest and smallest eigenval-
ues of M, respectively.

As mentioned in the introduction, the matrices that we
need to exponentiate for the BS algorithm are neither sparse
nor SDD. Thus, Theorem 3 is insufficient for our application.
Fortunately, the following theorem suffices and its proof is
not very different from that of Theorem 3, which is explained
below. Details of the proof of the following theorem appears
in Section 5.2.3.

Theorem 7. (Matrix Exponential Computation Beyond
SDD). There is an algorithm that, given a vector v, a pa-
rameter 0 < δ ≤ 1 and an n × n symmetric matrix A =
ΠHMHΠ where M is SDD, H is a diagonal matrix with
strictly positive entries and Π is a rank (n−1) projection ma-

trix, Π
def
= I−ww� (w is explicitly known and ‖w‖ = 1), com-

putes a vector u such that ‖exp(−A)v − u‖ ≤ δ ‖v‖ in time

Õ((mM + n) log(2 + ‖HMH‖)). The tilde hides poly(log n)
and poly(log 1/δ) factors.

As we will show later (see Section 4), our algorithm for BS
requires us to compute exp(−A)v for a matrix A of the form

D−1/2(L+
∑

i βiL(Stari))D
−1/2, whereD is the diagonal ma-

trix with the (i, i) entry being the degree of vertex i, L is
the Laplacian of the input graph G, βi ≥ 0 and L(Stari) is
the Laplacian of the star rooted at vertex i. If we let 1 de-

note the all 1’s vector, and Π
def
= I − 1/2m · (D1/21)(D1/21)�,

the projection onto the space orthogonal to 1/
√
2m · D1/21,

then the way we define L(Stari), it will turn out that ∀i,
D−1/2L(Stari)D

−1/2 = Π(di/2m · I + eie
�
i )Π. Since D

1/21 is

an eigenvector of D−1/2LD−1/2 with eigenvalue 0, we have,
ΠD−1/2LD−1/2Π = D−1/2LD−1/2. Thus,

A = ΠD−1/2LD−1/2Π+
∑
i

βiΠ(di/2m · I + eie
�
i )Π

= ΠD−1/2(L+
∑
i

βi
di/2m ·D +

∑
i

βidi · eie�i )D−1/2Π.

This is of the form ΠHMHΠ, where H
def
= D−1/2 is diagonal

and M is SDD. The proof of the above theorem uses the
Sherman-Morrison formula to extend the SDD solver to fit
our requirement. Moreover, to obtain a version of Theorem 5
for such matrices, we do not have to do much additional work
since multiplication by H and Π take O(n) steps and hence,
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tA is still O(mM + n). The details appear in Section 5.2.3.
Finally, note that in our application, ‖HMH‖ is poly(n).
We now give an overview of the proofs of Theorem 3 and

Theorem 5. First, we explain a general method known as
the Lanczos method, which is pervasive in numerical linear
algebra. We then show how suitable adaptations of this
can be combined with (old and new) structural results in
approximation theory to obtain our results.

3.2.1 Lanczos Method
Given an n×n symmetric PSD matrixB and a function f :

R �→ R, we can define f(B) as follows: Let u1, . . . , un form
an eigenbasis for B with eigenvalues λ1, . . . , λn. Thus, B =∑

i λiuiu
�
i . Define f(B)

def
=
∑

i f(λi)uiu
�
i . We will reduce

both our algorithms to computing f(B)v for a given vector
v, albeit with different f ’s and B’s. We point out the f ’s
and B’s required for Theorems 3 and 5 in Sections 3.2.2 and
3.2.3 respectively.

Since exact computation of f(B) usually requires diago-
nalization of B, which could take as much as O(n3) time
(see [23]), we seek an approximation to f(B)v. The Lanc-
zos method allows us to do exactly that: It looks for an
approximation to f(B)v of the form p(B)v, where p is a
polynomial of small degree, say k. Before we describe how,
we note that it computes this approximation in roughly
O((tB + n)k) time, plus the time it takes to compute f(·)
on a (k+1)× (k+1) tridiagonal matrix, which can often be
upper bounded by O(k2) (see [23]). Hence, the time is re-
duced to O((tB+n)k+k2). What one has lost in this process
is accuracy: The candidate vector u output by the Lanczos
method, is now only an approximation to f(B)v. The error
in the approximation, ‖f(B)v − u‖, can be upper bounded
by the uniform error of the best degree k polynomial ap-
proximating f in the interval [λn(B), λ1(B)]. Roughly,

‖f(B)v − u‖ � min
pk∈Σk

sup
λ∈[λn(B),λ1(B)]

|f(λ)− pk(λ)|.

Here Σk is the collection of all real polynomials of degree
at most k. Surprisingly, one does not need to know the best
polynomial and proving existence of good polynomials is suf-
ficient. By increasing k, one can reduce this error. Indeed,
for k = n, there is no error. Thus, the task is reduced to
proving existence of low degree polynomials that approxi-
mate f within the error limits required for the applications.

Computing the Best Polynomial Approximation.

Now, we describe in detail, the Lanczos method and how it
achieves the error guarantee claimed above. Notice that for
any polynomial p of degree at most k, the vector p(B)v lies

in K def
= Span{v,Bv, . . . , Bkv} – called the Krylov subspace.

The Lanczos method iteratively creates an orthonormal ba-
sis {vi}ki=0 for K, such that for all i ≤ k, Span{v0, . . . , vi} =
Span{v, . . . , Biv}. Let Vk be the n × (k + 1) matrix with
{vi}ki=0 as its columns. Thus, VkV

�
k denotes the projection

onto the Krylov subspace. Let Tk be the (k + 1) × (k + 1)

matrix Tk
def
= V �

k BVk, expressing B as an operator restricted
to K in the basis {vi}ki=0. Note that this is not just a change
of basis, since vectors in K can be mapped by B to vec-
tors outside K. From this discussion, it can be shown that
p(B)v = Vkp(Tk)V

�
k v, for any polynomial p of degree at

most k.
Hence, a natural approximation for f(B)v is Vkf(Tk)V

�
k v.

Writing rk(x)
def
= f(x) − pk(x), where pk is any degree k

approximation to f(x), the error in the approximation is
f(B)v − Vkf(Tk)V

�
k v = rk(B)v − Vkrk(Tk)V

�
k v, for any

choice of pk. Hence, the norm of the error vector is at most
(‖rk(B)‖+ ‖rk(Tk)‖) ‖v‖ , which is bounded by the value of
rk on the eigenvalues of B and Tk. Since the eigenvalues of Tk

are bounded by the eigenvalues of B, the norm of the error
is bounded by 2 ‖v‖ ·maxλ∈[λn(B),λ1(B)] |f(λ)−pk(λ)|. Min-
imizing over pk gives the error bound claimed above. Note
that we do not explicitly need the approximating polyno-
mial. It suffices to prove that there exists a degree k poly-
nomial that uniformly approximates f well on an interval
containing the spectrum of B and Tk.

Finally, observe that (Tk)ij = v�i Bvj . If we construct the
basis iteratively as above, we have Bvj ∈ Span{v0, . . . , vj+1}
by construction, and if i > j + 1, vi is orthogonal to this
subspace and hence v�i (Bvj) = 0. Thus, Tk is Upper Hes-
senberg. Moreover, if B is symmetric, v�j (Bvi) = v�i (Bvj),
and hence Tk is symmetric and tridiagonal. This means
that while constructing the basis, at step i + 1, it needs to
orthonormalize Bvi only w.r.t. vi−1 and vi. Thus the total
time required is O((tB + n)k), plus the time required for
the computation of f(Tk), which can typically be bounded
by O(k2) for a tridiagonal matrix (using [23]). This com-
pletes an overview of the Lanczos method. The Lanczos
procedure, described in Figure 2 in Section 5, implements
the Lanczos method. We next describe how we apply the
Lanczos method to obtain our two algorithms.

3.2.2 Approximating exp(−A)v Using a Rational Ap-
proximation to e−x

Our Algorithm.

The starting point of the algorithm underlying Theorem 3
is a rather surprising result by Saff, Schönhage and Varga
(SSV) [28], which says that for any positive integer k, there
exists a degree k polynomial p�k such that, p�k((1+x/k)−1) ap-
proximates e−x up to an error of O(k ·2−k) over the interval
[0,∞) (Theorem 12). Then, to approximate exp(−A)v, one

could apply the Lanczos method with B
def
= (I + A/k)−1 and

f(x)
def
= ek(1−1/x). Essentially, this was the method suggested

by Eshof and Hochbruck (EH) [11]. The strong approxima-
tion guarantee of the SSV result, along with the guarantee
of the Lanczos method from the previous section, would im-
ply that the order of the Krylov subspace for B required
would be roughly log 1/δ, and hence, independent of ‖A‖.
The running time is then dominated by the computation
Bv = (I + A/k)−1v.

EH note that the computation of exact matrix inverse is
a costly operation (O(n3) time in general), and all known
faster methods for inverse computation incur some error.
They suggest using the Lanczos method with faster itera-
tive methods, e.g. Conjugate Gradient, for approximating
the inverse (or rather the product of the inverse with a given
vector) as a heuristic. They make no attempt to give a the-
oretical justification of why approximate computation suf-
fices. Also note that, even if the computation was error-free,
a method such as Conjugate Gradient will have running time
which varies with

√
λ1(A)/λn(A) in general. Thus, the EH

method falls substantially short of resolving the hypothesis
mentioned in the introduction.

To be able to prove Theorem 3 using the SSV guaran-
tee, we have to modify the Lanczos method in several ways,
and hence, deviate from the method suggested by EH: 1)
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EH construct Tk as a tridiagonal matrix as in the Lanczos
method, but since the computation is no longer exact, the
basis {vi}ki=0 is no longer guaranteed to be orthonormal.
As a result, the proofs of the Lanczos method break down.
Our algorithm, instead, builds an orthonormal basis, which
means that Tk becomes an Upper Hessenberg matrix instead
of tridiagonal, and we need to compute k2 dot products in
order to compute Tk. 2) With Tk being asymmetric, several
nice spectral properties are lost, e.g. real eigenvalues and an
orthogonal set of eigenvectors. We overcome this issue by

symmetrizing Tk to construct T̂k =
Tk+T�

k
2

, and computing

our approximation with T̂k. Since T̂k is symmetric, we can
bound the quality of a polynomial approximation applied to

T̂k by the behavior of the polynomial on the eigenvalues of

T̂k. 3) Our analysis is based on the SSV approximation re-
sult, which is better than the variant proved and used by EH.
Moreover, for their shifting technique, which is the source of
the ‖exp(−A)‖ factor in the hypothesis, the given proof in
EH is incorrect and it is not clear if the given bound could
be achieved even under exact computation5. 4) Most impor-
tantly, since A is SDD, we are able to employ the Spielman-
Teng solver (Theorem 14) to approximate (I+A/k)−1v. Our
procedure, called ExpRational, has been described in Fig-
ure 3 in Section 5.

Error Analysis.

To complete the proof of Theorem 3, we need to analyze the
role of the error that creeps in due to approximate matrix
inversion. The problem is that this error, generated in each
iteration of the Krylov basis computation, propagates to the
later steps. Thus, small errors in the inverse computation
may lead to the basis Vk computed by our algorithm to be
quite far from the k-th order Krylov basis for B, v.

At a very high-level, the proof follows the outline of the
proof for Lanczos method. We first show that, assuming

the error in computing the inverse is small, T̂k can be used
to approximate Biv for small i, i.e. for all i ≤ k, we have,

‖Biv−VkT̂
i
kV

�
k v‖ ≤ ε2, for some small ε2. This implies that,

for any polynomial p of degree at most k,

‖p(B)v − Vkp(T̂k)V
�
k v‖ ≤ ε2 ‖p‖1 ,

where if p
def
=
∑k

i=0 ai ·xi, ‖p‖1 =
∑k

i≥0 |ai|. This is the most
technical part of the error analysis, and unfortunately, the
only way we know of proving the error bound above is by a
brute-force calculation. A part of this proof is to show that

the spectrum of T̂k cannot shift far from the spectrum of B.
To bound the error in the candidate vector output by

the algorithm, i.e. ‖f(B)v − Vkf(T̂k)V
�
k v‖, we start by

expressing e−x as the sum of a degree k-polynomial pk in
(1+x/k)−1 and a remainder function rk. We use the analysis
from the previous paragraph to upper bound the error in the
polynomial part by ‖p‖1 ε2. We bound the contribution of
the remainder term to the error by bounding ‖rk(B)‖ and

‖rk(T̂k)‖. This step uses the fact that eigenvalues of rk(T̂k)

5EH show the existence of degree k polynomials in (1+νx)−1

for any constant ν ∈ (0, 1), that approximate e−x up to an

error of exp(1/2ν−Θ(
√

k(ν−1 − 1))). In order to deduce the
claimed hypothesis, it needs to be used for ν ≈ 1/λn(A), in

which case, there is a factor of eλn(A) in the error, which
could be huge.

are {rk(λi)}i, where {λi}i are eigenvalues of T̂k. This is the

reason our algorithm symmetrizes Tk to T̂k. To complete
the error analysis, we use the polynomials p�k from SSV and
bound ‖p�k‖1 . Even though we do not know p�k explicitly,
we can bound its coefficients indirectly by writing it as an
interpolation polynomial. All these issues make the error
analysis highly technical. However, since the error analysis
is crucial for our algorithms, a more illuminating proof is
highly desirable.

3.2.3 Approximation Using Our Polynomial Approx-
imation to e−x

More straightforwardly, combining the Lanczos method

with the setting B
def
= A and f(x)

def
= e−x, along with the

polynomial approximation to e−x that we prove in Theorem
6, we get that setting k ≈√λ1(A)− λn(A)·poly(log 1/δ) suf-
fices to obtain a vector u that satisfies ‖exp(−A)v − u‖ ≤
δ ‖v‖ ‖exp(−A)‖ . This gives us our second method for ap-
proximating exp(−A)v. Note that this algorithm avoids any
inverse computation and, as a result, the procedure and the
proofs are simpler and the algorithm practical.

3.3 Our Uniform Approximation for e−x

In this section, we give a brief overview of the proof of
Theorem 6. More details appear in Section 6.

A straightforward approach to approximating e−x over
[a, b] is to truncate its series expansion around a+b

2
. With

a degree of the order of (b − a) + log 1/δ, these polynomials

achieve an error of δ · e−(b+a)/2, for any constant δ > 0. This
approach is equivalent to approximating eλ over [−1, 1], for

λ
def
= (b−a)/2, by polynomials of degree O(λ + log 1/δ). On

the flip side, it is known that if λ is constant, the above
result is optimal (see e.g. [27]). Instead of polynomials, one
could consider approximations by rational functions, as in
[10, 36]. However, the author in [27] shows that, if both λ
and the degree of the denominator of the rational function
are constant, the required degree of the numerator is only an
additive constant better than that for polynomials. It might
seem that the question of approximating the exponential has
been settled and one cannot do much better. However, the
result by SSV mentioned before, seems surprising in this
light. The lower bound does not apply to their result, since
the denominator of their rational function is unbounded.
In a similar vein, we ask the following question: If we are
looking for weaker error bounds, e.g. δ · e−a instead of δ ·
e−(b+a)/2 (recall b > a), can we improve on the degree bound
of O((b− a) + log 1/δ)? Theorem 6 answers this question in
the affirmative and gives a new upper bound and an almost
matching lower bound. We give an overview of the proofs
of both these results next.

Upper Bound.

We wish to show that there exists a polynomial of degree of
the order of

√
b− a · poly(log 1/δ) that approximates e−x on

the interval [a, b], up to an error of δ · e−a, for any δ > 0.
Our approach is to approximate (1 + x/k)−1 on the interval
[a, b], by a polynomial q of degree l, and then compose the
polynomial p�k from the SSV result with q, to obtain p�k(q(x))
which is a polynomial of degree k · l approximating e−x over
[a, b]. Thus, we are looking for polynomials q that minimize
|q(x) − 1/x| over [1 + a/k, 1 + b/k]. Slightly modifying the
optimization, we consider polynomials q that minimize |x ·
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q(x)−1| over [1+a/k, 1+b/k]. We can show that the solution
to this modified optimization can be derived from the well-
known Chebyshev polynomials. For the right choice of k and
l, the composition of the two polynomials approximates e−x

to within an error of δ·e−a over [a, b], and has degree
√
b− a·

poly(log 1/δ) . To bound the error in the composition step,
we need to bound the sum of absolute values of coefficients
of p�k, which we achieve by rewriting p�k as an interpolation
polynomial. More details appear in Section 6.

Lower Bound.

As already noted, since we consider a weaker error bound

δ ·e−a and λ
def
= (b−a)/2 isn’t a constant for our requirements,

the lower bounds mentioned above no longer hold. Nev-
ertheless, we prove that the square-root dependence of the
required degree, on (b − a), is optimal. The proof is simple
and we sketch it here: Using a theorem of Markov from ap-
proximation theory (see [8]), we show that, any polynomial
approximating e−x over the interval [a, b] up to an error of
δ · e−a, for some constant δ small enough, must have degree
at least of the order of

√
b− a. Markov’s theorem states that

for a univariate polynomial p of degree k, which lives in a box
of height h over an interval of width w, the absolute value of
the derivative p′ in the interval is at most d2h/w. Let pk be a
polynomial of degree k that δ · e−a-approximates e−x in the
interval [a, b]. If b− a is large enough and δ a small enough
constant, then one can get a lower bound of Ω(e−a) on the
derivative of pk using the Mean Value Theorem. Also, one
can obtain an upper bound of O(e−a) on the height of the
box in which pk lives. Both these bounds use the fact that pk
approximates e−x and is δ · e−a close to it. Since the width
of the box is b − a, these two facts, along with Markov’s
theorem, immediately imply a lower bound of Ω(

√
b− a) on

k. This shows that our upper bound is tight up to a factor
of poly(log 1/δ).

4. THE ALGORITHM FOR BALANCED SEP-
ARATOR

In this section, we provide a description of our algorithm
BalSep and an overview of the proofs of Theorem 1 and
Theorem 2. We start with some preliminaries.

4.1 Basic Preliminaries

Instance Graph and Edge Volume. We denote by G = (V,E)
the unweighted instance graph, where V = [n] and |E| = m.
We assume G is connected. We let d ∈ R

n be the degree
vector of G, i.e. di is the degree of vertex i. For a subset

S ⊆ V, we define the edge volume as vol(S)
def
=
∑

i∈S di. The

total volume of G is 2m. The conductance of a cut (S, S̄) is

defined to be φ(S)
def
= |E(S,S̄)|/min{vol(S),vol(S)}, where vol(S) is

the sum of the degrees of the vertices in the set S. Moreover,
a cut (S, S̄) is b-balanced if min{vol(S), vol(S̄)} ≥ b · vol(S).

Special Graphs. We denote by KV the complete graph with
weight didj/2m between every pair i, j ∈ V. For i ∈ V, Stari
is the star graph rooted at i, with edge weight of didj/2m
between i and j, for all j ∈ V.

Graph matrices. For an undirected graph H = (V,EH), let
A(H) denote the adjacency matrix ofH, andD(H) the diag-

onal matrix of degrees of H. The (combinatorial) Laplacian

of H is defined as L(H)
def
= D(H)−A(H). Note that for all

x ∈ R
V , x�L(H)x =

∑
{i,j}∈EH

(xi − xj)
2. By D and L,

we denote D(G) and L(G) respectively for the input graph
G. Finally, the natural random walk over G has transition

matrix W
def
= AD−1.

Vector and Matrix Notation. We are working within the vec-
tor space R

n. We will denote by I the identity matrix over
this space. For a symmetric matrix A, we will use A 	 0
to indicate that A is positive semi-definite. The expression
A 	 B is equivalent to A−B 	 0. For two matrices A,B of

equal dimensions, let A•B def
= Tr(A�B) =

∑
ij Aij ·Bij . We

denote by {ei}ni=1 the standard basis for R
n. 0 and 1 will

denote the all 0s and all 1s vectors respectively.

Fact 1. L(KV ) = D − 1/2m · D11�D = D
1/2(I − 1/2m ·

D
1/211D

1/2)D
1/2.

Embedding Notation. We will deal with vector embeddings
of G, where each vertex i ∈ V is mapped to a vector vi ∈ R

d,
for some d ≤ n. For such an embedding {vi}i∈V , we denote

by vavg the mean vector, i.e. vavg
def
=
∑

i∈V
di/2m · vi. Given a

vector embedding {vi ∈ R
d}i∈V , recall that X is the Gram

matrix of the embedding if Xij = v�i vj . A Gram matrix X
is always PSD, i.e., X 	 0. For any X ∈ R

n×n, X 	 0, we
call {vi}i∈V the embedding corresponding to X if X is the
Gram matrix of {vi}i∈V . For i ∈ V, we denote by Ri the
matrix such that Ri •X = ‖vi − vavg‖2 .

Fact 2.
∑

i∈V diRi • X =
∑

i∈V di ‖vi − vavg‖2 = 1/2m ·∑
i<j djdi ‖vi − vj‖2 = L(KV ) •X.

4.2 AHK Random Walks
The random-walk processes used by our algorithm are

continuous-time Markov processes [24] over the vertices ofG.
The simplest such process is the heat kernel process, which
is defined as having transition rate matrix Q = −(I −W ) =

−LD−1 and probability transition matrix e−τLD−1

at time
τ. 6

For the construction of our algorithm, we generalize the
concept of heat kernel to a larger class of continuous-time
Markov processes, which we name Accelerated Heat Kernel
(ahk) processes. A process H(β) in this class is defined
by a non-negative vector β ∈ R

n and the transition rate

matrix of H(β) is Q(β)
def
= −(L +

∑
i∈V βiL(Stari))D

−1.
As this is the negative of a sum of Laplacian matrices, it
is easy to verify that it is a valid transition rate matrix.
The effect of adding the star terms to the transition rate
matrix is that of accelerating the convergence of the process
to stationary at vertices i with large value of βi, as a large
fraction of the probability mass that leaves these vertices is
distributed uniformly over the edges. We denote by Pτ (β)
the probability-transition matrix of H(β) between time 0

and τ, i.e. Pτ (0) = eτQ(β).

6The heat kernel can also be interpreted as the probabil-
ity transition matrix of the following discrete-time random
walk: sample a number of steps i from a Poisson distribu-
tion with mean τ and perform i steps of the natural random
walk over G.
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We remark that all the ahk random walks in BalSep are
run for time τ

def
= O(logn)/γ. This choice ensures that the

walks must mix across all cuts of conductance much larger
than γ, so that the embedding P (t) emphasizes cuts of the
desired conductance.

Embedding View. A useful matrix to study H(β) will be
D−1P2τ (β). This matrix describes the probability distribu-
tion over the edges of G and has the advantage of being
symmetric and positive semidefinite:

D−1P2τ (β)

= D−1/2e−(2τ)D−1/2(L+
∑

i∈V βiL(Stari))D
−1/2

D−1/2.

Moreover, we have the following fact:

Fact 3. D−1/2Pτ (β) is a square root of D−1P2τ (β).

Hence, D−1P2τ (β) is the Gram matrix of the embedding

given by the columns of its square root D−1/2Pτ (β). This
property will enable us to use geometric SDP techniques to
analyze H(β).

Mixing. Spectral methods for finding low-conductance cuts
are based on the idea that random walk processes mix slowly
across sparse cuts, so that it is possible to detect such cuts
by considering the starting vertices for which the probability
distribution of the process strongly deviates from stationary.
We measure this deviation for vertex i at time t by the 
22-
norm of the distance between Pτ (β)ei and the uniform dis-
tribution over the edges of G. We denote it by Ψ(Pτ (β), i) :

Ψ(Pτ (β), i)
def
= di

∑
j∈V

dj

(
e�j Pτ (β)ei

dj
− 1

2m

)2

A fundamental quantity for our algorithm will be the to-
tal deviation from stationarity over a subset S ⊆ V. We

will denote Ψ(Pt(β), S)
def
=
∑

i∈S Ψ(Pt(β), i). In particular,
Ψ(Pτ (β), V ) will play the role of potential function in our al-
gorithm. The following facts express these mixing quantities
in the geometric language of the embedding corresponding
to D−1P2τ (β).

Fact 4. Ψ(Pτ (β), i) = diRi •D−1P2τ (β).

Fact 5.

Ψ(Pτ (β), V )

=
∑
i∈V

diRi •D−1P2τ (β) = L(KV ) •D−1P2τ (β).

4.3 Algorithm Description
We are now ready to describe BalSep, which outputs a

c-balanced cut of conductance O(
√
γ) or the string NO, if

it finds a certificate that no b-balanced cut of conductance
less than γ exists. BalSep can also fail and output the
string Fail. We will show that this only happens with small
probability. The algorithm BalSep is formally presented
7 in Figure 1. We will consider embeddings given by the
columns of D−1/2Pτ (β) for some choice of β.

7The constants in this presentation are not optimized and
are likely to be higher than what is necessary in practice.
They can also be modified to obtain different trade-offs be-
tween the approximation guarantee and the output balance.

As we are only interested in Euclidean distances between
vectors in the embedding, we use the Johnson-Lindenstrauss
Lemma (see the full version for details) to obtain anO(log n)-
dimensional embedding approximately preserving distances
between columns of D−1/2Pτ (β) up to a factor of (1 + ε),
where ε is a constant such that 1+ε/1−ε ≤ 4/3.

The algorithm BalSep calls two subroutines FindCut
and ExpV. FindCut is an SDP-rounding algorithm that
uses random projections and radial sweeps to find a low-
conductance cut, that is either c-balanced, for some constant
c = Ω(b) ≤ b/100 defined in OV, or obeys a strong guarantee
stated in Theorem 8. Such algorithm is implicit in [22] and is
described precisely in the full version of this paper. ExpV is
a generic algorithm that approximately computes products
of the form Pτ (β)u for unit vectors u. Expv can be chosen to
be either the algorithm implied by Thereom 7, which makes
use of the Spielman-Teng solver, or that in Theorem 5, which
just applies the Lanczos method.

At iteration t = 1, we have β(1) = 0, so that P (1) is just
the probability transition matrix of the heat kernel on G
for time τ. In general at iteration t, BalSep runs ExpV
to compute O(log n) random projections of P (t) and con-

structs an approximation {v(t)i }i∈V to the embedding given

by the columns of D−1/2P (t). This approximate embedding
has Gram matrix X(t).

In Step 2, BalSep computes L(KV ) • X(t), which is an

estimate of the total deviation Ψ(P (t), V ) by Fact 5. If

this deviation is small, the ahk walk P (t) has mixed suf-
ficiently over G to yield a certificate that G cannot have any
b-balanced cut of conductance less than γ. This is shown
in Lemma 1. If the ahk walk P (t) has not mixed suffi-
ciently, we can use FindCut to find a cut S(t) of low con-
ductance O(

√
γ), which is an obstacle for mixing. If S(t) is

c-balanced, we output it and terminate. Similarly, if S∪S(t)

is c-balanced, as φ(S ∪ S(t)) ≤ O(
√
γ), we can also output

S ∪ S(t) and exit. Otherwise, S(t) is unbalanced and is po-
tentially preventing BalSep from detecting balanced cuts in
G. We then proceed to modify the ahk walk, by increasing
the values of β(t+1) for the vertices in S(t). This change lets
P (t+1) mix faster from the vertices in S(t) and, in particu-
lar, mix across S(t). This ensure that in the next iterations,
S(t) will be unlikely to be an obstacle to detecting more bal-
anced cuts in G. We remark that, at any given iteration t,
the support of β(t) is ∪t−1

r=1S
(r), which is an unbalanced set.

Hence, the ahk walk P (t) looks like a heat-kernel random
walk, whose convergence is accelerated only on a set of small
volume.

In conclusion, the BalSep algorithm exactly parallels the
RLE algorithm, introducing only two fundamental changes.
First, we use the embedding given by the ahk random walk
P (t) in place of the eigenvector to find cuts in G or in a
residual graph. Secondly, rather than fully removing unbal-
anced low-conductance cuts from the graph, we modify β(t)

at every iteration t, so P (t+1) at the next iteration mixes
across the unbalanced cuts found so far.

4.4 Analysis
The analysis of BalSep is at heart a modification of the

MMWU argument in OV, stated in a random-walk language.
This modification allows us to deal with the different em-
bedding used by BalSep at every iteration with respect
to OV. In this analysis, the quantity Ψ(P (t), V ) plays the
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Input: An unweighted connected instance graph G = (V,E), a constant balance value b ∈ (0, 1/2], a conductance value
γ ∈ [1/n2, 1).

Let S = 0, S̄ = V. Set τ
def
= logn/12γ and β(1) def

= 0.

At iteration t = 1, . . . , T
def
= 12 log n :

1. Denote P (t) def
= Pτ (β

(t)). Pick k
def
= O(log n/ε2) random unit vectors {u(t)

1 , u
(t)
2 , . . . , u

(t)
k ∈ R

n} and use the subroutine

ExpV to compute the embedding {v(t)i ∈ R
k}i∈V defined as(
v
(t)
i

)
j

def
=

√
n

k
u�
j D

−1/2P (t)ei.

Let X(t) be the Gram matrix corresponding to this embedding.

2. If L(KV ) •X(t) =
∑

i∈V di||v(t)i − v
(t)
avg||2 ≤ 1+ε

n
, output NO and terminate.

3. Otherwise, run FindCut(G, b, γ, {v(t)i }i∈V ). FindCut outputs a cut S(t) with φ(S(t)) ≤ O(
√
γ) or fails, in which case

we also output Fail and terminate.

4. If S(t) is c-balanced, output S(t) and terminate. If not, update S
def
= S ∪ S(t). If S is c-balanced, output S and

terminate.

5. Otherwise, update β(t+1) = β(t) + 72γ
T

∑
i∈S(t) ei and proceed to the next iteration.

Output NO and terminate.

Figure 1: The BalSep Algorithm

role of potential function. We start by showing that if the
potential function is small enough, we obtain a certificate
that no b-balanced cut of conductance at most γ exists. In
the second step, we show that, if an unbalanced cut S(t) of
low conductance is found, the potential decreases by a con-
stant fraction. Together, these two facts allow us to prove
that T = O(log n) iterations suffices to either find a Ω(b)-
balanced cut of conductance O(

√
γ) or to give a certificate

that no b-balanced cut of conductance less than γ exists.
The remaining proofs are included in the full version.

Potential Guarantee.

We argue that, if Ψ(P (t), V ) is sufficiently small, i.e. the

walk P (t) mixes sufficiently from all starting points, it must
be the case that G has no b-balanced cut of conductance less
than γ. A similar result is implicit in OV.

Lemma 1. Let S = ∪t
i=1S

(i). If Ψ(P (t), V ) ≤ 4
3n

, and
vol(S) ≤ c · 2m ≤ b/100 · 2m, then

L+
∑
i∈V

β
(t)
i L(Stari) 	 3γ · L(KV ).

Moreover, this implies that no b-balanced cut of conductance
less than γ exists in G.

For t = 1, the current random walk P (1) is just the heat-
kernel of the graph. Then, the proof of Lemma 1 is a conse-
quence of our choice of τ, as Ψ(P (1), V ) ≤ 4/poly(3n) implies
that

L 	 1

τ
· log

(
3n

4

)
L(KV ) 	 γL(KV ).

In words, the fact that P (1) mixes well implies that the spec-
tral gap of G is large, so that no cut of conductance γ can
exists. For t > 1, a similar argument yields the first part of
Lemma 1. The certificate is obtained by noticing that P (t)

is accelerated on a small unbalanced set S, so that the term∑
i∈V β

(t)
i L(Stari) has little impact on the conductance of

a balanced cut in G. In other words, if a balanced cut of
conductance less than γ existed, its convergence could not
be greatly helped by the acceleration over S. Then, if P (t)

is still mixing very well, no such balanced cut can exist.

The Deviation of an Unbalanced Cut.

In the next step, we show that, if the walk has not mixed

sufficiently, w.h.p. the embedding {v(t)i }i∈V , computed by
BalSep, has low quadratic form with respect to the Lapla-
cian of G. From a SDP-rounding perspective, this means
that the embedding can be used to recover cuts of value
close to γ. This part of the analysis departs from that of
OV, as we use our modified definition of the embedding.

Lemma 2. If Ψ(P (t), V ) ≥ 1
n
, then w.h.p. L • X(t) ≤

O(γ) · L(KV ) •X(t).

This guarantee on the embedding allows us to apply SDP-
rounding techniques in the subroutine FindCut. The fol-
lowing result is implicit in [22]. Its proof appears in the full
version.

Theorem 8. Consider an embedding {vi ∈ R
d}i∈V with

Gram matrix X such that L • X(t) ≤ αL(KV ) • X(t), for
α > 0. On input (G, b, α, {vi}i∈V ), FindCut runs in time

Õ(md) and w.h.p. outputs a cut C with φ(C) ≤ O(
√
α).

Moreover, there is a constant c = Ω(b) ≤ b/100 such that
either C is c-balanced or∑

i∈C

diRi •X ≥ 2/3 · L(KV ) •X.

The following corollary is a simple consequence of Lemma 2
and Theorem 8:
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Corollary 1. At iteration t of BalSep, if Ψ(P (t), V ) ≥
1
n

and S(t) is not c-balanced, then w.h.p. Ψ(P (t), S) ≥ 1/2 ·
Ψ(P (t), V ).

In words, at the iteration t of BalSep, the cut S(t) must ei-
ther be c-balanced or be an unbalanced cut that contributes
a large constant fraction of the total deviation of P (t) from
the stationary distribution. In this sense, S(t) is the main
reason for the failure of P (t) to achieve better mixing. To
eliminate this obstacle and drive the potential further down,
P (t) is updated to P (t+1) by accelerating the convergence to
stationary from all vertices in S(t). Formally, this is achieved
by adding weighted stars rooted at all vertices over S(t) to
the transition-rate matrix of the ahk random walk P (t).

Potential Reduction.

The next theorem crucially exploits the stability of the pro-
cess H(β(t)) and Corollary 1 to show that the potential de-
creases by a constant fraction at every iteration in which an
unbalanced cut is found. More precisely, the theorem shows
that accelerating the convergence from S(t) at iteration t
of BalSep has the effect of eliminating at least a constant
fraction of the total deviation due to S(t). The proof is a
simple application of the Golden-Thompson inequality [7]
and mirrors the main step in the MMWU analysis.

Theorem 9. At iteration t of BalSep, if Ψ(P (t), V ) ≥ 1
n

and S(t) is not c-balanced, then w.h.p.

Ψ(P (t+1), V ) ≤ Ψ(P (t), V )− 1/3·Ψ(P (t), S(t))

≤ 5/6 ·Ψ(P (t), V ).

To complete the proof of Theorem 1 and Theorem 2, it
now suffices to notice that Ψ(P (1), V ) ≤ n. Hence, by The-
orem 9, after O(log n) iterations, if no low-conductance bal-
anced cut has been found, we can apply Lemma 1 to give a
certificate that no b-balanced cut of conductance less than
γ exists. To obtain the running-time guarantee, we no-
tice that at each iteration BalSep only needs to compute
k = O(log n) products of the form D−1/2P (t)u, where u is
a unit vector. For this purpose, we apply the algorithms of
Theorem 7 and Theorem 5. Detailed proofs of Theorem 1
and Theorem 2 are included in the full version.

4.5 SDP Interpretation
In this section we compare our algorithm with that of OV

[22] who employed an SDP formulation for BS together with
the Matrix Multiplicative Weight Update (MMWU) of [5].
We show how BalSep has a natural interpretation in terms
of the OV SDP and how it implies a new width reduction
method.

OV designed an algorithm that outputs either a Ω(b)-
balanced cut of conductance O(

√
γ) or a certificate that no

b-balanced cut of conductance γ exists in time Õ(m/γ2). This
algorithm uses the MMWU of Arora and Kale [5] to ap-
proximately solve an SDP formulation of the BS problem.
The main technical contribution of their work is the rou-
tine FindCut (implicit in their Oracle), which takes the
role of an approximate separation oracle for their SDP. In
an iteration of their algorithm, OV use the MMWU update
to produce a candidate SDP-solution Y (t). In one scenario,
Y (t) does not have sufficiently low Laplacian objective value:

L • Y (t) ≥ Ω(γ)L(KV ) • Y (t). (1)

In this case, the MMWU uses Equation 1 to produce a candi-
date solution Y (t+1) with lower objective value. Otherwise,
FindCut is run on the embedding corresponding to Y (t). By
Theorem 8, this yields either a cut of the required balance
or a dual certificate that Y (t) is infeasible. This certificate
has the form

γ ·
∑

i∈S(t)

diRi • Y (t) ≥ Ω(γ)L(KV ) • Y (t) (2)

and is used by the update to construct the next candidate
Y (t+1). The number of iterations necessary is determined by
the width of the two possible updates described above. A
simple calculation shows that the width of the update for
Equation 1 is Θ(1), while for Equation 2, it is only O(γ).
Hence, the overall width is Θ(1), implying that O(log n/γ)
iteration are necessary for the algorithm of OV to produce a
dual certificate that the SDP is infeasible and therefore no
b-balanced cut of conductance γ exists.

Our modification of the update is based on changing the
starting candidate solutions from Y (1) ∝ D−1 to X(1) ∝
D−1/2e−2τD−1/2LD−1/2

D−1/2. In Lemma 1 and Lemma 2, we
show that this modification implies that all X(t) must now
have L•X(t) ≤ O(γ)·L(KV )•X(t) or else we find a dual cer-
tificate that the SDP is infeasible. This additional guarantee
effectively allows us to bypass the update of Equation 1 and
only work with updates of the form given in Equation 2. As
a result, our width is now O(γ) and we only require O(log n)
iterations.

Another way to interpret our result is that all possible
τ � logn/γ updates of the form of Equation 1 in the algorithm
of OV are regrouped into a single step, which is performed
at the beginning of the algorithm.

5. APPROXIMATING exp(−A)v
In this section, we describe the algorithms for Theorems 3,

4 and 5 and give the steps involved in their proofs. We first
describe the Lanczos method in Section 5.1, and then show
how to use it to deduce Theorem 5. We then describe how
to modify the Lanczos method to obtain the procedure Ex-
pRational, in Section 5.2, and then show how to use Ex-
pRational to deduce Theorems 3, 4 and 7. Finally, we give
a proof sketch for our main theorem about the procedure
ExpRational in Section 5.3. We give formal statements of
various theorems and lemmas, but defer most proofs to the
full version [20] due to space restrictions.

For this section, we will assume the upper bound from
Theorem 6, regarding polynomials approximating e−x. Please
see Section 6 for more details about the proof of this theo-
rem. We first state the basic definitions used in this section.
Some of these definitions have been presented before, but
are being reproduced here for completeness.

Definitions.

We work with square n × n matrices over R. For a sym-
metric PSD matrix M, we define the M -norm of a vector

x as ‖x‖M
def
= (x�Mx)

1/2. For a matrix M, abusing nota-
tion, we denote its exponential by exp(−M), which is de-

fined as
∑

i≥0
(−1)i

i!
M i. ‖M‖ def

= sup‖x‖=1 ‖Mx‖ denotes the
spectral norm of M. M is said to be Symmetric and Di-
agonally Dominant (SDD) if, Mij = Mji, for all i, j and
Mii ≥ ∑

j �=i |Mij |, for all i. M is called Upper Hessenberg

if, (M)ij = 0 for i > j+1. M is called tridiagonal if Mij = 0
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for i > j+1 and for j > i+1. Let λ1(M) and λn(M) denote
the largest and the smallest eigenvalues of M respectively,
and, let Λ(M) denote the smallest interval containing the
spectrum of M, i.e., [λn(M), λ1(M)]. For a matrix M, let
mM denote the number of non-zero entries in M. Further,
let tM denote the time required to multiply the matrix M
with a given vector w. In general tM depends on how M is
given as an input and can be Θ(n2). However, it is possible
to exploit the special structure of M if given as an input
appropriately: It is possible to just multiply the non-zero
entries of M, giving tM = O(mM ). Also, if M is a rank one
matrix ww�, where w is known, we can multiply by M in
O(n) time. For any positive integer k, let Σk denote the set
of all polynomials with degree at most k. Given a degree k

polynomial p
def
=
∑k

i=0 ai · xi, the 
1 norm of p, denoted as

‖p‖1 is defined as ‖p‖1 =
∑k

i≥0 |ai|.

5.1 Lanczos Method – From Scalars to Matri-
ces

We give a description of the Lanczos method (e.g. see [26])
in Figure 2 and give a proof of a well-known theorem about
the approximation guarantee and the running time of the
method (Theorem 10). We then show how to deduce Theo-
rem 5 (Simple algorithm for exponentiating PSD matrices)
using Theorem 10.

Given an n×n symmetric matrix B, a function f : R → R,
and a vector v, the Lanczos method allows us to approx-
imate f(B)v. Without loss of generality, we assume that
‖v‖ = 1. The Lanczos method looks for an approximation
to f(B)v of the form p(B)v, where p is a polynomial of
small degree, say k. Notice that p(B)v lies in the subspace
Span{v,Bv, . . . , Bkv} – called the Krylov subspace. Before
we describe the method, we recall the definition of a Krylov
subspace.

Definition 1. (Krylov Subspace). Given a matrix B and
a vector v, the Krylov subspace of order k, denoted by
K(B, v, k), is defined as the subspace spanned by the vectors
v,Bv, . . . , Bkv.

It will be convenient to work with an orthonormal basis
for K def

= K(B, v, k). Let {vi}ki=0 be an orthonormal basis
for K. Let Vk be the n × (k + 1) matrix with {vi}ki=0 as its
columns. Thus, VkV

�
k denotes the projection onto K. Let

Tk be the (k+1)×(k+1) matrix expressing B as an operator

restricted to K in the basis {vi}ki=0, i.e., Tk
def
= V �

k BVk. Now,
since v,Bv ∈ K, we have,

Bv = (VkV
�
k )B(VkV

�
k )v = Vk(V

�
k BVk)V

�
k v = VkTkV

�
k v.

Similarly, for all i ≤ k, Biv = VkT
i
kV

�
k v, and hence, by lin-

earity, p(B)v = Vkp(Tk)V
�
k v, for any polynomial p of degree

at most k. We summarize this in the following lemma.

Lemma 3. (Exact Computation with Polynomials. See
e.g. [26]). Let Vk and Tk be as defined above. For any poly-
nomial p of degree at most k,

p(B)v = Vkp(Tk)V
�
k v.

Thus, Tk can be used to compute p(B)v exactly for any
degree k polynomial p. This lemma suggests that a natural
candidate for approximating f(B)v is the vector Vkf(Tk)V

�
k v,

even when f is not a degree k polynomial. To determine the
quality of this approximation, we will bound the norm of
the error, i.e.,

∥∥f(B)v − Vkf(Tk)V
�
k v
∥∥ .

Writing rk(x)
def
= f(x) − pk(x), where pk is any degree k

approximation to f(x), and using Lemma 3, we get,

f(B)v − Vkf(Tk)V
�
k v = rk(B)v − Vkrk(Tk)V

�
k v.

Hence, the norm of the error vector is at most (‖rk(B)‖ +
‖rk(Tk)‖) ‖v‖ , which is bounded by the value of rk on the
eigenvalues of B and Tk. To obtain the best bound, we can
minimize this error bound over polynomials pk of degree at
most k. This is summarized in the following lemma.

Lemma 4. (Approximation by Best Polynomial. See e.g.
[26]). Let Vk and Tk be as defined above. Let f : R → R

be any function such that f(B) and f(Tk) are well-defined.
Then,∥∥∥f(B)v − Vkf(Tk)V

�
k v
∥∥∥

≤ min
pk∈Σk

(
max

λ∈Λ(B)
|f(λ)− pk(λ)|+ max

λ∈Λ(Tk)
|f(λ)− pk(λ)|

)
.

Thus, Vkf(Tk)V
�
k v approximates f(B)v as well as the best

degree k polynomial that uniformly approximates f. It re-
mains to show how to compute Vk and Tk. We address this
next.

5.1.1 Efficiently Computing a Basis for the Krylov
Subspace

We now show how to compute Vk and Tk efficiently. This

is done iteratively as follows: Let v0
def
= v. For i = 0, . . . , k−1,

we compute Bvi and remove the components along the vec-
tors {v0, . . . , vi} to obtain a new vector that is orthogo-
nal to v0, . . . , vi. This vector, scaled to norm 1, is de-
fined to be vi+1 (similar to Gram-Schmidt orthonormaliza-
tion). By construction, these vectors satisfy, for all i ≤ k,
Span{v0, . . . , vi} = Span{v,Bv, . . . , Biv}.

Since Tk = V �
k BVk, we have (Tk)ij = v�i Bvj . By con-

struction, Bvj ∈ Span{v0, . . . , vj+1}, and if i > j + 1, vi is
orthogonal to this subspace, and hence v�i (Bvj) = 0. Thus,
Tk is Upper Hessenberg, i.e., (Tk)ij = 0 for i > j+1. More-
over, if B is symmetric, v�j (Bvi) = v�i (Bvj), and hence Tk

is symmetric and tridiagonal. This implies that we need to
orthogonalize Bvi only w.r.t vi and vi−1. Thus, we need to
compute only O(k) dot-products while computing the basis,
instead of O(k2); and time required for computing the dot-
products is O(nk), instead of O(nk2). This is crucial for the
proof of Theorem 5 and Theorem 2.

We summarize the procedure below. A formal description
of the Lanczos algorithm is given in Figure 2.

1. Compute the basis {vi}ki=0 – Start with v0
def
= v. For

i = 0, . . . , k − 1, compute Bvi and orthogonalize it to
vi and vi−1. Scale the vector to unit norm to get vi+1.

2. Construct the matrices Vk, Tk, and return the vec-
tor Vkf(Tk)V

�
k v as the candidate approximation to

f(B)v.

The following theorem summarizes the main result about
this procedure.

Theorem 10. (Lanczos Theorem. See e.g. [26]) Given
a symmetric PSD matrix B, a vector v with ‖v‖ = 1, a
function f, and a positive integer parameter k as inputs, the
procedure Lanczos computes a vector u such that,

‖f(B)v − u‖ ≤ 2 · min
pk∈Σk

max
λ∈Λ(B)

|f(λ)− pk(λ)| .
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Input: A symmetric matrix B 	 0, a vector v such that ‖v‖ = 1, a positive integer k, and a function f : R → R.
Output: A vector u that is an approximation to f(B)v.

1. Initialize v0
def
= v.

2. For i = 0 to k − 1, (Construct an orthonormal basis to Krylov subspace of order k)

a. If i = 0, compute w0
def
= Bv0. Else, compute wi

def
= Bvi − βivi−1. (Orthogonalize w.r.t. vi−1)

b. Define αi
def
= v�i wi and w′

i
def
= wi − αivi

∗. (Orthogonalize w.r.t. vi)

c. Define βi+1
def
= ‖w′

i‖ and vi+1
def
= w′

i/βi+1. (Scaling it to norm 1)

3. Let Vk be the n× (k + 1) matrix whose columns are v0, . . . , vk respectively.

4. Let Tk be the (k+1)× (k+1) matrix such that for all i, (Tk)ii = v�i Bvi = αi, (Tk)i,i+1 = (Tk)i+1,i = v�i+1Bvi = βi+1

and all other entries are 0. (Compute Tk
def
= V �

k BVk)

5. Compute B def
= f (Tk) exactly via eigendecomposition. Output the vector VkBV �

k v.

* If w′
i = 0, compute the approximation with the matrices Ti−1 and Vi−1, instead of Tk and Vk. The error bounds still hold.

Figure 2: The Lanczos algorithm for approximating f(B)v

The time taken by Lanczos is O
(
(n+ tB)k + k2

)
.

Proof. The algorithm Lanczos implements the Lanczos
method we’ve discussed here. The error guarantee follows
from Lemma 4 and the fact that Λ(Tk) ⊆ Λ(B). The total
running time is dominated by k multiplications of B with
a vector, O(k) dot-products and the eigendecomposition of
the tridiagonal matrix Tk to compute f(Tk) (which can be
done in O(k2) time [23]), giving a total running time of
O
(
(n+ tB)k + k2

)
.

Combining the approximation guarantee of the Lanczos

algorithm given by Theorem 10 for the setting B
def
= A and

f(x)
def
= e−x, along with the polynomial approximation to

e−x that we prove in Theorem 6, we obtain a proof of the
following theorem which is easily seen to imply Theorem 5.

Theorem 11. (Running Time Using Lanczos). Given a
symmetric PSD matrix A, a vector v with ‖v‖ = 1 and a
parameter 0 < δ ≤ 1, for k that is

O
(√

max{log 1/δ, (λ1(A)− λn(A))} (log 1/δ)
3/2 · log log 1/δ

)
,

and f(x) = e−x, the procedure Lanczos computes a vector u
such that ‖exp(−A)v − u‖ ≤ ‖exp(−A)‖ δ. The time taken
by Lanczos is O

(
(n+ tA)k + k2

)
.

This completes our description of the Lanczos method, and
how to deduce Theorem 5 using the method.

5.2 Approximating exp(−A)v Using a Ratio-
nal Approximation to e−x

In this section, we describe the steps involved in the proofs
of Theorem 3 (Exponentiating SDD matrices), Theorem 4
(Exponentiating PSD matrices) and Theorem 7 (Matrix ex-
ponentials required for BalSep). We show how to modify
the Lanczos method to obtain an algorithm, which we call
ExpRational, that underlies these theorems. The starting
point is the following result by Saff, Schönhage and Varga
(SSV) [28].

Theorem 12. (Rational Approximation [28]). There ex-
ists constants c1 ≥ 1 and k0 such that, for any positive inte-
ger k ≥ k0, there exists a polynomial p�k(x) of degree k such
that p�k(0) = 0, and,

sup
t∈(0,1]

∣∣∣e−k/t+k − p�k(t)
∣∣∣ = sup

x∈[0,∞)

∣∣e−x − p�k
(
(1 + x/k)−1)∣∣

≤ c1k · 2−k .

This result implies that for any positive integer k, there ex-
ists a degree k polynomial p�k such that, p�k((1 + x/k)−1)
approximates e−x up to an error of O(k · 2−k) over the in-
terval [0,∞). This suggests we can approximate exp(−A)v,

using the Lanczos method with B
def
= (I+A/k)−1 and f(x)

def
=

ek(1−1/x). However, exact inverse computation is expensive,
and we will have to work with approximate inverse compu-
tation. We abstract out the required inversion procedure as
InvertA and require the following guarantee: given a vector
y, a positive integer k, and an ε1 > 0, InvertA(y, k, ε1) re-
turns a vector u1 such that,

∥∥(I + A/k)−1y − u1

∥∥ ≤ ε1 ‖y‖ .
We will use InvertA to approximately multiply a given vector
with (I + A/k)−1 during each iteration of the Lanczos algo-
rithm. Due to approximate computation, two more changes
to the Lanczos method are required:

1. At every step, we need to orthonormalize wi ≈ (I +
A/k)−1vi w.r.t all vectors v0, . . . , vi.

2. We compute the candidate approximation using the

symmetrized matrix T̂k
def
= 1/2 · (Tk + T�

k ).

We now summarize our procedure below. A formal descrip-
tion of the ExpRational procedure is given in Figure 3.

1. Compute the basis {vi}ki=0 – Start with v0
def
= v. For

i = 0, . . . , k − 1,

(a) Use InvertA to obtain wi, an approximation to
(I + A/k)−1vi.

(b) Orthogonalize wi to v0, . . . , vi. Scale the vector to
unit norm to get vi+1.
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Input: A Matrix A 	 0, a vector v such that ‖v‖ = 1, and an approximation parameter 0 < δ ≤ 1.
Output: A vector u such that ‖exp(−A)v − u‖ ≤ δ.

Parameters: Let k
def
= O(log 1/δ) and ε1

def
= exp(−Θ(k log k + log(1 + ‖A‖))).

1. Initialize v0
def
= v.

2. For i = 0 to k − 1, (Construct an orthonormal basis to Krylov subspace of order k)

a. Call the procedure InvertA(vi, k, ε1). The procedure returns a vector wi, such that,
∥∥(I + A/k)−1vi − wi

∥∥ ≤
ε1 ‖vi‖ . (Approximate (I + A/k)−1vi)

b. For j = 0, . . . , i,

i. Let αj,i
def
= v�j wi. (Compute projection onto wi)

c. Define w′
i

def
= wi −∑i

j=0 αj,ivj . (Orthogonalize w.r.t. vj for j ≤ i)

d. Let αi+1,i
def
= ‖w′

i‖ ∗ and vi+1
def
= w′

i/αi+1,i. (Scaling it to norm 1)

e. For j = i+ 2, . . . , k,

i. Let αj,i
def
= 0.

3. Let Vk be the n× (k + 1) matrix whose columns are v0, . . . , vk respectively.

4. Let Tk be the (k + 1)× (k + 1) matrix (αi,j)i,j∈{0,...,k} and T̂k
def
= 1/2(T�

k + Tk). (Symmetrize Tk)

5. Compute B def
= exp

(
k · (I − T̂−1

k )
)
exactly and output the vector VkBV �

k v.

* If w′
i = 0, compute the approximation with the matrices Ti−1 and Vi−1, instead of Tk and Vk. The error bounds still hold.

Figure 3: The ExpRational algorithm for approximating exp(−A)v

2. Construct the matrices Vk, Tk. Compute T̂k and return

the vector Vkf(T̂k)V
�
k v as the candidate approxima-

tion to f(B)v.

The following theorem summarizes the main result about
this procedure.

Theorem 13. (Running Time of ExpRational). Given
a symmetric PSD matrix A 	 0, a vector v with ‖v‖ = 1,
an error parameter 0 < δ ≤ 1 and oracle access to InvertA,

for parameters k
def
= O(log 1/δ) and ε1

def
= exp(−Θ(k log k +

log(1+‖A‖))), ExpRational computes a vector u such that
‖exp(−A)v − u‖ ≤ δ, in time O(T inv

A,k,ε1
· k + n · k2 + k3),

where T inv
A,k,ε1

is the time required by InvertA(·, k, ε1).

Remark 1. Note that there is an n·k2 term in the running
time for ExpRational, in contrast with n ·k in the running
time for Lanczos. This is because, in ExpRational, we
can no longer guarantee that the matrix Tk is tridiagonal,
in contrast with Lanczos. For ExpRational, k is small
(O(log n) for our application) and hence the term n ·k2 does

not hurt. Whereas, for Lanczos, k is large (Õ(1/√γ) for our
application), and a term of n · k2 in the running time would
be prohibitive.

Remark 2. Note that there is a k3 term in the running
time for ExpRational, and a k2 term in the running time
for Lanczos. This corresponds to the time required for
computing the eigendecomposition of a (k + 1) × (k + 1)
symmetric matrix. While this process requires O(k3) time
in general; in case of Lanczos, the matrix is tridiagonal and
hence the time required is O(k2) (see [23]).

The proof of Theorem 13 is the most technical part of the
paper. The main issue is that the error in approximating the
matrix inverse at each iteration, propagates to later steps.
We need to bound the error introduced in the output vector
because of the error at each iteration. We give the steps
involved in the proof in Section 5.3

We now give different implementations of InvertA in order
to prove Theorems 3, 4 and 7 in Sections 5.2.1, 5.2.2 and
5.2.3, respectively.

5.2.1 SDD Matrices – Theorem 3
For Theorem 3 about exponentiating SDD matrices, we

implement the InvertA procedure in ExpRational using the
Spielman-Teng SDD solver [34]. Here, we state an improve-
ment on the Spielman-Teng result by Koutis, Miller and
Peng [18].

Theorem 14. (SDD Solver [18]). Given a system of lin-
ear equations Mx = b, where the matrix M is SDD, and an
error parameter ε > 0, it is possible to obtain a vector u that
is an approximate solution to the system, in the sense that

‖M−1b− u‖M ≤ ε‖M−1b‖M .

The time required for computing u is Õ (mM log n log 1/ε),
where M is an n× n matrix. (The tilde hides log log n fac-
tors.)

In order to prove Theorem 3, we use the ExpRational
procedure to approximate the exponential. At every call
to InvertA(y, k, ε1), we call the SDD solver with the matrix
(I + A/k), vector y and error parameter ε1, and return the
vector u1 returned by the solver. Note that the matrix (I +
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A/k) is SDD. Also note that the guarantee on u provided
by the SDD solver, in terms of ‖·‖I+A/k , is different from

the guarantee required by InvertA, which is in terms of ‖·‖ .
However,

‖(I + A/k)−1y − u1‖ ≤ ∥∥(I + A/k)−1y − u1

∥∥
(I+A/k)

≤ ε1 · ‖(I + A/k)−1y‖(I+A/k) ≤ ε1 · ‖y‖ .
Thus, the vector u1 satisfies guarantee required for InvertA.
Thus, Theorem 13 implies that the procedure ExpRational
computes a vector u approximating e−Av, as desired.

Using Theorem 14, the time required by each call to InvertA,
i.e., T inv

A,k,ε1
is Õ ((mA + n) log n log 1/ε1) , and hence, from

Theorem 13, the total running time is

Õ
(
(mA + n) log n(log 1/δ+log(1+‖A‖)) log 1/δ + (log 1/δ)3

)
,

where the tilde hides polynomial factors in log log n and
log log 1/δ. This completes the proof of Theorem 3.

5.2.2 General PSD Matrices – Theorem 4
The proof of Theorem 4 is identical to that of Theorem 3

except that we replace the SDD solver by the Conjugate
Gradient method for implementing the InvertA procedure.
We use the following theorem.

Theorem 15. (Conjugate Gradient Method. See [31]).
Given a system of linear equations Mx = b and an error
parameter ε > 0, it is possible to obtain a vector u that is
an approximate solution to the system, in the sense that

‖u−M−1b‖M ≤ ε‖M−1b‖M .

The time required for computing u is O
(
tM
√

κ(M) log 1/ε
)
,

– where κ(M) denotes the condition number of M .

Remark 3. Note that, in comparison to the SDD solver,
the Conjugate Gradient method has a significantly larger
running time in general, because of the

√
κ(M) factor. How-

ever, the Conjugate Gradient method only requires multipli-
cation by the matrix M, hence the factor tM in the running
time, which could be smaller than the mM factor in the
running time for the SDD Solver.

As with the SDD solver, the guarantee on the returned
vector is in terms of ‖·‖I+A/k , but as observed in Section 5.2.1,
this implies the guarantee required by InvertA. Using The-
orem 15, the time required by each call to InvertA, T

inv
A,k,ε1

is, O
(
tA
√

κ(I + A/k) log 1/ε1
)

= O
(
tA
√

1 + ‖A‖ log 1/ε1
)
,

and hence, from Theorem 13, the total running time is

Õ
(
tA
√

1 + ‖A‖(log 1/δ + log(1 + ‖A‖)) log 1/δ + (log 1/δ)2
)
,

where the tilde hides polynomial factors in log log n and
log log 1/δ. This completes the proof of Theorem 4.

5.2.3 Beyond SDD - Theorem 7
Theorem 7 requires us to approximate exp(−A)v, for a

given vector v and matrix A = ΠHMHΠ, where M is an
SDD matrix, H is a diagonal matrix with strictly positive

entries and Π is a rank (n − 1) projection matrix, Π
def
=

I −ww� (w is explicitly known and ‖w‖ = 1). Since A may
be neither SDD, nor sparse, Theorem 3 does not suffice,
whereas the running times in Theorems 4 and 5 are slow for
our requirements.

Approximating the exponential of matrices of the form
ΠHMHΠ is required by the algorithm for our main result
(Theorem 1). The SDD solver (Theorem 14) does not suf-
fice to implement the InvertA procedure for such matrices.
Fortunately, Lemma 5 given below implements the InvertA
procedure for such matrices.

Lemma 5. (InvertA Procedure for Theorem 7). Given a
positive integer k, vector y, an error parameter ε1, a rank
(n− 1) projection matrix Π = I −ww� (where ‖w‖ = 1 and
w is explicitly known), a diagonal matrix H with strictly pos-
itive entries, and an invertible SDD matrix M with mM non-
zero entries, let M1 denote the matrix (I + 1/k ·ΠHMHΠ).
We can compute a vector u such that∥∥M−1

1 y − u
∥∥ ≤ ε1

∥∥M−1
1 y

∥∥ ,
in time Õ((mM + n) log n log 1+‖HMH‖

ε1
). (The tilde hides

poly(log log n) factors.)

Before we sketch a proof of Lemma 5, we complete the
proof of Theorem 7 assuming Lemma 5. We use the Ex-
pRational procedure with the InvertA procedure given by
Lemma 5. The time required for each call to InvertA is

T inv
A,k,ε1

def
= Õ((mM + n) log n log 1+‖HMH‖

ε1
), and hence from

Theorem 13, we get that we can compute the desired vector
u approximating e−Av in total time

Õ ((mM + n) log n(log 1/δ + log(1 + ‖HMH‖)) log 1/δ

+ (log 1/δ)3
)
,

where the tilde hides polynomial factors in log log n and
log log 1/δ. This completes the proof of Theorem 7. We now
give a proof sketch for Lemma 5, which is proven by com-
bining the SDD Solver with the Sherman-Morrison formula.

Proof Sketch for Lemma 5. Using the fact that w is an
eigenvector of our matrix, we will split y into two compo-
nents – one along w and one orthogonal (denote it z). Along
w, we can easily compute the component of the required
vector. Among the orthogonal component, we will write our
matrix as the sum of I + 1/k · HMH and a rank one ma-
trix, and use the Sherman-Morrison formula to express its
inverse. Since we can write

(I + 1/k ·HMH)−1 = H−1(H−2 + 1/k ·M)−1H−1,

where (H−2 + M/k) is an SDD matrix, we can estimate
(I + 1/k ·HMH)−1z and (I + 1/k ·HMH)−1w by combining
the SDD Solver with the observation that

∥∥H−1u
∥∥
HM1H

=

‖u‖M1
, for any vector u, and any PSD matrix M1. The pro-

cedure is described in Figure 4. We upper bound the error
in the above estimation procedure. Observe that the num-
ber of non-zero entries in H−2 +M is at most mM +n, and
multiplying a vector with H takes time O(n). Thus, the time
required is dominated by two calls to the SDD solver, giving

a total time of Õ((mM + n) log n log 1+‖HMH‖
ε1

).

5.3 Error Analysis for ExpRational – Proof
of Theorem 13

In this section, we give the steps involved in the proof of
Theorem 13. This is the most technically challenging part of
our proof, and is crucial for the proof of Theorem 13, and in
turn, Theorem 7, which is required to prove our main result,
Theorem 1. We restate Theorem 13 here for completeness.
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Input: An SDD matrix M, a diagonal matrix H with positive entries, a unit vector w and a vector y.

Output: A vector u that approximates (I + 1/k ·ΠHMHΠ)−1y, where Π
def
= 1− ww�.

1. Compute z
def
= y − (w�y)w.

2. Call SDD solver with matrix (H−2 + M/k), vector H−1z and error parameter ε1
6(1+1/k·‖HMH‖) . Denote the vector

returned by β1.

3. Call SDD solver with matrix (H−2 + M/k), vector H−1w and error parameter ε1
6(1+1/k·‖HMH‖) . Denote the vector

returned by β2.

4. Compute

u1
def
= H−1β1 −

1/k · w�HMβ1

1 + 1/k · w�HMβ2
H−1β2 + (w�y)w. (3)

Return u1.

Figure 4: The InvertA procedure for Theorem 7

Theorem 16. (Theorem 13 Restated). Given a symmet-
ric PSD matrix A 	 0, a vector v with ‖v‖ = 1, an er-
ror parameter 0 < δ ≤ 1 and oracle access to InvertA,

for parameters k
def
= O(log 1/δ) and ε1

def
= exp(−Θ(k log k +

log(1+‖A‖))), ExpRational computes a vector u such that
‖exp(−A)v − u‖ ≤ δ, in time O(T inv

A,k,ε1
· k + n · k2 + k3),

where T inv
A,k,ε1

is the time required by InvertA(·, k, ε1).
Proof Sketch for Theorem 13. For notational convenience,

define B
def
= (I+A/k)−1. Let ε1 > 0 and k be the parameters

used by ExpRational.
Recall that, in Lemma 4 (Section 5.1), we showed that for

the Lanczos procedure, the error in the output vector can
be bounded using degree k polynomials. In ExpRational,
however, the computation of the vector Bvi, at step i, is
approximate. Hence, the guarantee given by Lemma 4 for
Lanczos does not hold for ExpRational. Nonetheless, we
can prove the following analogous lemma for ExpRational.

Lemma 6. (ExpRational - Polynomial Approximation).

Let Vk and T̂k be the matrices generated by ExpRational.
Let f be any function such that f(B) and f(Tk) are defined.

Define rk(x)
def
= f(x)− p(x). Then,∥∥∥f(B)v0 − Vkf(T̂k)V

�
k v0

∥∥∥
≤ min

p∈Σk

(ε2 ‖p‖1 + max
λ∈Λ(B)

|rk(λ)|+ max
λ∈Λ(T̂k)

|rk(λ)|), (4)

where 0 < ε2 ≤ 1 is such that ε1 ≤ ε2/(2(k + 1)
3/2).

Thus, we can still bound the error for ExpRational in
terms of degree k polynomial approximations to the func-
tion f. We give a proof sketch for this lemma later in this
section. Assuming Lemma 6, we give a proof sketch for The-
orem 13.

For our application, f(t) = fk(t)
def
= exp (k · (1− 1/t)) , so

that fk((1+ x/k)−1) = exp(−x). We use the polynomials p�k
from the SSV result (Theorem 12) in Lemma 6, and show
how to bound each term in Equation (4) to complete the
proof of Theorem 13.

We pick,

k
def
= max{k0, log2 8c1/δ + 2 log2 log2 8c1/δ} = O (log 1/δ) ,

where k0, c1 are the constants given by Theorem 12. Theo-
rem 12 implies that p�k(0) = 0 and supt∈(0,1] |p�k(t)−fk(t)| ≤
δ/8. Since A 	 0, we get 0 ≺ (I + A/k)−1 � I. Thus,
Λ(B) ⊆ (0, 1], this implies that the second error term in
Equation (4) is bounded by δ/8.

To bound the first term in Equation (4), we use the fol-
lowing lemma to bound ‖p�k‖1 . This lemma is proved by ex-
pressing p�k as an interpolation polynomial on k + 1 equally
spaced points in [0, 1].

Lemma 7. (
1-norm Bound). Given a polynomial p of
degree k such that p(0) = 0 and

sup
t∈(0,1]

∣∣∣e−k/t+k − p(t)
∣∣∣ = sup

x∈[0,∞)

∣∣e−x − p
(
(1 + x/k)−1)∣∣ ≤ 1 ,

we must have ‖p‖1 ≤ (2k)k+1.

Using this lemma, we deduce that for the value of k chosen,
‖p�k‖1 ≤ (2k)k+1. This bounds the first term in Equation (4).

In order to bound the third term in Equation (4), we need

to give bounds on the spectrum of T̂k. Due to approximate

computation, the eigenvalues of T̂k need not lie within Λ(B).

The following lemma bounds the spectrum of T̂k, by express-

ing T̂k as V �
k BVk + E1, where E1 is an error matrix. The

norm of E1 is bounded by using the guarantee of the InvertA
procedure.

Lemma 8. (Eigenvalues of T̂k). The eigenvalues of T̂k lie
in the interval

[
λn(B)− ε1

√
k + 1, λ1(B) + ε1

√
k + 1

]
.

Thus, the eigenvalues of T̂k do not lie significantly outside
Λ(B). However, since fk(t) is discontinuous at t = 0, and
goes to infinity for small negative values, in order to get a
reasonable approximation to f , we need that the eigenvalues

of T̂k are strictly positive. Our choice of ε1 will ensure that

ε1
√
k + 1 < λn(B), and hence, λn(T̂k) > 0. Thus, from

Lemma 8, we get that Λ(T̂k) ⊆ (0, β] for β
def
= 1+ ε1

√
k + 1.

Hence, we can bound the third term in Equation (4) by
supt∈(0,β] |rk(t)|.

Since β > 1, we need to bound we the error in approxi-
mating fk(t) by p�k(t) over (0, β]. The following lemma, gives
us the required error bound. This proof for this lemma
bounds the error over [1, β] by applying triangle inequality
and bounding the change in fk and p over [1, β] separately.
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Lemma 9. (Approximation on Extended Interval). For
any β ≥ 1, any degree k polynomial p satisfies,

sup
t∈(0,β]

|p(t)− fk(t)| ≤ ‖p‖1 · (βk − 1) + (fk(β)− fk(1))

+ sup
t∈(0,1]

|p(t)− fk(t)| .

Now, we can use Lemma 9 to bound the third term in Equa-
tion (4).

We now know how to bound each term in Equation (4).
We plug in the following parameters,

ε2
def
= δ/4·(2k)−k−1 ·(1+1/k·λ1(A))−1, ε1

def
= 1/8·(k+1)−5/2ε2.

Note that these parameters satisfy the condition ε1
√
k + 1 <

λn(B). After simplifying the expressions in Lemma 9, we get

that the total error
∥∥∥f(B)v0 − Vkf(T̂k)V

�
k v0

∥∥∥ is bounded by

δ, as required by Theorem 13.

Running Time.

The running time for the procedure is dominated by k calls
to the InvertA procedure with parameters k and ε1, compu-
tation of at most k2 dot-products and the exponentiation of

T̂k. The exponentiation of T̂k can be done in time O(k3) [23].
Thus the total running time is O(T inv

A,k,ε1
· k + n · k2 + k3).

This completes the proof sketch for Theorem 13. It re-
mains to give a proof sketch of Lemma 6.

Proof Sketch for Lemma 6
In order to prove Lemma 6, we first bound the error in ap-
proximating p(B)v, where p is a polynomial of degree at

most k, by the vector Vkp(T̂k)V
�
k v0. The following lemma

achieves this.

Lemma 10. (Approximate Polynomial Computation). For
any polynomial p of degree at most k and 0 < ε2 ≤ 1 satis-
fying ε1 ≤ ε2/(2(k + 1)

3/2), we have,∥∥∥p(B)v0 − Vkp(T̂k)V
�
k v0

∥∥∥ ≤ ε2 ‖p‖1 .

This lemma shows that we can bound the error in computa-
tion of the polynomial, in terms of the 
1 norm of the polyno-
mial being computed. This is in contrast with Lemma 4 for
the Lanczos method, which states that for computation of
polynomials of degree at most k, the Lanczos method incurs
no error.

Assuming Lemma 10, we can prove Lemma 6 by writing

rk(x)
def
= f(x)− pk(x), where pk is any degree k approxima-

tion to f(x). Thus,

f(B)v − Vkf(Tk)V
�
k v = (pk(B)v0 − Vkpk(T̂k)V

�
k v0)

+ rk(B)v − Vkrk(Tk)V
�
k v,

for any pk. We get Lemma 6 by applying triangle inequality,
using Lemma 10, and minimizing over pk.

Lemma 10 follows if we show that, when p(x) = xt for any
t ≤ k, the error in approximating p(B)v is at most ε2. The
following lemma achieves this.

Lemma 11. (Approximate Computation with T̂k). For

any t ≤ k and 0 < ε2 ≤ 1 satisfying ε1 ≤ ε2/(8(k + 1)
5/2),

we have,
∥∥∥Btv0 − VkT̂

t
kV

�
k v0

∥∥∥ ≤ ε2 .

In order to prove this lemma, we express BVk in terms of
Tk and an error matrix E. This allows us to express BVk −
VkT̂k in terms of E and Vk. Now, we write the telescoping

sum BtVk − VkT̂
t
k =

∑t
j=1 B

t−j(BVk − VkT̂k)T̂
j−1
k , and use

triangle inequality and a brute-force calculation to bound
each term. The calculations involved are rather tedious.
Please see [20] for details.

6. UNIFORM APPROXIMATIONS TO e−x

In this section, we give a proof sketch for the upper bound
in Theorem 6. The lower bound in Theorem 6 was sketched
in detail in Section 3.3. Please see [20] for a discussion about
known results and a complete proof of Theorem 6.

We first give a few preliminaries.

Preliminaries

A function g is called a δ-approximation to a function f over
an interval I, if, supx∈I |f(x)− g(x)| ≤ δ. Note that I can
be either finite or infinite. Such approximations are known
as uniform approximations in approximation theory.

Recall that Σk denote the set of all degree k polynomials,

and, given a degree k polynomial p
def
=
∑k

i=0 ai · xi, the 
1
norm of p, is defined as ‖p‖1 =

∑k
i≥0 |ai|.

6.1 Upper Bound in Theorem 6
In this section, we give the lemmas and steps involved in

the proof of the upper bound in Theorem 6.
Proof Sketch for Upper Bound in Theorem 6. The starting

point for this theorem is the result of Saff, Schönhage and
Varga [28] (Theorem 12). Recall that it states that, for
any positive integer k, there exists a degree k polynomial p�k
such that, p�k((1 + x/k)−1) approximates e−x up to an error
of O(k · 2−k) over the interval [0,∞). Thus, it suffices to
pick k = Θ(log 1/δ), for the polynomial p�k

(
(1 + x/k)−1

)
to

approximate e−x up to an error of δ/2.
The main idea is to construct a polynomial q�(x) approx-

imating (1 + x/k)−1 on the interval [0, b − a]. Given such
a polynomial q�, a natural candidate polynomial approxi-
mating e−x on [0, b − a] is the polynomial p�k(q

�(x)). Or
equivalently, the polynomial e−a · p�k(q�(x − a)) is a candi-
date polynomial approximating e−x on [a, b]. We can then
bound the approximation error as,

sup
x∈[a,b]

|e−a · p�k(q�(x− a))− e−x|

≤ e−a · sup
y∈[0,b−a]

|p�k((1 + y/k)−1)− e−y|

+ e−a · sup
y∈[0,b−a]

|p�k(q�(y))− p�k((1 + y/k)−1)| (5)

We know that the first term is at most δ/2 · e−a. We just
need to bound the second term.

The following lemma gives the required polynomial q�,
using Chebyshev polynomials. For convenience, we define

ν
def
= 1/k.

Lemma 12. (Approximating (1 + νx)−1). For every ν >
0, ε > 0 and d > c ≥ 0, there exists a polynomial q�ν,c,d,ε(x)

of degree
⌈√

1+νd
1+νc

log 2
ε

⌉
such that

sup
x∈[c,d]

|(1 + νx) · q�ν,c,d,ε(x)− 1| ≤ ε.
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In order to bound the second term in Equation (5), we
need to bound the error in approximating p((1 + νx)−1)
by p(q�(x)) for polynomials p of small degree. Lemma 12
implies that the expression (1 + νx) · q� is within 1 ± ε on
[c, d]. If ε is small, for a small positive integer t, [(1+νx)·q�]t
will be at most 1±O(tε). Combining this observation with
the fact that (1 + νx)−1 ≤ 1 for x ∈ [c, d] with c > 0, we
show the following lemma that proves an error bound to
small degree polynomials.

Lemma 13. (Error in Polynomial). For all real ε > 0,
d > c ≥ 0 and a polynomial p of degree k; if kε ≤ 1, then,

sup
x∈[c,d]

|p(q�ν,c,d,ε(x))− p((1 + νx)−1)| ≤ 2kε ‖p‖1 ,

where ν = 1/k, and q�ν,c,d,ε is the polynomial from Lemma 12.

Thus, we can bound the error in approximating p((1+νx)−1)
by p(q�ν,c,d,ε(x)), for small degree polynomials p, in terms of
‖p‖1 .

Thus, if we can bound the 
1 norm of p�k, we would be
done. Lemma 7 already shows such a bound, and allows us
to bound ‖p�k‖1 by (2k)k+1. Now, we can complete the proof.

Let ε
def
= δ

4k(2k)k+1 .Our candidate polynomial is pa,b,δ(x)
def
=

e−a ·p�k
(
q�ν,0,b−a,ε(x− a)

)
, where q�ν,0,b−a,ε is the polynomial

of degree
⌈√

1 + ν(b− a) log 2
ε

⌉
given by Lemma 12. Since

εk < 1, we can use Lemma 13, and deduce that the second
term in Equation (5) is at most e−a · 2kε ‖p�k‖1 ≤ e−a · δ/2.

The degree of pa,b,δ(x) is the product of the degrees of p�k
and q�ν,0,b−a,ε, which is

k

⌈√
1 + ν(b− a) log

2

ε

⌉
= O

(√
max{log 1/δ, (b− a)} · (log 1/δ)

3/2 · log log 1/δ
)

This completes a proof sketch for the upper bound in The-
orem 6.

7. DISCUSSION AND OPEN PROBLEMS
In this paper, using techniques from disparate areas such

as random walks, SDPs, numerical linear algebra and ap-
proximation theory, we have settled the question of design-
ing an asymptotically optimal Õ(m) spectral algorithm for
BS (Theorem 1) and alongwith provided a simple and prac-
tical algorithm (Theorem 2). However, there are several
outstanding problems that emerge from our work.

The main remaining open question regarding the design
of spectral algorithms for BS is whether it is possible to
obtain stronger certificates that no sparse balanced cuts ex-
ist, in nearly-linear time. This question is of practical im-
portance in the construction of decompositions of the graph
into induced graphs that are near-expanders, in nearly-linear
time [35]. OV show that their certificate, which is of the
same form as that of BalSep, is stronger than the certificate
of Spielman and Teng [35]. In particular, our certificate can
be used to produce decompositions into components that are
guaranteed to be subsets of induced expanders in G. How-
ever, this form of certificate is still much weaker than that
given by RLE, which actually outputs an induced expander
of large volume.

With regards to approximating the Matrix exponential, a
computation which plays an important role in SDP-based al-

gorithms, random walks, numerical linear algebra and quan-
tum computing, settling the hypothesis remains the main
open question. Further, as noted earlier, the error analysis
plays a crucial role in making Theorem 3 and, hence, The-
orem 1 work, but its proof is rather long and difficult. A
more illuminating proof of this would be highly desirable. It
is possible that some of the proofs here can be simplified if
we assume that the procedure InvertA(·, k, ε1) is linear. This
is true for the SDD solver and simplifies some proofs in [33].
However, for Theorem 7, which is the main theorem for our
application, we combine the SDD solver with the Sherman-
Morrison formula and the resulting procedure is no longer
linear.

Another question is to close the gap between the upper
and lower bounds on polynomial approximations to e−x over
an interval [a, b] in Theorem 6.
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[25] H. Räcke. Optimal hierarchical decompositions for
congestion minimization in networks. In Proceedings of
the 40th annual ACM symposium on Theory of
computing, STOC ’08, pages 255–264. ACM, 2008.

[26] Y. Saad. Analysis of some Krylov subspace
approximations to the matrix exponential operator.
SIAM J. Numer. Anal., 29:209–228, February 1992.

[27] E. Saff. On the degree of best rational approximation
to the exponential function. Journal of Approximation
Theory, 9(2):97 – 101, 1973.

[28] E. B. Saff, A. Schönhage, and R. S. Varga. Geometric
convergence to e−z by rational functions with real
poles. Numerische Mathematik, 25:307–322, 1975.

[29] K. Schloegel, G. Karypis, and V. Kumar. Sourcebook
of parallel computing. chapter Graph partitioning for
high-performance scientific simulations, pages
491–541. Morgan Kaufmann Publishers Inc., 2003.

[30] J. Sherman. Breaking the multicommodity flow
barrier for O(

√
log n)-approximations to sparsest cut.

In FOCS’09: Proc. 50th Ann. IEEE Symp.
Foundations of Computer Science, 2009.

[31] J. Shewchuk. An introduction to the conjugate
gradient method without the agonizing pain. 1994.
http://www.cs.cmu.edu/~quake-papers/

painless-conjugate-gradient.pdf.

[32] D. B. Shmoys. Approximation algorithms for NP-hard
problems. chapter Cut problems and their application
to divide-and-conquer, pages 192–235. PWS
Publishing Co., 1997.

[33] D. A. Spielman and S.-H. Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification,
and solving linear systems. In STOC ’04: Proc. 36th
Ann. ACM Symp. Theory of Computing, pages 81–90.
ACM, 2004.

[34] D. A. Spielman and S.-H. Teng. Nearly-linear time
algorithms for preconditioning and solving symmetric,
diagonally dominant linear systems. CoRR,
abs/cs/0607105, 2006.

[35] D. A. Spielman and S.-H. Teng. A local clustering
algorithm for massive graphs and its application to
nearly-linear time graph partitioning. CoRR,
abs/0809.3232, 2008.

[36] C. Underhill and A. Wragg. Convergence properties of
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