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Abstract. We study the following question facing businesses in the
world of online advertising: how should an advertising budget be spent
when there are competing products? Broadly, there are two primary
modes of advertising: i) the equivalent of billboards in the real-world and
(search or display) ads online that convert a percentage of the population
that sees them, and ii) social campaigns where the goal is to select a set
of initial adopters who influence others to buy via their social network.
Prior work towards the above question has largely focused on developing
models to understand the effect of one mode or the other. We present a
stochastic dynamics to model advertising in social networks that allows
both and incorporates the three primary forces at work in such adver-
tising campaigns: (1) the type of campaign – which can combine buying
ads and seed selection, (2) the topology of the social network, and (3)
the relative quality of the competing products. This model allows us to
study the evolution of market share of multiple products with different
qualities competing for the same set of users, and the effect that different
advertising campaigns can have on the market share. We present theo-
retical results to understand the long-term behavior of the parameters on
the market share and complement them with empirical results that give
us insights about the, harder to mathematically understand, short-term
behavior of the model.

1 Introduction

Online advertising is now a $1.5 Trillion industry and, on social networks alone,
it accounts for over $23 Billion worldwide [22]. This is currently 13.9% of all
digital ad spending, and 70% of marketers will spend more on social media
advertisements in the coming year [30]. Comparatively, spending on television
advertisements is approximately $39 Billion [21]. In fact, the market is now
so large that outside companies have arisen as consultants in this space; IBM
alone spent over $100 million dollars just to develop their advertising consulting
business in 2014 [29].

It is believed that social influence has a powerful effect on customer decisions
[1, 11, 3], and leveraging its power has been an important aspect of many adver-
tising campaigns. In formal studies, this has primarily been addressed by finding
the optimal set of seeds, i.e., initial adopters who are given the product for free,
with the goal of maximizing the extent or speed at which the product spreads
throughout the social network [15, 14]. The success of such campaigns has been
heralded; see [25]. More traditional forms of advertising focus on buying ads, ei-
ther online (keyword or banner ads) or offline (in billboards, magazines or TV).
The goal of these ads is to maximize the probability that a user who sees the ad
switches to that product. Studies have focused on targeting the right group of
people to view the ad, or improving the ad’s appeal [13, 18].
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These two advertising strategies are often related and the social influence can
magnify the effect of traditional advertising. Indeed, once a user has a product,
they influence their neighbors regardless of whether they converted by being
seeded, seeing an advertisement, or were themselves influence by another. In
order to study these effects quantitatively, one needs a dynamics that can capture
the spread and competition of products via social influence when both types of
advertisements are at play. Such a model, minimalistically, should capture:
(1) the kind of campaigns (a) via seed selection and (b) via traditional ads,
(2) the mechanism of social influence and competition amongst products, and
(3) the quality (which can take into account the price) of products.
While there is a rich body of prior works where mathematical models have
been developed and analyzed for subsets of parameters above, to the best of
our knowledge, there is no formal study that incorporates all of the parameters
(1)-(3) above; see Section 1.2 for a discussion.

1.1 Our Contributions

Our main contributions are a mathematical model to facilitate the study of the
effect of parameters (1)-(3) above on the market share, a set of technical results
that allow us to understand the long-term behavior of the model, and a set of
complementary empirical results that give us insights about the model in the
short-term (where it seems difficult to analyze the model rigorously). Our model
is inspired by viewing the competition among different products for the same
market base as an evolutionary dynamics on a network and realizing that the
various advertising parameters such as quality, traditional advertising and the
spread of influence can be captured as parameters such as fitness, mutation and
selection in this setting; see also [20, 17, 5, 28].

Our Model. Consider the setting in which there are m products and each
person uses exactly one product i ∈ [m] at every time step; i.e., the products
compete for the user base.3 Each time step is a pre-determined time period
during which an individual has an opportunity to switch to a different product;
depending on the domain, the length of this time period could vary from minutes
(e.g., web browsers) to years (e.g., cars). The main quantity we are interested
in is the evolution of the market share, i.e., the fraction of people using each
product.

Quality of a product. We let ai be a positive number such that, given the option
of all products 1, . . . ,m and no outside influence, a user selects option i with
probability proportional to ai. Hence, the ais capture the relative quality (which
can take the price into account) of product i compared to other products; we
refer to this as the product’s fitness. The owner of product i can potentially
increase ai by improving their product’s quality.

Social network and competition. The influence network is captured by a weighted,
directed graph G = (V,E,w) where each user is a node u ∈ V , and a directed
edge uv ∈ E represents the fact that u has influence on v. Let n = |V | denote

3 We can think of one products as the “null” choice – i.e., no product is selected.
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the number of nodes or users. The weights w : E 7→ IR≥0 quantify the amount of
influence u has on v. If we let Si(t) be the set of vertices who are using product
i at time t, then the probability that a node v decides to use product i at time
t + 1 due to social influence is proportional to

∑
uv∈E,u∈Si(t) w(uv)ai. In other

words, node v will select a product based on which products her neighbors use,
the quality of those products, and the amount of influence the neighbors have on
her. We expect a node to be more easily influenced by a neighbor using a good
product than a bad one – folding the fitness into the influence step captures the
competition between products in this way.

Traditional advertising. We allow users to switch products independently of the
social influence as in the previous paragraph, e.g., after seeing a billboard ad. We
let Qvij be the probability that node v using product j spontaneously converts,
or mutates to product i. For mathematical convenience, we assume that each of
these m ×m mutation matrices Qv > 0 and is the same (denoted Q) for each
v. Note that Q need not be a symmetric matrix. A company could increase its
spending on traditional advertising to increase Qij for j 6= i.

Seed selection. Finally, the owner of a product can select a seed set S ⊆ V of
people to whom they give the product for free in the beginning of the process,
effectively forcing their conversion. The users are under no obligation to continue
with this product in future time steps.

The problem. When allocating a budget, a company with product i should then
evaluate the tradeoffs between increasing ai (i.e., improving the product), in-
creasing Qi· (i.e., increasing ads and hence mutations to itself), or increasing |S|
(i.e., getting more initial adopters).

As in prior work, we assume the influence network is fixed, and hence a com-
pany cannot modify it to its benefit. We also assume that network can be seeded
only at the first time step. These aspects combine to form a stochastic dynamical
system that can be viewed as a Markov chain over the state space {1, 2, . . . ,m}n.
Our Markov chain can be described in several ways without changing the limiting
distribution. For instance, one could consider a description where the traditional
advertising competes with the social influence; for example, at each time step,
with some probability a node spontaneously changes its state from i to j, and
with some probability it is influenced by a neighboring node. We discuss possible
shortcomings and extensions of our model in Section 4.

Theoretical Results. One of the main difficulties that arises in analyzing our
model is the fact that the ais are not all the same. We start by noting that when
Qij ∈ (0, 1) for all i, j and the in-degree of each node in the influence network is at
least one, our process forms an ergodic Markov chain (even if the network is not
connected) and, thus, has a unique stationary distribution. As a consequence, it
is clear that the selection of the seed set S has no effect in the long-term since the
process converges to this stationary distribution regardless of the initial state.
However, the network structure may still play a role in determining the shape of
the steady state distribution. Allowing some Qijs to be zero might give rise to
absorbing states in our Markov chain; this would also allow for the possibility of
the starting state affecting the steady state. See Section 4 for a discussion.
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Towards computing this unique steady state, it can be shown that closed form
solutions for the steady state do not exist except in the most trivial of cases.
Even for a very simple settings of our model (e.g., unweighted, undirected graphs
with Qij = 0 for i 6= j, a result of [5] can be used to show that computing the
steady state exactly is #P hard. This leaves us with two alternatives: (1) derive
weaker, but asymptotically good, bounds on the steady state of the stochastic
process analytically. Or (2) deploy the Markov Chain Monte Carlo (MCMC)
framework to get samples from close to the steady state in order to compute the
required statistics – here, it becomes important to prove that the mixing time
of the underlying Markov chain is fast.

Deterministic approximation. Towards (1), we study a deterministic dynamical
system that can be viewed as a mean-field approximation to the stochastic dy-
namics. Roughly, this process has the same set of parameters, but instead of a
single product, it maintains a probability distribution at each node that indicates
its preference among the products. The nodes update these probabilities deter-
ministically taking into account the influence of its neighbors and the fitnesses
and the matrix Q; see Equation (1) and Lemma 1. The advantage of working
with this deterministic process is that we can precisely characterize its steady
state (see Theorem 1). Further, computing this deterministic steady state turns
out to be an eigenvector problem for an m×m matrix. As a simple consequence,
for the two-product case, one can even obtain a formula for the steady state in
closed form for which it is clear that the steady state will primarily consist of
the product with the highest quality.

Concentration. Our theoretical results indicate that, despite the possibility of
correlations, the market shares in the steady state of our stochastic dynamics are
likely to be concentrated around those predicted by the deterministic dynamics
(see Theorem 2). The quality of the concentration depends on the number of
nodes in the network and the minimum in-degree of the network (the higher
these numbers are, the better the concentration). Thus, when the network’s size
and degree are large, the deterministic process could be taken as a first-order
approximation to the stochastic process.

Mixing time. Towards (2), we show that for all graphs with large enough mini-
mum degree (roughly log n – see Theorem 3), the Markov chain underlying our
stochastic dynamics mixes fast. Key to the proof turns out to be the determin-
istic dynamics mentioned above. We show how the geometry of the unique fixed
point of this deterministic dynamics can also allow us to construct a contractive
coupling to prove rapid mixing.

To summarize, our model is amenable to a rigorous analysis and, importantly,
our theoretical results suggest algorithms with provable bounds to estimate the
statistics such as market share from the steady state. Further, the time to conver-
gence to steady state for a particular set of parameters for our model being fast
in many cases implies that the advertising strategies are efficient and can have
the desired outcome in a reasonable time – after all, a strategy that needs 100
years to attain 99% of the market share is not useful. Extending our results to
all networks (removing the minimum degree condition) seems quite challenging.
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Empirical Results. While the theoretical results above give an indication of
the asymptotic market share, sometimes we may be interested in the short-
term value of an advertising campaign.4 We study this regime in Section 3,
where we conduct empirical studies in order to understand the effect of the
model parameters in the short-term. For each experiment, we isolate a single
parameter, either the network, the seed set, the mutation parameters, or the
product quality, and strive to evaluate its effect on the market share.

Networks. Despite differences in origin, size and properties of the three real-
world networks we consider, we observe that the market share of a product over
time converges relatively fast; see Figure 1(a). While the networks we study have
relatively low degree (and hence our theoretical results do not apply), we believe
that this fast convergence is because the diameter of the networks, as in most
social networks, is small. Proving that small diameter suffices for fast conver-
gence would be an interesting direction for future work. Furthermore, we observe
that on all networks, for our simulation parameters, the population convergence
to having almost all of its mass on the best product. As we will see in later
experiments, the model is extremely sensitive to the gap in quality between the
best and second-best product. Perhaps when the qualities are (nearly) the same,
the effect of the network in the steady state would be more clear empirically.
Despite these similarities, it is clear that the model converges faster on some
networks than on others, and an exploration of the short-term market share
remains important.

Parameters S,a and Q. While the choice of which seeds are selected for S affect
the market share in the short-term, the improvement is roughly linear in the
size of the seed set (see Figure 1(b)). In contrast, the improvement in market
share is a sigmoid in a1 and Q1· with the inflection point in the range of realistic
values (see Figure 1). Hence, this suggests that there are thresholds for a1 and
Q1·, such that (if our budget allows) we should ensure to cross. The threshold for
a1 is simply the maximum quality of a competing product – intuitively, having
the best product ensures that the steady state is in our favor. As long as a1 is
larger than the other a·, we find that small increases in Q1· seem to have the
largest positive effect in the market share in the short-term. In essence, the Q1·
function as a way to continuously generate seeds (as opposed to selecting them
only once with S). This suggests that as long as we have the best product, in
the short-term, increasing Q1·, e.g., by improving or increasing the number of
ads, is more important both than selecting seeds and improving product quality.
Overall, our results lead to the following qualitative insights:

– the initial seed set has a minimal effect on the limiting market share,
– a new product must have the highest quality in order to gain significant

market share, and
– improving traditional advertisement can be more effective than improving

seed set selection.
4 For example, for products such as cars, time steps may be on the order of years.

Hence, we may be interested in a constant number of time steps, which is less than
the fastest mixing time we could hope for.
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1.2 Related Work

There is a large literature on optimal advertising strategies in order to maximize
the adoption of goods (see [26] for a survey). These works focus on optimizing the
ads and product quality; e.g., [13, 18]. In parallel, another long line of work on
local interaction with regard to social influence and the adoption of products (see
[19] for a survey). Such a work often uses stochastic models (known varyingly as
diffusion or cascades) and dynamical systems exist (see [7] and [4] respectively).
Models for understanding social influence in networks often take the form of
some kind of a threshold rule, as first proposed by [10, 24], and many variations
have been studied. Towards this, theoretical and empirical studies have focused
on the problems of finding either the optimal size of, or the optimal seeds in,
the set S (e.g., [14, 12]). For instance, in an important piece of work, [15] proved
that the problem of which seeds to select, given a size constraint, is NP-hard
and also provide greedy approximation algorithms for this problem.

A key contribution of our work is a model which allows us to optimal advertis-
ing and in the presence of social influence, thus bridging these two literatures. To
the best of our knowledge, very few works have tackled this challenging problem.
In two notable exceptions study a monopolist firm (i.e., the a single product)
being sold to a network of individuals that can influence each other. Here, the
quality of the product can be captured by a level of effort [9] or price [9] set
by the firm, and the product spreads across a (random, infinite) network via a
dynamical system which depends on the degree distribution of the vertices. In
contrast, our formulation allows us to consider arbitrary and finite networks in
which multiple products compete for market share.

Our stochastic model draws from two different models that arose in the
study of asexual finite populations; specifically that of [6] and [17] (see also
[20] for a general reference on evolutionary models). The first model underlies
the study of evolution of viruses and has been used [27] to inform drug design
despite their apparent simplicity. There is no explicit network in the first model,
although it is equivalent to our model in a complete unweighted graph with self-
loops if all Qij = q for i 6= j and some fixed parameter q. The second model
studies network models of evolution and there is recent rigorous work [5], but
without mutations which are crucial to our setting. Prior to our work on network
models with mutations, the only rigorous studies we are aware of were for the
complete graph case; initiated by [6] and followed by [28]. The network structure
makes the analysis significantly harder and raise many interesting questions.
Our terminology (fitness, mutation, and selection) is emphasized to draw these
parallels to the informed reader. The use of deterministic dynamics or mean-field
approximations to study stochastic processes has a rich history in the probability
literature [23, 31, 2], however, non-asymptotic results such as our concentration
result are rare. Also, the use of such a deterministic dynamics to bound the
mixing time of a stochastic process is quite new and, to the best of our knowledge
in two different lines of works; see [28, 8] and the discussions therein.
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2 Theoretical Results

In this section we formally state our theoretical results which concern the be-
havior of the market share in the long-term. At the expense of slight repetition,
we begin by stating the stochastic dynamics formally and introducing the cor-
responding random variables. Subsequently, we describe the deterministic dy-
namics that will help us approximate the steady state behavior of our stochastic
dynamics for large enough networks. This is followed by a proof of the approxi-
mation result. Finally, we present our result on the mixing time of the stochastic
process. Due to space constraints, we simply sketch the main ideas; complete
proofs appear the full version of this paper.

2.1 Preliminaries and the Stochastic Process
For a vertex v, let Nin[v] denote the set of edges coming in to v. Let F be an
m ×m diagonal matrix where Fii = ai and Fij = 0 for i 6= j. Recall that Qij
denotes the probability of type j mutating to type i. Q is column-stochastic: if
1m denotes the all 1 vector of dimension m, 1>mQ = 1m.

At each time t ≥ 0, each node in the graph has a type in {1, . . . ,m}. We

denote the type of vertex v ∈ V at time t by the random variable X
(t)
v . In

this notation, given (X
(t)
u )u∈V , our stochastic dynamics can be mathematically

thought of as the following three steps: 1) Each vertex u replaces the type X
(t)
u

by a
X

(t)
u

many copies of the same type. 2) Each vertex v looks at the set of

vertices which point to it, i.e., Nin[v] and selects who to copy in the following
way. For each u ∈ Nin[v], first it further multiplies each type currently residing
at u by a factor of w(uv). Subsequently, it samples a type from the multi-set
union of the populations residing at each u ∈ Nin[v] uniformly at random and

independently for each v. For a vertex v, call this chosen type Z
(t+1)
v . 3) Z

(t+1)
v

independently mutates for each v according to the matrix Q. That is, a type
j mutates to a type i with probability Qij . The resulting type at vertex v is

denoted by X
(t+1)
v . As remarked earlier, there are other ways to describe the

model that does not change the stochastic properties; for instance, the order of
the second and the third steps are interchangeable or can be combined.

For convenience we work with integral weights and fitnesses, however, note
that the matrix F can be scaled by an arbitrary constant without changing either
process; similarly, the weights of incoming edges to any node can be scaled by
an arbitrary constant. As long as the scaling is by constants, the theorems and
their proofs continue to hold as such. For the analysis, by replacing a weighted
edge with multiple edges, we may assume without loss of generality that the
graph is unweighted. Hence, subsequently, we think of Nin[v] as a multi-set and
when we talk of its cardinality, it is the cardinality of the multi-set. We let
δ = minv |Nin[v]|.

We start by noting that when Q > 0 and δ ≥ 1, this stochastic process
has a unique stationary distribution which we denote by π. Note, that this π
will in general depend on the network structure. Thus, we can study the time
to stationarity or the mixing time of the Markov chain. Recall that the mixing
time tmix(ε) is defined as the smallest time such that for any starting state, the
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distribution of the stateX(t) at time t is within total variation distance ε of π. For
concreteness, we use tmix(1/4). It is well known that tmix(ε) ≤ tmix(1/4) log 1/ε.

2.2 The Deterministic Dynamical System

We now present the deterministic counterpart to our stochastic model and argue
how it functions as its first order approximation. Here, at each time t ≥ 0, each
node in the graph has a probability distribution over the set {1, . . . ,m}. We

denote this distribution for a vertex v ∈ V at time t by the vector p
(t)
v ∈ ∆m

where ∆m = {x ∈ IRm, x ≥ 0,
∑m
i=1 xi = 1}. Given (p

(t)
v )v∈V , we now describe

how to generate p
(t+1)
v . In the first step, each vertex v multiplies each coordinate

of p
(t)
v be the corresponding fitness to obtain Fp

(t)
v . Note that this is no longer

a probability vector. Then, each type present at each vertex, mutates according

to the matrix Q resulting in an intermediate population QFp
(t)
v . Finally, each

vertex v looks at the set of vertices which point to it, i.e., Nin[v] and updates

its distribution over the types to p
(t+1)
v by taking the weighted average of the

intermediate probability distributions from among u ∈ Nin[v] and subsequently
normalizing it to be a probability distribution. Formally,

p(t+1)
v =

∑
u∈Nin[v]

QFp
(t)
u∑m

j=1

∑
u∈Nin[v]

QFp
(t)
u (j)

. (1)

Let P (t) denote the m×n matrix where the u-th column is the vector p
(t)
u . Thus,

we can think of the deterministic process as implicitly specifying a dynamical
system f : ∆n

m 7→ ∆n
m defined by the rule P (t+1) = f(P (t)). We show that

starting from any initial point, the dynamical system converges to a unique limit
P which has the property that each column is the same; thus, rather surprisingly,
the correlations induced by Equation (1) disappear with time and the network
has no effect in the long-term behavior of this dynamics.

The understanding of this P reduces to understanding the long-term behavior
of the dynamics g : ∆m 7→ ∆m which maps a point x to g(x) = QFx

‖QFx‖1 . Since

QF > 0, the Perron-Frobenius theorem implies that QF has a unique positive
eigenvector p ∈ ∆m with a positive eigenvalue λ1. Therefore g(·) has a unique
fixed point p in the interior of the simplex ∆m. The Perron-Frobenius theorem
also implies that for every x ∈ ∆m, limt→∞(QF )tx/λt1 → p. In fact, we show

that for all t >
4 log 1

cε

log
λ1
|λ2|

, we have ‖gt(x)− p‖∞ < ε for any x ∈ ∆m, where c is a

constant independent of x and λ1 > |λ2| are the top two eigenvalues of QF with
largest magnitudes. Using this convergence result, we prove that P, the limit of
f , is the matrix p1>n .

Theorem 1. (Limit of the deterministic process.) Let f be the dynamical
system as defined above. Then, given an ε > 0, for all X ∈ ∆n

m, ‖f t(X) −
p1>n ‖∞ ≤ ε for t ≥ 4 log

M(m+1)
cδε

log
λ1
|λ2|

, for some constant c independent of X and the

graph. λ1, λ2 are as above, M =
∑m
i=1 ai and δ = minv |Nin[v]|.



9

The difficulty in the proof of this theorem arises from the fact that f is a non-
linear dynamical system acting on a matrix. The key observation is that when f
is applied on a rank-one matrix, the outcome is a rank-one matrix. Consequently,
we can prove the theorem above when the starting point is a rank one matrix.
To prove it when the starting point is general rank matrix

∑
i eiv

>
i , (here ei is

the standard basis vector) we can write it as a sum of rank-one matrices and
show that the application of f t (f t-times) results in, roughly, a matrix of the
form

∑
i(QF )teiviB

>
t , where A is a fixed positive matrix, while Bt is less nice.

However, we can use the fact that (QF )tei → p for all i, along with the fact that
f has a bounded Lipschitz constant to complete the proof of the theorem. The
proof of this theorem is deferred to the full version due to space constraints.

2.3 Relationship Between the Stochastic and Deterministic Models

We now present our results relating the deterministic and the stochastic process.

We let X(t) ∈ {0, 1}m×n be the matrix where X
(t)
iv = 1 if the state of vertex v

is i and 0 otherwise. Thus, with a slight overload of notation (which should be

clear from the context), X
(t)
v denotes the column vector of X(t) corresponding

to the vertex v.
Thus, (X(t)1n)ei is the number of vertices of type i. Let D(t) denote the

vector 1
n · X

(t)1n. The starting point is the following easy to verify equality
which relates one step of the Markov chain to the deterministic process.

Lemma 1. E[D(t+1) | X(t)] = 1
n · f(X(t))1n.

Moreover, using Chernoff bounds, we can show that D(t+1) is close to 1
n ·

f(X(t))1n with high probability. Ideally, we would like to show that if X ∈
{0, 1}m×n is sampled from the stationary distribution π of the stochastic pro-
cess, then the corresponding counting vector D = 1

nX1n is concentrated around
the vector p (as defined in Theorem 1). An obvious approach would be to argue
that we can iterate this argument over t steps and take a union bound to en-
sure that D(t) remains close to the deterministic process with a high probability.
However, this approach suffers from a couple of major problems: the first is that
it is not clear how to iterate. It would be possible to iterate if we could ensure
that 1

n · f(X(t))1n is very close to g
(
1
nX

(t)1n
)
. This is for instance true when

the underlying graph is a complete graph but does not hold in general. Even
assuming that this is true for a moment, the second obstacle is that g is not
necessarily a global contraction and in fact might even expand discrepancies,
so that the discrepancy between the behavior of the random process and the
deterministic prediction can grow exponentially with time. Thus, we can use the
union bound only over at most O(log n) steps. To get around this problem, we
use the fact that p is an attracting fixed point of g. Thus, we know that within
O(log n) steps, g reaches a n−Θ(1)-neighborhood of its fixed point, and does not
subsequently leave this neighborhood. Using this fact, we can essentially boot-
strap the naive union bound argument described in the previous paragraph to
show that starting from any state, the random process also reaches in Θ(log n)
steps a distribution that is concentrated on a n−Θ(1) neighborhood of the fixed
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point of the deterministic process. Thus, the behavior of the deterministic limit
close to its fixed point turns out to be the crucial ingredient in understanding
the convergence properties of the stochastic finite population process. The fol-
lowing theorem shows that most of the mass of the stationary distribution of
the stochastic process is concentrated around the fixed point of the deterministic
process when the underlying network has large minimum degree.

Theorem 2. (Concentration of the stationary distribution.) There exist
constants γ, β > 0 depending only upon m, Q and F such that if σ ≥ (log n)−γ ,
and if D is the frequency vector obtained from the stationary distribution π of
the stochastic process, then Pr [‖D − p‖∞ ≤ 2σ] = 1 − 1/nβ for all graphs with
minimum degree δ ≥ Ω((log n)1+α) where α > 0 is an arbitrarily small constant.

Note that our empirical results (see Section 3) indicate that this should hold for
all networks with small diameter and we leave it as a challenging open problem to
prove this formally. We omit the proof of this theorem due to space constraints.

2.4 The Mixing time of the Stochastic Process

We now present our main result on the mixing time of our stochastic dynamics.

Theorem 3. (Mixing time.) Let m,Q,F be fixed and let G be a graph on n
vertices (for n large enough) such that that δ = Ω

(
(log n)1+α

)
for any α > 0.

Then, tmix(1/4) = O(log n), where m,Q,F, α are constants.

Note that the mixing time bound is quite surprising as the size of the state
space is 2n and the mixing time roughly a log log of the size of the state space.
The proof relies on a multi-phase coupling argument. Establishing a coupling
between two identical (but correlated) copies of a Markov chain which reduces
the expected distance is a generic technique to establish mixing time bounds. At
a very high level, we can demonstrate a contractive coupling when the two chains
reach close enough to their steady state, which is related to the convergent point
of the deterministic dynamical system. To prove that they reach close to their
steady state we need to ensure that there is measure concentration in each step
of the Markov process, that the number of steps is small, and that is where the
minimum degree bound seems to help us. The proof is quite technical and builds
on an extends the framework of [28] who proved a similar result for the case of
the complete graph. We omit the proof here due to space constraints.

3 Empirical Results: Short-Term Market Share

We now consider an empirical evaluation of the effect of the model parameters
on the market share in the short-term. In lieu of a real influence network, we
consider three real-world social network datasets for our simulations. We run
the stochastic process by considering a network in which all users have the same
product, and introduce a single new product to the market (i.e., m = 2). We
call our new product A, and let it correspond to i = 1. We then measure the
new product’s market share as a function of the various parameters S, a and
Q. Unless specified otherwise, in the simulations we take a1 = 1.1, a2 = 1,
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and Qij = 0.0025 for i 6= j,5 the seed set S is a single randomly selected node
in the graph, and the process is run for T = 30 time steps on the Facebook
network described below. We average over k = 50 simulations; error bars depict
the standard error of the mean.

Networks. The networks we use for our simulations were collected by the Stan-
ford Network Analysis Project and are publicly available [16]. We take the largest
strongly connected component of each network for our simulations. We use a
subset of the Facebook network, an ASTRO-PH collaboration network from the
e-print arXiv website in which nodes are authors and there is an edge between
two nodes if they are co-authors on at least one paper, and the Enron email
network where nodes are email addresses internal to the Enron company and an
edge represents the fact that at least one email was exchanged. We purposely
select very different types of networks across which influence could propagate,
and further compare against the complete graph and the cycle where the number
of nodes is the same as for the Facebook graph.

Despite dramatic differences in the origin, size and connectivity of the net-
works, all networks appear to converge relatively fast to similar steady-states (see
Figure 1(a)). There is no clear relationship between any of the graph properties
and the observed mixing time, although we hypothesize that the small diameter
plays a key role. Indeed, the cycle reaches the steady state at a much slower
rate; exploring this further could be an interesting direction for future work.
Due to space constraints, in the remainder of this section we only present the
simulation results from the Facebook network dataset; the results on the other
network topologies are similar and lead to the same qualitative conclusions.

Seed Sets. As observed in Section 2, if Q > 0, the seed set does not have an
effect on the market share in the steady state as the chain is ergodic. However,
it could affect the process in the short-term. Hence, we study the effect of the
seed set by varying the number of nodes it contains, and which set of nodes are
selected. Several empirical studies have shown that a good heuristic for maxi-
mizing influence is to select the highest-degree nodes, while poorly performing
heuristics include selecting the lowest-degree nodes (see, e.g., [12]). Hence, for
a seed set of size k, we compare two possible sets: the set that contains the k
highest degree vertices, and the set that contains the k lowest degree vertices,
breaking ties arbitrarily.

In Figure 1(b) we observe that, roughly, increasing the number of seeds in
the set only improves the market share linearly; indeed, in order to capture 50%
of the market after T = 30 time steps, even using high-degree seeds, one would
have had to start by seeding 30% of the population. In contrast, as we will see
below, there are nonlinear gains observed by increasing either a1 or Q12. This
suggests that, even in the short-term, increasing the number of seeds may not
be the best approach. Furthermore, while optimizing the selection of seeds is
indeed beneficial, it does not appear to lead to significant gains, simply altering
the constant of the linear improvement rather than changing its nature.

5 The choice of parameters is inspired by the parameters we get when a fitting our
model to real world datasets; see the full version of the paper.
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Fig. 1. The effect of the various model parameters on the market share.
Unless varied in the given simulation, we take a1 = 1.1, a2 = 1, Qij = 0.0025
for all i 6= j, and we use the Facebook network.

Product Fitness and Mutation. We then vary both Q12 and a1 and mea-
sure the market share both after T = 30 time steps and in the steady state
(see Figure 1). Here, a2 = 1 and Q21 = 0.01; i.e., our competitors have an
extremely aggressive and successful advertising campaign that spontaneously
converts nodes. We first observe that Q12 has almost no effect on the steady
state of the distribution. However, in the short-term, the choice of Q12 can re-
sult in attaining anything from 0 to the maximal market share within 30 time
steps. We observe that Q12 > .001 suffices to reach close to the steady state
distribution, and below this range the transition is a sharp sigmoid; e.g., in-
creasing Q12 from 0.0025 to 0.005 when a1 = 1.1 increases the market share
by over 30%. Furthermore, we observe that even for very small differences in
quality, e.g., a1 > 1.05 > 1 = a2, which corresponds to users preferring product
A approximately 51.2% of the time, product A will capture almost 100% of the
market in the limit. However, a1 needs to be approximately 2.5, which corre-
sponds to being preferred approximately 71.4% of the time, in order to achieve
the same market share in the short-term (T = 30) when Q12 = 0.001. Again,
the improvement in market share as a function of a1 is a sigmoid, making the
improvement in marketshare superlinear in a1 when it is less than 50%. These
observations suggest that it is likely to be more beneficial to improve the fitness
or the advertising as opposed to the seed set in order to improve market share.
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4 Conclusion and Future Work
The main conceptual contribution of this paper is to introduce a new model to
study the role and interaction of the key forces of interest in online advertising.
Technically, we show that our model, not only goes beyond the state-of-the-art
in capturing the relevant parameters, but can also be analyzed rigorously for a
large class of graphs. Combined with our empirical and numerical results on the
short-term behavior of advertising campaigns on the market share, we are led to
interesting predictions and take-homes.

An obvious generalization of our model would allow for node-specific param-
eters av and Qvij . The different fitnesses/mutations can capture distinct user
preferences, or targeted advertising campaigns that only display online ads to
certain users. In particular, this may mean that some or all of the Qvijs are
0 or tend to 0; this would leads to additional mathematical challenges as the
Markov chain may no longer be ergodic and hence multiple stationary distribu-
tions would arise. As with other models that do not incorporate mutations [5],
we expect that the initial seed set can have a larger effect in such settings as the
process may converge to different steady states.

We expect that the proof techniques that we developed in this paper – in
particular the interplay between stochastic and deterministic dynamical systems
– might be useful not only to analyze extensions and variations of our model
but also in other settings. From a technical standpoint, our theoretical results
strongly relied on the minimum degree assumption; an interesting open question
is whether we can prove them under the condition that the diameter of the graph
is small (as may be the case in many applications).
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