
Who’s The Weakest Link?

Nikhil Devanur , Richard J. Lipton, and Nisheeth K. Vishnoi
{nikhil,rjl,nkv}@cc.gatech.edu

Georgia Institute of Technology, Atlanta, GA 30332, USA.

Abstract. In this paper we consider the following problem: Given a
network G, determine if there is an edge in G through which at least c
shortest paths pass. This problem arises naturally in various practical
situations where there is a massive network (telephone, internet), and
routing of data is done via shortest paths and one wants to identify most
congested edges in the network.
This problem can be easily solved by one all pair shortest path compu-
tation which takes time O(mn), where n is the number of nodes and m
the number of edges in the network. But for massive networks - can we
do better? It seems hard to improve this bound by a deterministic algo-
rithm and hence we naturally use randomization. The main contribution
of this paper is to a give a practical solution (in time significantly less
than O(mn)) to a problem of great importance in industry.

Keywords. Shortest Path, Massive Networks, Approximation, Random Sam-
pling.

1 Introduction

Recent times have seen the emergence of huge networks, for instance, the in-
ternet, telephone networks, peer to peer networks, the World Wide Web, etc.
Of particular interest are the internet and the telephone networks ([16]), which
present a horde of practical problems.

Routing is a key element in making these huge networks work efficiently. The
most common routing scheme used is the shortest-path-routing, i.e. the route
between two nodes is the shortest path joining them. The advantage of using
shortest paths1 is that all the routes can be computed in O(mn) time (where m
is the number of edges and n the number of nodes) (see [4, 7, 18, 8]).

Maintenance of such huge networks is an immense challenge. The problem
that arises in this scenario is that of identifying congested edges/nodes or hot-
spots or bottlenecks. This is because these are the places which are most prone
to breakdown. Moreover, any problem at these spots causes maximum damage.
Another objective is load-balancing in order to reduce delays. This is done by
identifying the congested edges/nodes and rerouting some routes. So it is only
natural that identifying such edges/nodes is of top priority.

Congestion of an edge (a node) is defined as the number of routes that pass
through an edge (a node). Assume that there is a unique route between any
two nodes. For the sake of simplicity of presentation, we consider only simple,
undirected graphs, with unweighted edges. One can consider many problems
related to congestion in a network. This paper is centered around the following
problems:

1. Is there an edge with congestion at least c?
2. Find the most congested edge.
3. More generally, find the top t most congested edges/nodes.
4. Given an edge, estimate its congestion.

Note that if we can solve 1, then we can solve 2 by binary search. In fact 1
seems to be the most useful and general problem one might want to solve. This
is exactly the problem we address in this paper. This problem arises in industry
(in particular is of interest to Telecordia [16]) where one wants to identify most
congested edges in the network.

One may construct simple examples where deterministic algorithms don’t
perform much better than Ω(mn). So the natural approach is to use randomness.
Although these techniques are very simple, they are very powerful and have
been used to give important results: [9, 12, 13, 5, 15] and [14]. Similar ideas using
randomization were used by Karger et al. in [10] and [11] to estimate the value
of max-flow.
1 Even though we only consider shortest-path-routing in this paper, we do not use any

particular property of the shortest path. Our techniques will work for most routing
schemes, but the interesting ones are those in which a route can be computed in
O(m) time. For any such routing scheme, all the routes can be computed in O(mn2)
time. Notice that one cannot hope to do better than O(mn) time, since for a tree,
at least O(n2) = O(mn) time is required.

Since we use randomization naturally leads us to consider a slight relaxation
of the problem: Given parameters c and ε, if there exists an edge with congestion
≥ c(1+ε), then output YES with probability ≥ 1−1/poly(n). If for all edges, the
congestion is ≤ c(1− ε), then output NO with probability ≥ 1−1/poly(n). Note
that Problem 2 can also be approximately solved using the above relaxation.

We also consider those graphs where there is a “clear” separation between
the set of most congested edges and the rest, and we are needed to output the
edges among the most congested.

This and similar problems are omnipresent in industry and to our surprise,
have not been systematically studied in the Computer Science literature- to the
best of our knowledge. In this paper we provide a formal setting for some of
these problems and give extremely practical algorithms using elementary ideas.
We make no attempts to optimize the constants in this paper.

1.1 Formal Setting

Let G = (V,E) be an undirected, unweighted, simple graph with n := |V |,m :=
|E|.

Definition 1. Given an edge e ∈ E, define σ(e), the congestion of an edge, to
be the number of shortest paths passing through e.

To make this well defined, we label the vertices and use the lexicographically
least shortest path for each pair of vertices. One can also define the congestion
of a node similarly:

Definition 2. Given a node v ∈ V define σ(v), the congestion of a node, to
be the number of shortest paths containing v as an interior point.

As before, we label the nodes and consider the lexicographically shortest path.
Also note that ∑

e:e∼v

σ(e) = 2σ(v) + n− 1

Definition 3. Let P be any set of shortest paths. Define σP (e) to be the number
of shortest paths in the set P that pass through e.

Definition 4. Let g(G) := maxe∈E σ(e) be the maximum congestion in the
graph G.

Definition 5. Suppose that there exist δ > 0 and a function f(n), such that E
is partitioned into two classes,

S1 :=
{
e ∈ E : σ(e) ≥ n1+δ(1 + f(n))

}
(1)

S2 :=
{

e ∈ E : σ(e) ≤ n1+δ

1 + f(n)

}
. (2)

Then we say that there is an f-separation at δ in G.

That is, we assume that there is a separation between the congestion of edges
in S1 and that of the others, S2. The problems that we want to solve are2:

Problem 1. Given c, is there an edge e ∈ E with σ(e) ≥ c?

Problem 2. Find an edge e ∈ E with the maximum congestion, i.e., σ(e) = g(G).
Or more generally, find t most congested edges.

Problem 3. Given that there is an f -separation at δ in G, find the set S1, as
defined in (1) (and hence S2).

Problem 4. Given an edge e ∈ E, estimate σ(e), its congestion.

1.2 Our results

We outline the main results3 obtained in this paper.
We give an algorithm for solving Problem 1. The following theorem proves

the correctness and establishes its running time:

Theorem 1. For all ε > 0, there exists an algorithm A running in time O(km)
where k = log n

ε2 · n2

c such that

– If ∃e ∈ E, σ(e) ≥ c(1 + ε) then Pr [A outputs YES] ≥ 1− n−2

– If ∀e ∈ E, σ(e) ≤ c(1− ε) then Pr [A outputs NO] ≥ 1− n−2

An immediate corollary of the above theorem gives a solution to Problem 2.

Corollary 1. Given a graph G such that g(G) � n log3 n there exists4 an algo-
rithm running in time o(mn) which finds an edge e such that

Pr
[
σ(e) <

(
1− 1

log n

)
g(G)

]
<

1
n

A variant of the previous algorithm solves Problem 3

Theorem 2. given a graph G with an f-separation at δ, there is an algorithm
such that the probability that it outputs S1 correctly is at least 1−n−2, and runs
in time O(km) where k = log n

ε2 · n1−δ and ε = 1/f(n)− 1/f2(n)

Again, we get as a corollary that Problem 4 can be solved.

Corollary 2. Given G = (V,E), e ∈ E, with σ(e) � n log3 n, there exists an
algorithm which runs in time o(mn) and finds σ̃(e) such that

Pr [|σ̃(e)− σ(e)| ≥ σ(e)/ log n] ≤ n−4

2 We define all the problems w.r.t the congestion on edges. However, they can also be
defined w.r.t the congestion on vertices.

3 As with the problems, the results are also stated w.r.t the congestion on edges, and
the corresponding results for congestion on vertices follow immediately.

4 For functions f(n), g(n), f(n)� g(n) is the same as g(n) = o(f(n)).

1.3 Organization of the paper

In section 2 we give an algorithm to solve Problem 1, and prove Theorem 1. We
give a slight variation of the previous algorithm in Section 3 that proves Theorem
2. In the same section we compare our algorithm with the deterministic O(mn)
algorithm. In Section 4, using results from the theory of random graphs, we show
how to further improve the running time. Section 5 considers a coupon-collection
approach to the problem. In section 6 we present related open problems.

2 Main result

2.1 Algorithm

Given an undirected graph G = (V,E) on n vertices and m edges, the number
of shortest paths is

(
n
2

)
. The main idea of the algorithm is random sampling

followed by finding if there exists an edge whose observed congestion is greater
than some cut-off.

The algorithm picks k paths at random, uniformly and independently5. k
will be determined later. Given k, define the “cut-off” to be

c(k, n, c) :=
kc(
n
2

) .

The algorithm is as follows:

Input: The graph G = (V, E), c

Choose k paths at random, uniformly and independently. Let the set of paths
chosen be P ;
Compute all the shortest paths and σP (e) for each e ∈ E;
if for some edge e ∈ E, σP (e) ≥ c(k, n, c) then

Output: YES

else
Output: NO

end

Algorithm 1: Algorithm for detecting an edge with high congestion

Each of the shortest paths in P can be computed in O(m) time, so it takes
O(km) time to compute all the shortest paths in P . Note that in the same
amount of time, σP (e) can be computed for all e ∈ E. So the total running time
of the algorithm is O(mk).

5 One way to do this is pick two vertices randomly without replacement and consider
the path with those as endpoints.

2.2 Analysis

We need to determine k, the number of paths to be picked. Also, we need to
analyze the probability of success. In fact, k will depend on the probability of
success desired, besides c and f .

Let Xe := σP (e),∀e ∈ E be random variables where P is the set of paths
picked by the (randomized) algorithm. Each Xe can be written as a sum of k
independent and identical Bernoulli trials, Xe = Xe1+Xe2+ . . .+Xek where Xei

is 1 if the ith path chosen by the algorithm passes through e and 0 otherwise.

Pr[Xei = 1] =
σ(e)(

n
2

)
µ := E[Xe] =

kσ(e)(
n
2

)
Lemma 1. For all ε > 0, if

k ≥ 8 log n

ε2
· n2

c
and ∃e ∈ E, σ(e) ≥ c(1 + 2ε),

Then
Pr[e is not picked by the algorithm] < n−4

Proof. All probabilities are taken over the choice of the set of paths chosen, P .

Pr[e is not picked] = Pr [Xe < c(k, n, c)]

The version of Chernoff bound we use is [1],

Pr[Xe < (1− ε)µ] < exp(−µε2/2)

For e,

µ ≥ kc(1 + 2ε)(
n
2

)
⇒ µ(1− ε) ≥ kc(

n
2

) = c(k, n, c)

⇒ Pr[Xe < c(n, k, c)] ≤ Pr [Xe < (1− ε)µ]
≤ exp(−µε2/2)

Moreover,

k ≥ 8 log n

ε2
· n2

c
≥ 4 log n ·

2
(
n
2

)
ε2c

⇒ ε2µ

2
≥ ε2kc

2
(
n
2

) ≥ 4 log n

⇒ Pr[Xe < c(n, k, c)] ≤ exp(−µε2/2) ≤ exp(−4 log n) = n−4

Similarly, the probability that some edge with low congestion is picked by
the algorithm can also be bounded: (We skip the proof.)

Lemma 2. For all ε > 0, if

k ≥ 12 log n

ε2
· n2

c
and ∀e ∈ E, σ(e) ≤ c(1− 2ε)

Then

Pr[e is picked by the algorithm] < n−4

The proof of Theorem 1 is an easy application of the above lemmas.

Proof (of Theorem 1). Consider Algorithm 2.1 with k = 12 log n
ε2 · n2

c . For each
edge e with σ(e) ≥ c(1 + ε) or σ(e) ≤ c(1 − ε), the probability that it ends
up resulting in the wrong answer is n−4. Since there are at most n2 edges, the
probability that one of them ends up resulting in the wrong answer is at most
n−2. So with probability at least 1− n−2 the algorithm outputs correctly.

2.3 Comparison

To get a running time better than O(mn), we need c to be asymptotically bigger
than n log n. (n is large so any reasonably growing function like log n will do.)
Another important fact about these massive graphs is that they are sparse.
Thus we may assume that m = O(n). Hence the maximum congestion is Ω(n).
In particular, if c ∼ n1+δ then the running time would be O

(
mn1−δ log n

ε2

)
. For

δ = 1/2 and n = 106, our algorithm is guaranteed to be roughly 1000 times faster
than the deterministic algorithm. This is a significant saving in the running
time. Moreover simulations suggest that the running time is much less than our
guarantee. Also if the maximum congestion is O(n), then it means that no edge
is congested too much, and the graph is “nice”. Hence our algorithm can be used
to detect that too!

3 Finding separation

Suppose that we are given that there is an f -separation at δ in G. Using essen-
tially the same technique as in the previous section, one can identify the set S1

of most congested edges. Define the “cut-off” to be

c(k, n, δ) :=
kn1+δ(

n
2

) .

Input: The graph G = (V, E), δ, f()

Choose k paths at random, uniformly and independently. Let the set of paths
chosen be P ;
Compute all the shortest paths and σP (e) for each e ∈ E;
Output: The edges with σP (e) ≥ c(k, n, δ).

Algorithm 2: Algorithm for finding separation

We state, without proof, the corresponding parameters that give the required
result:

Lemma 3. If

k ≥ 12 log n

ε2
· n1−δ and ε =

1
f(n)

− 1
f2(n)

Then
Pr[e ∈ S1 is not picked by the algorithm] < n−4

Pr[e ∈ S2 is picked by the algorithm] < n−4

To prove Theorem 2 consider Algorithm 3 with k = 12 log n
ε2 · n1−δ and ε =

1/f(n)− 1/f2(n).
We need f(n) to diverge as n goes to infinity. This means that 1 + 1/f(n)

gets close to 1 as n tends to infinity. In other words, the separation need not be
very “strong”, but should exist. This is fairly reasonable. However, we need to
know where (i.e., the δ) and by how much (i.e., the f) the separation occurs.

4 Further optimization using random graphs

A (further) reduction in running time might be obtained by the fact that the
time taken to compute single pair shortest path is the same as that for single
source shortest path computation. So one might choose an appropriate set of
vertices and run single source shortest path computations only on those vertices.
Consider a graph H on the same set of vertices as G, with an edge between u and
v if and only if the algorithm chose the shortest path between u and v. Clearly,
it is enough to run single-source shortest path algorithms on any vertex cover of
H. Since finding a minimum vertex cover is NP-Hard, we find a 2-approximation
to the minimum vertex cover by finding a maximal matching in H, [17].

Erdös and Rényi in [6] define the random graph model G(n, p) which consists
of all graphs on n vertices, in which the edges are chosen independently and with
probability p. Since we pick the shortest paths uniformly at random, H belongs
to G(n, p) where p = k/

(
n
2

)
and k is the number of samples. For the parameters

in our case, where p = o(1/n), the size of the minimum vertex cover is Ω(k) (see
[3]). Unfortunately, it turns out that this does not give an order of magnitude
improvement. It does, however, give an improvement in the constants.

5 A heuristic based on Coupon Collection

In this section we give a heuristic for detecting the edge with maximum conges-
tion based on the idea of coupon collection. The main idea is explained via the
following toy problem: “given a bin with b balls of k different colors, where bi

are the number of balls of color i. What is argmaxi bi?” The coupon collection
based approach for this problem is the following: “For a parameter t, which will
depend upon bi’s, sample with replacement from the bin, and output the color
which is the first color to repeat t times.” Two remarks are in order:

1. This technique will in general not give good estimates for the values bi’s.
2. The probability of success and the running time of this algorithm is a function

of bi’s.

Of course, the random sampling technique used in the previous sections ap-
plies here. But this technique might give faster estimates in cases where bi’s are
extremely non-uniform. For a full technical discussion on this problem and its
varians refer to the book by Blom, Holst and Sandell [2].

The problem of identifying the edge e such that σ(e) = g := maxe′∈E σ(e′)
is a generalization of the coupon collection scheme spelled above. In our setting
the balls are the paths and the colors are the edges. Each ball can have multiple
colors. Hence for a given parameter t we sample paths until some edge repeats
t times, and output that edge.

There are simple graphs like Kn where this heuristic behaves very badly.
Another case where this heuristic will fail is when the number of edges with con-
gestion slightly less than g outnumber by far the number of edges with congestion
g. But for most graphs like the following, this heuristic is very quick.

This gives a very quick heuristic to detect such cases. We leave as an open
problem to fully analyze the running time and success probability of this heuris-
tic.

6 Conclusion and Open Problems

In this paper, we considered the problem of finding if there exists an edge with
congestion ≥ c for given c. We give fast and practical algorithms which are also
simple to implement. One of the main contributions of this paper is to formalize
this extremely important problem and put it in a theoretical framework. Any
improvement in the running time would be of significance. Another interesting
question is to find σ(e) given e, in time better than O(mn). We partially answer
the question in Section 4. A deterministic solution to this problem would be very
interesting.

References

1. N. Alon, J. Spencer, The Probabilistic Method, Wiley Interscience, 2000.

Fig. 1. A Good Graph

2. G. Blom, L Holst, D Sandell, Problems and Snapshots from the World of Probabil-
ity, Springer-Verlag, 1994.

3. B. Bollobas, Random Graphs, Cambridge University Press, 2001.

4. E.W. Dijkstra, A note on two problems in connection with graphs, Numerische
Mathematik, 1, (1976),83-89.

5. M. Dyer, A. Frieze, R. Kannan, A random polynomial algorithm for approximating
the volume of convex bodies, Journal of the ACM, (1991), 1-17.

6. P. Erdös, A. Rényi, On the evolution of random graph, Publ. Math. Inst. Hung.
Acad. Sci., 5, (1960), 17-61.

7. R.W. Floyd, Algorithm 97: Shortest Path, Communications of the ACM, 5, (1962),
345.

8. D.B. Johnson, Efficient algorithms for shortest paths in sparse networks, Journal
of the ACM, 24, (1977), 1-13.

9. N.L. Johnson, S. Kotz, Urn Models and Their Applications, John Wiley, New York,
1977.

10. D.R. Karger, Better Random Sampling Algorithms for Flows in Undirected
Graphs. Proc. SODA 1998.

11. D.R. Karger, M.S. Levine, Random sampling in residual graphs, Proc. ACM STOC,
2002.

12. R.M. Karp, M. Luby, Monte Carlo algorithms for the planar multi-terminal net-
work reliability problem, Journal of Complexity, 1, (1985), 45-64.

13. R.M. Karp, M. Luby, N. Madras, Monte Carlo approximation algorithms for enu-
meration problems, Journal of Algorithms, 10, (1989), 429-448.

14. R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press,
1995.

15. K. Mulmuley, Computational Geometry, An Introduction Through Randomized Al-
gorithms, Prentice Hall, 1994.

16. Telecordia. Private Communication, 2002.
17. V.V. Vazirani, Approximation Algorithms, Springer Verlag, 2001.
18. S. Warshall, A theorem on Boolean matrices, Journal of the ACM, 9, (1962), 11-21.

