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Abstract

In this paper we disprove the following conjecture due to
Goemans [16] and Linial [24] (also see [5, 26]): “Every
negative type metric embeds into �1 with constant distor-
tion.” We show that for every δ > 0, and for large enough
n, there is an n-point negative type metric which requires
distortion at-least (log log n)1/6−δ to embed into �1.

Surprisingly, our construction is inspired by the Unique
Games Conjecture (UGC) of Khot [19], establishing a pre-
viously unsuspected connection between PCPs and the the-
ory of metric embeddings. We first prove that the UGC
implies super-constant hardness results for (non-uniform)
SPARSEST CUT and MINIMUM UNCUT problems. It is al-
ready known that the UGC also implies an optimal hard-
ness result for MAXIMUM CUT [20].

Though these hardness results depend on the UGC, the
integrality gap instances rely “only” on the PCP reductions
for the respective problems. Towards this, we first construct
an integrality gap instance for a natural SDP relaxation
of UNIQUE GAMES. Then, we “simulate” the PCP reduc-
tion and “translate” the integrality gap instance of UNIQUE

GAMES to integrality gap instances for the respective cut
problems! This enables us to prove a (log log n)1/6−δ in-
tegrality gap for (non-uniform) SPARSEST CUT and MIN-
IMUM UNCUT, and an optimal integrality gap for MAX-
IMUM CUT. All our SDP solutions satisfy the so-called
“triangle inequality” constraints. This also shows, for the
first time, that the triangle inequality constraints do not add
any power to the Goemans-Williamson’s SDP relaxation of
MAXIMUM CUT.

The integrality gap for SPARSEST CUT immediately im-
plies a lower bound for embedding negative type metrics
into �1. It also disproves the non-uniform version of Arora,
Rao and Vazirani’s Conjecture [5], asserting that the in-
tegrality gap of the SPARSEST CUT SDP, with the triangle
inequality constraints, is bounded from above by a constant.

1. Introduction

In recent years, the theory of metric embeddings has
played an increasing role in algorithm design. Best approx-
imation algorithms for several NP-hard problems rely on
techniques (and theorems) used to embed one metric space
into another with low distortion.

Bourgain [7] showed that every n-point metric embeds
into �1 (in fact into �2) with distortion O(log n). Indepen-
dently, Aumann and Rabani [6] and Linial, London and Ra-
binovich [25] gave a striking application of Bourgain’s The-
orem: An O(log n) approximation algorithm for SPARS-
EST CUT. The approximation ratio is exactly the distor-
tion incurred in Bourgain’s Theorem. This gave an alter-
nate approach to the seminal work of Leighton and Rao
[23], who obtained an O(log n) approximation algorithm
for SPARSEST CUT via a LP-relaxation based on muticom-
modity flows. It is well-known that an f(n) factor algo-
rithm for SPARSEST CUT can be used iteratively to de-
sign an O(f(n)) factor algorithm for BALANCED SEPA-
RATOR: Given a graph that has a (1

2 ,
1
2 )-partition cutting an

α fraction of the edges, the algorithm produces a (1
3 ,

2
3 )-

partition that cuts at-most O(f(n)α) fraction of the edges.
Such partitioning algorithms are very useful as sub-routines
in designing graph theoretic algorithms via the divide-and-
conquer paradigm.

The results of [6, 25] are based on the metric LP relax-
ation of SPARSEST CUT. Given an instance G(V,E) of
SPARSEST CUT, let dG be the n-point metric obtained as a
solution to this LP. The metric dG is then embedded into �1
via Bourgain’s Theorem. Since �1 metrics are non-negative
linear combinations of cut metrics, an embedding into �1
essentially gives the desired sparse cut (up to an O(log n)
approximation factor). Subsequent to this result, it was real-



ized that one could write an SDP relaxation of SPARSEST

CUT, and enforce an additional condition, that the metric
dG belong to a special class of metrics, called the negative
type metrics (denoted by �22). Clearly, if �22 embeds into �1
with distortion g(n), then one would get a g(n) approxima-
tion to SPARSEST CUT.1

The results of [6, 25] led to the conjecture that �22 em-
beds into �1 with distortion Cneg, for some absolute con-
stant Cneg. This conjecture has been attributed to Goemans
[16] and Linial [24], see [5, 26]. This conjecture, which we
will henceforth refer to as the (�22, �1, O(1))-Conjecture, if
true, would have had tremendous algorithmic applications
(apart from being an important mathematical result). Sev-
eral problems, specifically cut problems (see [11]), can be
formulated as optimization problems over the class of �1
metrics, and optimization over �1 is an NP-hard problem
in general. However, one can optimize over �22 metrics in
polynomial time via SDPs (and �1 ⊆ �22). Hence, if �22 was
embeddable into �1 with constant distortion, one would get
a computationally efficient approximation to �1 metrics.

However, no better embedding of �22 into �1, other than
Bourgain’s O(log n) embedding (that works for all met-
rics), was known until recently. A breakthrough result of
Arora, Rao and Vazirani (ARV) [5] gave an O(

√
log n) ap-

proximation to (uniform) SPARSEST CUT by showing that
the integrality gap of the SDP relaxation is O(

√
log n)

(see also [28] for an alternate perspective on ARV). Sub-
sequently, ARV techniques were used by Chawla, Gupta
and Räcke [9] to give an O(log3/4 n) distortion embed-
ding of �22 metrics into �2, and hence, into �1. This re-
sult was further improved to O(

√
log n log log n) by Arora,

Lee, and Naor [3]. The latter paper implies, in particu-
lar, that every n-point �1 metric embeds into �2 with dis-
tortion O(

√
log n log log n), almost matching decades old

Ω(
√

log n) lower bound due to Enflo [12]. Techniques from
ARV have also been applied, to obtain O(

√
log n) approx-

imation to MINIMUM UNCUT and related problems [1], to
VERTEX SEPARATOR [13], and to obtain a 2 − O( 1√

log n
)

approximation to VERTEX COVER [18]. It was conjec-
tured in the ARV paper, that the integrality gap of the SDP
relaxation of SPARSEST CUT is bounded from above by
an absolute constant (they make this conjecture only for
the uniform version, and the (�22, �1, O(1))-Conjecture im-
plies it also for the non-uniform version). Thus, if the
(�22, �1, O(1))-Conjecture and/or the ARV-Conjecture were
true, one would potentially get a constant factor approxi-
mation to a host of problems, and perhaps, an algorithm
for VERTEX COVER with an approximation factor better
than 2! Clearly, it is an important open problem to prove
or disprove the (�22, �1, O(1))-Conjecture and/or the ARV-

1Algorithms based on metric embeddings (typically) work for the non-
uniform version of SPARSEST CUT, which is more general. The Leighton-
Rao algorithm worked only for the uniform version.

Conjecture. The main result in this paper is a disproval of
the (�22, �1, O(1))-Conjecture and a disproval of the non-
uniform version of the ARV-Conjecture, see Conjecture
A.15.2 The disprovals follow from the construction of a
super-constant integrality gap for the non-uniform version
of BALANCED SEPARATOR (which implies the same gap
for the non-uniform version of SPARSEST CUT). We also
obtain integrality gap instances for MAXIMUM CUT and
MINIMUM UNCUT. In the following sections, we describe
our results in detail and present an overview of our �22 versus
�1 lower bound. Due to the lack of space, the only techni-
cal details we are able to provide in this version of the pa-
per are: The basic setup, which relates cuts and metrics, in
Appendix A, and the overall approach for the disproval of
(�22, �1, O(1))-Conjecture in Appendix B. The full version
of this paper will have all the details.

2. Our Results

2.1. The Disproval of (�22, �1, O(1))-Conjecture

We prove the following theorem which follows from the
integrality gap construction for non-uniform BALANCED

SEPARATOR. See Section A for definitions and basic facts.

Theorem 2.1 For every δ > 0 and for all sufficiently large
n, there is an n-point �22 metric which cannot be embedded
into �1 with distortion less than (log log n)1/6−δ.

Remark 2.2 One of the crucial ingredients for obtaining
the lower bound of (log log n)1/6−δ in Theorems 2.1 and
2.3 is Bourgain’s Junta Theorem [8]. A recent improvement
of this theorem due to Mossel et al. [27] improves both of
our lower bounds to (log logn)1/4−δ.

2.2. Integrality Gap Instances for Cut Problems

SPARSEST CUT and BALANCED SEPARATOR (non-
uniform versions), as well as MAXIMUM CUT and MINI-
MUM UNCUT are defined in Section A.4. Natural SDP re-
laxations for these problems are also described there. All
the SDPs include the so-called triangle inequality con-
straints: For every triple of vectors u,v,w in the SDP so-
lution, ‖u − v‖2 + ‖v − w‖2 ≥ ‖u − w‖2. Note that
these constraints are always satisfied by the integral solu-
tions, i.e., +1,−1 valued solutions. We prove the following
two theorems:

Theorem 2.3 SPARSEST CUT, BALANCED SEPARATOR

(non-uniform versions of both) and MINIMUM UNCUT

have an integrality gap of at-least (log log n)1/6−δ, where

2We believe that even the uniform version of the ARV-Conjecture is
false.



δ > 0 is arbitrary. The integrality gap holds for standard
SDPs with triangle inequality constraints.

Theorem 2.4 Let αGW ( ≈ 0.878) be the approxima-
tion ratio obtained by Goemans-Williamson’s algorithm for
MAXIMUM CUT [17]. For every δ > 0, the Goemans-
Williamson’s SDP has an integrality gap of at-least αGW +
δ, even after including the triangle inequality constraints.

This theorem relies on a Fourier analytic result called Ma-
jority is Stablest Theorem due to Mossel et al. [27].

We note that without the triangle inequality constraints,
Feige and Schechtman [15] already showed an αGW + δ
integrality gap. One more advantage of our result is that
it is an explicit construction, where as Feige and Schecht-
man’s construction is randomized (they need to pick ran-
dom points on the unit sphere). Our result shows that adding
the triangle inequality constraints does not add any power to
the Goemans-Williamson’s SDP. This nicely complements
the result of Khot et al. [20], where it is shown that, as-
suming the Unique Games Conjecture (UGC), it is NP-hard
to approximate MAXIMUM CUT within a factor better than
αGW + δ.

2.3. Hardness Results for SPARSEST CUT and BAL-
ANCED SEPARATOR Assuming the UGC

Our starting point is the hardness of approximation re-
sults for cut problems assuming the UGC (see Section C
for the statement of the conjecture). We prove the follow-
ing result:

Theorem 2.5 Assuming the UGC, SPARSEST CUT and
BALANCED SEPARATOR (non-uniform versions) are NP-
hard to approximate within any constant factor.

This particular result was also proved3 by Chawla et al.
[10]. Similar result for MINIMUM UNCUT is implicit in
[19], where the author formulated the UGC and proved
the hardness of approximating MIN-2SAT-DELETION. As
mentioned before, Khot et al. [20] proved that the UGC
implies αGW + δ hardness result for MAXIMUM CUT. As
an aside, we note that the UGC also implies optimal 2 − δ
hardness result for VERTEX COVER, as shown in [22].

Therefore, assuming the UGC, all of the above problems
are NP-hard to approximate within respective factors, and
hence, the corresponding integrality gap examples must ex-
ist (unless P=NP). In particular, if the UGC is true, then
the (�22, �1, O(1))-Conjecture is false. This is a rather pecu-
liar situation, because the UGC is still unproven, and may
very well be false. Nevertheless, we are able to disprove
the (�22, �1, O(1))-Conjecture unconditionally (which may

3We would like to stress that our work was completely independent,
and no part of our work was influenced by their paper.

be taken as an argument supporting the UGC). Indeed, the
UGC plays a crucial role in our disproval. Let us outline the
basic approach we take. First, we build an integrality gap
instance for a natural SDP relaxation of UNIQUE GAMES

(see Figure 5). Surprisingly, we are then able to translate
this integrality gap instance into an integrality gap instance
of SPARSEST CUT, BALANCED SEPARATOR, MAXIMUM

CUT and MINIMUM UNCUT. This translation mimics the
PCP reduction from the UGC to these problems (note that
the same reduction also proves hardness results assuming
the UGC)! We believe that this novel approach will have
several applications in the future. Already, inspired by
our work, Khot and Naor [21] have proved several non-
embeddability results (e.g. Edit Distance into �1), and Arora
et al. [2] have constructed integrality gap instances for the
MAXQP problem.

2.4. Integrality Gap Instance for the UNIQUE GAMES

SDP Relaxation

As mentioned above, we construct an integrality gap in-
stance for a natural SDP relaxation of UNIQUE GAMES

(see Figure 5). Here, we choose to provide an informal
description of this construction (the reader should be able
to understand this construction without even looking at the
SDP formulation).

Theorem 2.6 (Informal statement) LetN be an integer and
η > 0 be a parameter (think of N as large and η as very
tiny). There is a graph G(V,E) of size 2N/N with the fol-
lowing properties: Every vertex u ∈ V is assigned a set of
unit vectors B(u) := {u1, . . . ,uN} that form an orthonor-
mal basis for the space R

N . Further,

1. For every edge e = (u, v) ∈ E, the set of vectors
B(u) and B(v) are almost the same upto some small
perturbation. To be precise, there is a permutation πe :
[N ] �→ [N ], such that ∀ 1 ≤ i ≤ N , 〈uπe(i),vi〉 ≥
1 − η. In other words, for every edge (u, v) ∈ E,
the basis B(u) moves “smoothly/continuously” to the
basis B(v).

2. For any labeling λ : V �→ [N ], i.e., assignment of
an integer λ(u) ∈ [N ] to every u ∈ V , for at-least
1 − 1

Nη fraction of the edges e = (u, v) ∈ E, we
have πe(λ(u)) = λ(v). In other words, no matter how
we choose to assign a vector uλ(u) ∈ B(u) for every
vertex u ∈ V , the movement from uλ(u) to vλ(v) is
“discontinuous” for almost all edges (u, v) ∈ E.

3. All vectors in ∪u∈V B(u) have co-ordinates in the set
{ 1√

N
, −1√

N
}, and hence, any three of them satisfy the

triangle inequality constraint.



The construction is rather non-intuitive: One can walk
on the graph G by changing the basis B(u) continuously,
but as soon as one picks a representative vector for each ba-
sis, the motion becomes discontinuous almost everywhere!
Of course, one can pick these representatives in a continu-
ous fashion for any small enough local sub-graph of G, but
there is no way to pick representatives in a global fashion.
This construction eventually leads us to a �22 metric which,
roughly speaking, is locally �1-embeddable, but globally,
it requires super-constant distortion to embed into �1 (such
local versus global phenomenon has also been observed by
Arora et al. [4]).

3 Difficulty in Proving �2
2 vs. �1 Lower Bound

In this section, we describe the difficulties in construct-
ing �22 metrics that do not embed well into �1. This might
partly explain why one needs an unusual construction as the
one in this paper. Our discussion here is informal, without
precise statements or claims.

Difficulty in constructing �22 metrics: To the best of our
knowledge, no natural families of �22 metrics are known
other than the Hamming metric on {−1, 1}k. The Hamming
metric is an �1 metric, and hence, not useful for the purposes
of obtaining �1 lower bounds. Certain �22 metrics can be
constructed via Fourier analysis, and one can also construct
some by solving SDPs explicitly. The former approach has
a drawback that metrics obtained via Fourier methods typ-
ically embed into �1 isometrically. The latter approach has
limited scope, since one can only hope to solve SDPs of
moderate size. Feige and Schechtman [15] show that se-
lecting an appropriate number of points from the unit sphere
gives a �22 metric. However, in this case, most pairs of points
have distance Ω(1) and hence, the metric is likely to be �1-
embeddable with low distortion.

Difficulty in proving �1 lower bounds: To the best of our
knowledge, there is no standard technique to prove a lower
bound for embedding a metric into �1. The only interesting
(super-constant) lower bound that we know is due to [6, 25],
where it is shown that the shortest path metric on a constant
degree expander requires Ω(log n) distortion to embed into
�1.

General theorems regarding group norms: A group
norm is a distance function d(·, ·) on a group (G, ◦), such
that d(x, y) depends only on the group difference x ◦ y−1.
Using Fourier methods, it is possible to construct group
norms that are �22 metrics. However, it is known that any
group norm on R

k, or on any group of characteristic 2, is
isometrically �1-embeddable (see [11]). It is also known
(among the experts in this area) that such a result holds
for every abelian group. Therefore, any approach, just via
group norms would be unlikely to succeed, as long as the

underlying group is abelian. (But, only in the abelian case,
the Fourier methods work well.)

The best known lower bounds for the �22 versus �1
question were due to Vempala ( 10

9 for a metric obtained
by a computer search), and Goemans (1.024 for a metric
based on the Leech Lattice), see [29]. Thus, it appeared
that an entirely new approach was needed to resolve the
(�22, �1, O(1))-Conjecture. In this paper, we present an ap-
proach based on tools from complexity theory, namely, the
UGC, PCPs, and Fourier analysis of boolean functions. In-
terestingly, Fourier analysis is used both to construct the �22
metric, as well as, to prove the �1 lower bound.

4. Overview of Our �2
2 vs. �1 Lower Bound

In this section, we present a high level idea of our
�22 versus �1 lower bound (see Theorem 2.1). Given the
construction of Theorem 2.6, it is fairly straight-forward
to describe the candidate �22 metric: Let G(V,E) be the
graph, and B(u) be the orthonormal basis for R

N for ev-
ery u ∈ V , as in Theorem 2.6. Fix s = 4. For u ∈ V and
x = (x1, . . . , xN ) ∈ {−1, 1}N , define the vector Vu,s,x as
follows:

Vu,s,x :=
1√
N

N∑
i=1

xiu⊗2s
i (1)

Note that since B(u) = {u1, . . . ,uN} is an orthonormal
basis for R

N , every Vu,s,x is a unit vector. Fix t to be a
large odd integer, for instance 2240 + 1, and consider the
set of unit vectors S = {V⊗t

u,s,x | u ∈ V, x ∈ {−1, 1}N}.
Using, essentially, the fact that the vectors in ∪u∈V B(u) are
a good solution to the SDP relaxation of UNIQUE GAMES,
we are able to show that every triple of vectors in S satisfy
the triangle inequality constraint and, hence, S defines a �22
metric. One can also directly show that this �22 metric does
not embed into �1 with distortion less than (logN)1/6−δ .

However, we choose to present our construction in a dif-
ferent and a quite indirect way. The (lengthy) presentation
goes through the Unique Games Conjecture, and the PCP
reduction from UNIQUE GAMES integrality gap instance to
BALANCED SEPARATOR. Hopefully, our presentation will
bring out the intuition as to why and how we came up with
the above set of vectors, which happened to define a �22 met-
ric. At the end, the reader will recognize that the idea of
taking all +/− linear combinations of vectors in B(u) (as
in Equation (1)) is directly inspired by the PCP reduction.
Also, the proof of the �1 lower bound will be hidden inside
the soundness analysis of the PCP!

The overall construction can be divided into three steps:

1. A PCP reduction from UNIQUE GAMES to BAL-
ANCED SEPARATOR.



2. Constructing an integrality gap instance for a natural
SDP relaxation of UNIQUE GAMES.

3. Combining these two to construct an integrality gap in-
stance of BALANCED SEPARATOR. This also gives a
�22 metric that needs (log log n)1/6−δ distortion to em-
bed into �1.

We present an overview of each of these steps in three
separate sections. Before we do that, let us summarize the
precise notion of an integrality gap instance of BALANCED

SEPARATOR. To keep things simple in this exposition, we
will pretend as if our construction works for the uniform
version of BALANCED SEPARATOR as well. (Actually, it
doesn’t. We have to work with the non-uniform version and
it complicates things a little.)

4.1. SDP Relaxation of BALANCED SEPARATOR

Given a graph G′(V ′, E′), BALANCED SEPARATOR

asks for a ( 1
2 ,

1
2 )-partition of V ′ that cuts as few edges as

possible. (However, the algorithm is allowed to output a
roughly balanced partition, say (1

4 ,
3
4 )-partition.) Following

is an SDP relaxation of BALANCED SEPARATOR:

Minimize
1

|E′|
∑

e′={i,j}∈E′

1
4
‖vi − vj‖2 (2)

Subject to

∀ i ∈ V ′ ‖vi‖2 = 1 (3)

∀ i, j, l ∈ V ′ ‖vi − vj‖2 + ‖vj − vl‖2 ≥ ‖vi − vl‖2(4)∑
i<j ‖vi − vj‖2 ≥ |V ′|2 (5)

Figure 1. SDP relaxation of the uniform ver-
sion of BALANCED SEPARATOR

Note that a {+1,−1}-valued solution represents a true
partition, and hence, this is an SDP relaxation. Constraint
(4) is the triangle inequality constraint and Constraint (5)
stipulates that the partition be balanced. The notion of inte-
grality gap is summarized in the following definition:

Definition 4.1 An integrality gap instance of BALANCED

SEPARATOR is a graph G′(V ′, E′) and an assignment of
unit vectors i �→ vi to its vertices such that:

• Every almost balanced partition (say (1
4 ,

3
4 )-partition;

the choice is arbitrary) of V ′ cuts at-least α fraction of
edges.

• The set of vectors {vi| i ∈ V ′} satisfy (3)-(5), and the
SDP objective value in Equation (2) is at-most γ.

The integrality gap is defined to be α/γ. (Thus, we desire
that γ � α.)

The next three sections describe the three steps involved
in constructing an integrality gap instance of BALANCED

SEPARATOR. Once that is done, it follows from a folk-
lore result that the resulting �22 metric (defined by vectors
{vi| i ∈ V ′}) requires distortion at-least Ω(α/γ) to embed
into �1. This would prove Theorem 2.1 with an appropriate
choice of parameters.

4.2. The PCP Reduction from UNIQUE GAMES to
BALANCED SEPARATOR

An instance U(G(V,E), [N ], {πe}e∈E) of UNIQUE

GAMES consists of a graph G(V,E) and permutations
πe : [N ] �→ [N ] for every edge e = (u, v) ∈ E. The
goal is to find a labeling λ : V �→ [N ] that satisfies as
many edges as possible. An edge e = (u, v) is satisfied if
πe(λ(u)) = λ(v). Let OPT(U) denote the maximum frac-
tion of edges satisfied by any labeling.

UGC (Informal Statement): It is NP-hard to decide
whether an instance U of UNIQUE GAMES has OPT(U) ≥
1−η (YES instance) or OPT(U) ≤ ζ (NO instance), where
η, ζ > 0 can be made arbitrarily small by choosing N to be
a sufficiently large constant.

It is possible to construct an instance of BAL-
ANCED SEPARATOR G′

ε(V
′, E′) from an instance

U(G(V,E), [N ], {πe}e∈E) of UNIQUE GAMES. We
describe only the high level idea here. The construction is
parameterized by ε > 0. The graph G′

ε has a block of 2N

vertices for every u ∈ V . This block contains one vertex
for every point in the boolean hypercube {−1, 1}N . Denote
the set of these vertices by V ′[u]. More precisely,

V ′[u] := {(u,x) | x ∈ {−1, 1}N}

We let V ′ := ∪u∈V V
′[u]. For every edge e = (u, v) ∈ E,

the graphG′
ε has edges between the blocks V ′[u] and V ′[v].

These edges are supposed to capture the constraint that the
labels of u and v are consistent (i.e. πe(λ(u)) = λ(v)).
Roughly speaking, a vertex (u,x) ∈ V ′[u] is connected to
a vertex (v,y) ∈ V ′[v] if and only if, after identifying the
co-ordinates in [N ] via the permutation πe, the Hamming
distance between the bit-strings x and y is at-most εN .

This reduction has the following two properties:

Theorem 4.2 (PCP reduction: Informal statement)

1. (Completeness/YES case): If OPT(U) ≥ 1 − η, then
the graph G′

ε has a ( 1
2 ,

1
2 )-partition that cuts at-most

η + ε fraction of its edges.



2. (Soundness/NO Case): If OPT(U) ≤ 2−O(1/ε2), then
every ( 1

4 ,
3
4 )-partition of G′

ε cuts at-least
√
ε fraction

of its edges.

Remark 4.3 We were imprecise on two counts: (1) The
soundness property holds only for those partitions that par-
tition a constant fraction of the blocks V ′[u] in a roughly
balanced way. We call such partitions piecewise balanced.
This is where the issue of uniform versus non-uniform ver-
sion of BALANCED SEPARATOR arises. (2) For the sound-
ness property, we can only claim that every piecewise bal-
anced partition cuts at least εt fraction of edges, where any
t > 1

2 can be chosen in advance. Instead, we write
√
ε for

the simplicity of notation.

4.3. Integrality Gap Instance for the UNIQUE GAMES

SDP Relaxation

This has already been described in Theorem 2.6. The
graph G(V,E) therein along with the ortho-normal basis
B(u), for every u ∈ V, can be used to construct an instance
U(G(V,E), [N ], {πe}e∈E) of UNIQUE GAMES. For every
edge e = (u, v) ∈ E, we have an (unambiguously defined)
permutation πe : [N ] �→ [N ], where 〈uπe(i),vi〉 ≥ 1 − η,
for all 1 ≤ i ≤ N .

Theorem 2.6 implies that OPT(U) ≤ 1
Nη . On the

other hand, the fact that for every edge e = (u, v),
the bases B(u) and B(v) are very close to each other
means that the SDP objective value for U is at-least 1 −
η. (Formally, the SDP objective value is defined to be

Ee=(u,v)∈E

[
1
N

∑N
i=1〈uπe(i),vi〉

]
.)

Thus, we have a concrete instance of UNIQUE GAMES

with optimum at most 1
Nη = o(1), and which has an SDP

solution with objective value at-least 1− η. This is what an
integrality gap example means: The SDP solution cheats in
an unfair way!

4.4. Integrality Gap Instance for the BALANCED SEP-
ARATOR SDP Relaxation

Now we combine the two modules described above. We
take the instance U(G(V,E), [N ], {πe}e∈E) as above, and
run the PCP reduction on it. This gives us an instance
G′(V ′, E′) of BALANCED SEPARATOR. We show that this
is an integrality gap instance in the sense of Defintion 4.1.

Since U is a NO instance of UNIQUE GAMES (i.e.
OPT(U) = o(1)), Theorem 4.2 implies that every (piece-
wise) balanced partition of G′ must cut at-least

√
ε fraction

of the edges. We need to have 1/Nη ≤ 2−O(1/ε2) for this
to hold.

On the other hand, we can construct an SDP solution for
the BALANCED SEPARATOR instance which has an objec-
tive value of at-most O(η + ε). Note that a typical vertex

of G′ is (u,x), where u ∈ V and x ∈ {−1, 1}N . To this
vertex, we attach the unit vector V⊗t

u,s,x (for s = 4, t =
2240 + 1), where

Vu,s,x :=
1√
N

N∑
i=1

xiu⊗2s
i .

It can be shown that the set of vectors {V⊗t
u,s,x | u ∈

V, x ∈ {−1, 1}N} satisfy the triangle inequality constraint,
and hence, defines a �22 metric. Vectors V⊗t

u,s,x and V⊗t
u,s,−x

are antipodes of each other, and hence, the SDP Constraint
(5) is also satisfied. Finally, we show that the SDP objective
value (Expression (2)) is O(η + ε). It suffices to show that
for every edge ((u,x), (v,y)) in G′(V ′, E′), we have〈

V⊗t
u,s,x,V

⊗t
v,s,y

〉 ≥ 1 −O(st(η + ε)).

This holds because, whenever ((u,x), (v,y)) is an edge of
G′, we have (after identifying the indices via the permuta-
tion πe : [N ] �→ [N ]): (a) 〈uπe(i),vi〉 ≥ 1 − η, for all
1 ≤ i ≤ N . (b) The Hamming distance between x and y is
at-most εN .

4.5. Quantitative Parameters

It follows from above discussion (see also Definition
4.1) that the integrality gap for BALANCED SEPARATOR is
Ω(1/

√
ε) provided that η ≈ ε, and Nη > 2O(1/ε2). We can

choose η ≈ ε ≈ (logN)−1/3. Since the size of the graph
G′ is at-most n = 22N , we see that the integrality gap is
≈ (log log n)1/6 as desired.

4.6. Proving the Triangle Inequality

As mentioned above, one can show that the set of vec-
tors {V⊗t

u,s,x | u ∈ V, x ∈ {−1, 1}N} satisfy the trian-
gle inequality constraints. This is the most technical part
of the paper, but we would like to stress that this is where
the “magic” happens. In our construction, all vectors in
∪u∈V B(u) happen to be points of the hypercube {−1, 1}N

(upto a normalizing factor of 1/
√
N ), and therefore, they

define an �1 metric. The apparently outlandish operation
of taking their +/− combinations combined with tensor-
ing, miraculously leads to a metric that is (�22 and) non-�1-
embeddable.
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A. Preliminaries

A.1. Metric Spaces

Definition A.1 (X, d) is a metric space, or d is a metric on
X if: (1) For all x ∈ X, d(x, x) = 0. (2) For all x, y ∈
X,x = y d(x, y) > 0. (3) For all x, y ∈ X, d(x, y) =
d(y, x). (4) For all x, y, z ∈ X, d(x, y)+d(y, z) ≥ d(x, z).
(X, d) is said to be a finite metric space ifX is finite. (X, d)
is called a semi-metric space if one allows d(x, y) = 0 even
when x = y.



Definition A.2 (X1, d1) embeds with distortion at-most Γ
into (X2, d2) if there exists a map φ : X1 �→ X2 such that
for all x, y ∈ X d1(x, y) ≤ d2(φ(x), φ(y)) ≤ Γ · d1(x, y).
If Γ = 1, then (X1, d1) is said to isometrically embed in
(X2, d2).

The metrics we would be concerned with are:
(1) �p metrics: For X ⊆ R

m, for some m ≥ 1, and x,y ∈
X, �p(x,y) = (

∑m
i=1 |xi − yi|p)1/p

. Here, p ≥ 1, and the
metric �∞(x,y) = maxm

i=1 |xi − yi|.
(2) Cut (semi-)metrics: A cut metric δS on a set X, defined
by the set S ⊆ X is:

δS(x, y) =
{

1 if |{x, y} ∩ S| = 1
0 otherwise

The cut-cone (denoted CUTn) is the cone generated by
cut metrics on an n-point set X. Formally, CUTn :=
{∑S λSδS : λS ≥ 0 for all S ⊆ X} . To avoid referring to
the dimension, denote CUT:= ∪nCUTn.
(3) Negative type metrics: A metric space (X, d) is said to
be of negative type if (X,

√
d) embeds isometrically into �2.

Formally, there is an integer m and a vector vx ∈ R
m for

every x ∈ X, such that d(x, y) = ‖vx − vy‖2. The class of
all negative type metrics is denoted by �22.

A.2. Facts about Metric Spaces

Fact A.3 [11] Any finite metric space isometrically embeds
into �∞.

Fact A.4 [11] (X, d) is �1 embeddable iff d ∈ CUT.

Fact A.5 [11] �1 ⊆ �22.

Theorem A.6 (Bourgain’s Embedding Theorem [7])
Any n-point metric space embeds into �1 with distortion
at-most Cb log n, for some absolute constant Cb.

Fact A.7 [6, 25] There is an n-point metric, any embed-
ding of which into �1, requires Ω(log n) distortion.

A.3. The (�22, �1, O(1))-Conjecture

Conjecture A.8 ((�22, �1, O(1))-Conjecture, [16, 24])
Every �22 metric can be embedded into �1 with distortion
at-most Cneg, for some absolute constant Cneg ≥ 1.

A.4. Cut Problems and their SDP Relaxations

In this section, we define the cut problems that we study
and present their SDP relaxations. All graphs are com-
plete undirected graphs and may have multiple edges or
self loops, unless mentioned otherwise, with non-negative
weights or demands associated to its edges. For a graph
G = (V,E), and S ⊆ V , let E(S, S) denote the set of
edges with one endpoint in S and other in S.

Remark A.9 The versions of SPARSEST CUT and BAL-
ANCED SEPARATOR that we define below are non-uniform
versions with demands. The uniform version has all de-
mands equal to 1 (i.e. unit demand for every pair of ver-
tices).

The Sparsest Cut Problem

Definition A.10 (SPARSEST CUT) For a graph G =
(V,E) with a weight wt(e), and a demand dem(e) as-
sociated to each edge e ∈ E, the goal is to optimize

min∅�=S�V

∑
e∈E(S,S) wt(e)∑

e∈E(S,S) dem(e) .

It follows from Fact A.4 that the objective function above is

the same as mind∈�1

∑
e={x,y}∈E wt(e)d(x,y)∑

e={x,y}∈E dem(e)d(x,y) . Denote this

minimum for {G,wt,dem} by ψ1(G). Consider the fol-
lowing two quantities associated to {G,wt,dem}:

ψ∞(G) := min
d∈�∞

∑
e={x,y}∈E wt(e)d(x, y)∑

e={x,y}∈E dem(e)d(x, y)
,

ψneg(G) := min
d∈�22

∑
e={x,y}∈E wt(e)d(x, y)∑

e={x,y}∈E dem(e)d(x, y)
.

Facts A.5 and A.3 imply that ψ1(G) ≥ ψneg(G) ≥ ψ∞(G).
In addition, Bourgain’s Embedding Theorem (Theorem
A.6) can be used to show that ψ1(G) ≤ O(log n) · ψ∞(G),
where n := |V |. Fact A.7 implies that this factor of
O(log n) is tight upto a constant.

It is also the case that ψneg(G) is efficiently computable
using a semi-definite program (SDP) of Figure 2. Let the
vertex set be V = {1, 2, . . . , n}. For a metric d on V, let
Q := Q(d) be the matrix whose (i, j)-th entry is Q[i, j] :=
1
2 (d(i, n) + d(j, n) − d(i, j)) .

Minimize
∑

e={i,j}
wt(e)d(i, j)

Subject to d(·, ·) is a metric∑
e={i,j} dem(e)d(i, j) = 1

Q(d) is positive semidefinite

Figure 2. SDP relaxation of SPARSEST CUT

Fact A.11 Suppose that every n-point �22 metric embeds
into �1 with distortion f(n). Then, ψ1(G) ≤ f(n) ·
ψneg(G), and SPARSEST CUT can be approximated to
within a factor of f(n). In particular, if the (�22, �1, O(1))-
Conjecture (Conjecture A.8) is true, then there is a constant
factor approximation algorithm for SPARSEST CUT.



The Balanced Separator Problem

Definition A.12 (BALANCED SEPARATOR) For a graph
G = (V,E) with a weight wt(e), and a demand dem(e)
associated to each edge e ∈ E, let D :=

∑
e∈E dem(e)

be the total demand. Let a balance parameter B be given
where D/4 ≤ B ≤ D/2. The goal is to find a non-
trivial cut (S, S) that minimizes

∑
e∈E(S,S) wt(e), sub-

ject to
∑

e∈E(S,S) dem(e) ≥ B. The cuts that satisfy∑
e∈E(S,S) dem(e) ≥ B are called B-balanced cuts.

Figure 3 is an SDP relaxation of BALANCED SEPARATOR

with parameter B.

Minimize
1
4

∑
e={x,y}

wt(e)‖vx − vy‖2

Subject to

∀x ∈ V ‖vx‖2 = 1
∀ x, y, z ∈ V ‖vx − vy‖2 + ‖vy − vz‖2 ≥ ‖vx − vz‖2

1
4

∑
e={x,y} dem(e)‖vx − vy‖2 ≥ B

Figure 3. SDP relaxation of BALANCED SEPA-
RATOR

We need the following (folk-lore) result stating that, start-
ing with a good SDP solution to Figure 3, one can find a
balanced partition in a graph by iteratively finding (approx-
imate) sparsest cut in the graph.

Theorem A.13 Suppose x �→ vx is a solution for the SDP
of Figure 3 with objective value 1

4

∑
e={x,y} wt(e)‖vx −

vy‖2 ≤ ε. Assume that the �22 metric defined by the vectors
{vx| x ∈ V } embeds into �1 with distortion f(n) (n =
|V |). Then, there exists a B′-balanced cut (S, S), B′ ≥
B/3 such that

∑
e∈E(S,S) wt(e) ≤ O(f(n) · ε).

The ARV-Conjecture

Conjecture A.14 (Uniform Version) The integrality gap
of the SDP of Figure 1 is O(1).

Conjecture A.15 (Non-Uniform Version) The integrality
gap of the SDP of Figure 3 is O(1).

Fact A.16 The (�22, �1, O(1))-Conjecture implies the non-
uniform ARV-Conjecture (Conjecture A.15).

The Maximum Cut Problem

Definition A.17 (MAXIMUM CUT) For a graph G =
(V,E) with a weight wt(e) associated to each edge e ∈ E,

the goal is to optimize max∅�=S�V

∑
e∈E(S,S) wt(e)∑

e∈E wt(e) .

Maximize
1
4

∑
e={x,y}

wt(e)‖vx − vy‖2

Subject to

∀x ∈ V ‖vx‖2 = 1
∀ x, y, z ∈ V ‖vx − vy‖2 + ‖vy − vz‖2 ≥ ‖vx − vz‖2

Figure 4. SDP relaxation of MAXIMUM CUT

Goemans and Williamson [17] gave an αGW (≈ 0.878) ap-
proximation algorithm for MAXIMUM CUT. They showed
that every SDP solution with objective value γSDP can be
rounded to a cut in the graph that cuts edges with weight
≥ αGW · γSDP. We note here that their rounding procedure
does not make use of the triangle inequality constraints.

The Minimum Uncut Problem

Definition A.18 (MINIMUM UNCUT) Given a graph G =
(V,E) with a weight wt(e) associated to each edge e ∈ E,

the goal is to optimize min∅�=S�V

∑
e∈E(S,S)∪E(S,S) wt(e)∑

e∈E wt(e) .

The semi-definite relaxation of MINIMUM UNCUT is simi-
lar to that of MAXIMUM CUT except the objective function
in Figure 4 is replaced by

Minimize


1 − 1

4

∑
e={x,y}

wt(e)‖vx − vy‖2




Goemans and Williamson [17] showed that every SDP so-
lution for MINIMUM UNCUT with objective value βSDP can
be rounded to a cut in the graph, such that the weight of
edges left uncut is at-most O(

√
βSDP). We note again that

their rounding procedure does not make use of the triangle
inequality constraints.

B. Overall Strategy for Disproving the
(�2

2, �1, O(1))-Conjecture

We describe the high-level approach to our disproval of
the (�22, �1, O(1))-Conjecture in this section. We construct
an integrality gap instance of non-uniform BALANCED

SEPARATOR to disprove the non-uniform ARV-Conjecture,
and that suffices to disprove the (�22, �1, O(1))-Conjecture
using the (folk-lore) Fact A.16.

We construct a complete weighted graph G(V,wt),
with vertex set V and weight wt(e) on edge e, and with∑

e wt(e) = 1. The vertex set is partitioned into sets
V1, V2, . . . , Vr, each of size |V |/r (think of r ≈√|V |).

A cut A in the graph is viewed as a function A : V �→
{−1, 1}. We are interested in cuts that cut many sets Vi in a



somewhat balanced way: For 0 ≤ θ ≤ 1, a cut A is called

θ-piecewise balanced if Ei∈R[r]

[ ∣∣∣ Ex∈RVi
[A(x)]

∣∣∣ ] ≤ θ.

We also assign a unit vector to every vertex in the graph. Let
vx denote the vector assigned to vertex x. Our construction
of the graph G(V,wt) and the vector assignment x �→ vx

can be summarized as follows:

Theorem B.1 Fix any 1
2 < t < 1. For every sufficiently

small ε > 0, there exists a graph G(V,wt), with a par-
tition V = ∪r

i=1Vi, and a vector assignment x �→ vx

for every x ∈ V, such that: (1) |V | ≤ 22O(1/ε3)
, (2) Ev-

ery 5
6 -piecewise balanced cut A must cut εt fraction of

edges, i.e., for any such cut
∑

e∈E(A,A) wt(e) ≥ εt,

(3) The unit vectors {vx | x ∈ V } define a negative type
metric, i.e., the following triangle inequality is satisfied:
∀ x, y, z ∈ V, ‖vx − vy‖2 + ‖vy − vz‖2 ≥ ‖vx − vz‖2 ,
(4) For each part Vi, the vectors {vx | x ∈ Vi} are well-
separated, i.e., 1

2Ex,y∈RVi

[‖vx − vy‖2
]

= 1 (4) The
vector assignment gives a low SDP objective value, i.e.,
1
4

∑
e={x,y} wt(e)‖vx − vy‖2 ≤ ε.

Theorem B.2 The (�22, �1, O(1))-Conjecture is false. In
fact, for every δ > 0, for all sufficiently large n, there
are n-point �22 metrics that require distortion at-least
(log log n)1/6−δ to embed into �1.

Proof: Suppose that the �22 metric defined by vectors
{vx| x ∈ V } in Theorem B.1 embeds into �1 with distortion
Γ. We will show that Γ = Ω

(
1

ε1−t

)
using Theorem A.13.

Construct an instance of BALANCED SEPARATOR as fol-
lows. The graph G(V,wt) is as in Theorem B.1. The de-
mands dem(e) depend on the partition V = ∪r

i=1Vi. We
let dem(e) = 1 if e has both endpoints in the same part Vi

for some 1 ≤ i ≤ r, and dem(e) = 0 otherwise. Clearly,
D :=

∑
e dem(e) = r · (|V |/r

2

)
.

Now, x �→ vx is an assignment of unit vectors that
satisfy the triangle inequality constraints. This will be a
solution to the SDP of Figure 3. Property (4) of Theo-
rem B.1 guarantees that 1

4

∑
e={x,y} dem(e)‖vx−vy‖2 =

1
4 · r · (|V |/r

2

) · 2 = D/2 =: B. Thus, the SDP solution
is D/2-balanced and its objective value is at-most ε. Using
Theorem A.13, we get aB′-balanced cut (A,A),B′ ≥ D/6
such that

∑
e∈E(A,A) wt(e) ≤ O(Γ ·ε). Using the Cauchy-

Schwartz Inequality, it is easy to see that the cut (A,A)
must be a 5

6 -piecewise balanced cut.

However, Property (2) of Theorem B.1 says that such a
cut must cut at-least εt fraction of edges. This implies that
Γ = Ω( 1

ε1−t ). The theorem follows by noting that t > 1
2 is

arbitrary and n := |V | ≤ 22O(1/ε3)
.

C. The Unique Games Conjecture (UGC)

Definition C.1 (UNIQUE GAMES) An instance
U (G(V,E), [N ], {πe}e∈E ,wt) of UNIQUE GAMES

is defined as follows: G = (V,E) is a a graph with
a set of vertices V and a set of edges E, with possibly
parallel edges. An edge e whose endpoints are v and w is
written as e{v, w}. For every e ∈ E, there is a bijection
πe : [N ] �→ [N ], and a weight wt(e) ∈ R

+. For an edge
e{v, w}, we think of πe as a pair of permutations {πv

e , π
w
e },

where πw
e = (πv

e )−1. πv
e is a mapping that takes a label

of vertex w to a label of vertex v. The goal is to assign
one label to every vertex of the graph from the set [N ].
The labeling is supposed to satisfy the constraints given by
bijective maps πe. A labeling λ : V �→ [N ] satisfies an edge
e{v, w}, if λ(v) = πv

e (λ(w)). Define the indicator function
Iλ(e), which is 1 if e is satisfied by λ and 0 otherwise.
The optimum OPT(U) of the UNIQUE GAMES instance is
defined to be maxλ

∑
e∈E wt(e) · Iλ(e). Without loss of

generality, we assume that
∑

e∈E wt(e) = 1.

Conjecture C.2 (UGC [19]) For every pair of con-
stants η, ζ > 0, there exists a sufficiently large
constant N := N(η, ζ), such that it is NP-hard
to decide whether a UNIQUE GAMES instance
U (G(V,E), [N ], {πe}e∈E ,wt) , has OPT(U) ≥ 1 − η, or
OPT(U) ≤ ζ.

Consider a UNIQUE GAMES instance U =
(G(V,E), [N ], {πe}e∈E ,wt) . Khot [19] proposed the
SDP in Figure 5. This SDP was inspired by a paper
of Feige and Lovasz [14]. Here, for every u ∈ V, we
associate a set of N orthogonal vectors {u1, . . . ,uN}. The
intention is that if i0 ∈ [N ] is a label for vertex u ∈ V , then
ui0 =

√
N1, and ui = 0 for all i = i0. Here, 1 is some

fixed unit vector and 0 is the zero-vector. However, once
we take the SDP relaxation, this may no longer be true and
{u1,u2, . . . ,uN} could be any set of orthogonal vectors.

Maximize
∑

e{u,v}∈E

wt(e) · 1
N

(
N∑

i=1

〈
uπu

e (i),vi

〉)

Subject to

∀ u ∈ V 〈u1,u1〉 + · · · + 〈uN ,uN 〉 = N

∀ u ∈ V ∀ i = j 〈ui,uj〉 = 0
∀ u, v ∈ V ∀ i, j 〈ui,vj〉 ≥ 0

∀ u, v ∈ V
∑

1≤i,j≤N 〈ui,vj〉 = N

Figure 5. SDP relaxation of UNIQUE GAMES


