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Abstract

We study the following question:

What is the smallestt such that every symmet-
ric boolean function onk variables (which is not
a constant or a parity function), has a non-zero
Fourier coefficient of order at least1 and at most
t?

We exclude the constant functions for which there is no such
t and the parity functions for whicht has to bek. Letτ(k)
be the smallest sucht. The main contribution of this paper is
a proof of the following self similar nature of this question:

If τ(l) ≤ s, then for anyε > 0 and fork ≥ k0(l, ε),
τ(k) ≤

(
s+1
l+1 + ε

)
k

Coupling this result with a computer based search which
establishesτ(30) = 2, one obtains that for large enoughk,
τ(k) ≤ 3k/31.

The motivation for our work is to understand the com-
plexity of learning symmetric juntas. Ak-junta is a boolean
function ofn variables that depends only on an unknown
subset ofk variables. Iff is symmetric in the variables
it depends on, it is called a symmetrick-junta. Our results
imply an algorithm to learn the class of symmetrick-juntas,
in the uniform PAC learning model, in time approximately

n
3k
31 . This improves on a result of Mossel, O’Donnell and

Servedio in [11], who show that symmetrick-juntas can be
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learned in timen
2k
3 (the main result in [11] is much more

general, giving a bound ofn0.7k for learning juntas).
Technically, the study ofτ(k) is equivalent to the study

of 0/1 solutions of a system of Diophantine equations in-
volving binomial coefficients. As a first step, we simplify
these Diophantine equations by moving to a representation
of boolean functions, which is equivalent to their Fourier
representation, but seems much simpler for the application
of number theoretic tools. Once this is done, we reduce
these equations modulo carefully chosen prime numbers to
get a simpler system of equations which we can analyze. Fi-
nally, we combine the information about the equations over
the finite fields in a combinatorial manner to deduce the na-
ture of the0/1 solutions.

1 Introduction

Problem statement

The study of the Fourier representation of boolean func-
tions has proved to be extremely useful in computational
complexity and learning theory. In this paper we focus on
the Fourier spectrum of symmetric boolean functions and
we study the following question:

What is the smallestt such that every symmet-
ric boolean function onk variables (which is not
a constant or a parity function), has a non-zero
Fourier coefficient of order at least1 and at most
t?



We exclude the two constant functions, for which there is no
sucht, and the two parity functions, for whicht has to bek.
Let τ(k) be the smallest sucht. While the above question is
interesting in its own right, there is also an important learn-
ing theory application behind it, which we outline next.

Motivation

The motivation to studyτ(k) comes from the follow-
ing fundamental problem in computational learning theory:
learning in the presence of irrelevant information. In many
practical applications (e.g. feature recognition) an observed
function may be a result of very few factors which are hid-
den in a large array of irrelevant information. One formal-
ization of the problem is as follows: We want to learn an
unknown boolean function ofn variables, which depends
only onk � n variables. Typically,k is O(log n). Such a
function is referred to as ak-junta. We are provided with a
set of labeled examples〈x, f(x)〉, where thex’s are picked
uniformly and independently at random from the domain
{0, 1}n. We wish to identify thek relevant variables and
the truth table of the function.

The problem was first posed by Blum [1] and Blum
and Langley [4], and it is considered [2, 11] to be one of
the most important open problems in the theory of uni-
form distribution learning. It has connections with learn-
ing DNF formulas and decision trees of super-constant size,
see [5, 8, 10, 13, 14] for more details. The general case
is believed to be hard and has even been used in the con-
struction of a cryptosystem [3]. A trivial algorithm runs in
time roughlynk by doing an exhaustive search over all pos-
sible sets of relevant variables. Two important classes of
juntas are learnable in polynomial time: parity and mono-
tone functions. Learning parity functions can be reduced to
solving a system of linear equations overF2 [7]. Mono-
tone functions have non-zero singleton Fourier coefficients
(see [11]). For the general case, the first significant break-
through was given in [11] - learning with confidence1 − δ
in time n0.7kpoly(log 1/δ, 2k,n). Note that we allow the
running time to be polynomial in2k, since this is the size
of the truth-table which is output. In the typical setting of
k = O(log n), this becomes polynomial inn.

Fourier based techniques in learning were introduced
in [9] and have proved to be very successful in several
problems. One reason for this success is that Fourier co-
efficients are easy to compute in the uniform distribution
learning model. Furthermore, if a Fourier coefficient is non-
zero then its entire support is contained in the set of relevant
variables. Hence, it is interesting to ask: what are the sub-
classes of juntas for which Fourier based techniques yield
fast learning algorithms? An important and natural subclass
is the class of symmetric juntas. While this subclass con-
tains only2k+1 functions, the problem is not known to be

significantly easier than the general case. The bound before
our work wasn2k/3 [11], which is not much better than
the best bound for general juntas (also obtained in [11]).
Our results imply an improved bound for learning symmet-
ric juntas via the Fourier based algorithm.

We believe that the case of symmetric juntas constitutes
a good “challenge problem” towards the goal of learning
general juntas. One motivation for this is a consideration of
the following well-known challenge problem [2] :
Let f(x1, . . . , xn) := MAJORITY(x1, . . . , x2k/3)

⊕(
x2k/3+1 ⊕ · · · ⊕ xk

)
, where x1, . . . , xk are someun-

knownvariables amongx1, . . . , xn. This subclass has been
identified as a candidate hard to learn class [2]. The cur-
rent bound for learning this subclass of juntas isnk/3, and
it is asked in [2] if a faster algorithm exists. Note thatf is
invariant under permutations of{x1, . . . , x2k/3} and under
permutations of{x2k/3, . . . , xk}, i.e., it is invariant under a
large group of symmetries. This suggests that it is interest-
ing to begin with the case of symmetric juntas.

Our results

Our main result is:

If τ(l) ≤ s, then for anyε > 0 and fork ≥ k0(l, ε),
τ(k) ≤

(
s+1
l+1 + ε

)
k

Coupling this result with a computer based search which
establishesτ(30) = 2, one obtains that for large enoughk,
τ(k) ≤ 3k/31.

Our result implies a bound ofn3k/31 for the Fourier
based learning algorithm for the class of symmetrick-
juntas. To our knowledge, this is the best known upper
bound for learning symmetric juntas under the uniform dis-
tribution. Independent of the learning problem, the fact that
symmetric boolean functions have non-zero Fourier coeffi-
cients of relatively small order provides new insight into the
structure of these functions.

Techniques

The study ofτ(k) is equivalent to the study of0/1 so-
lutions of a system of Diophantine equations involving bi-
nomial coefficients. As a first step, we simplify these Dio-
phantine equations by moving to a representation which is
equivalent to the Fourier representation, but seems much
simpler for the application of number theoretic tools. Once
this is done, we reduce the equations modulo carefully cho-
sen prime numbers to get a simpler system of equations
which we can analyze. Finally, we combine the information
about the equations over the finite fields in a combinatorial
manner to deduce the nature of the0/1 solutions.



The specific bound of3k/31 is then obtained by a com-
puter search. The following well-known self-similarity
property of Pascal’s Triangle plays an important role: If
m = lp for some integerl and some primep, then the
nonzero values obtained by reducing the binomial coeffi-
cients of them-th row of Pascal’s Triangle modulop, can
be read off directly from thel-th row of Pascal’s Triangle.

A remark concerning the computer search:An interest-
ing aspect of the proof is the fact that if we can find an
explicit valuel, for which all symmetricl-juntas have non-
zero Fourier coefficients of very small order, then we can
prove that for all largek, k-juntas have non-zero Fourier co-
efficients of relatively small order. To find an explicit value
for l, we did a computer search on all symmetric boolean
functions of up to 30 bits and computed their Fourier coef-
ficients of small order. The search revealed that every sym-
metric function on 30 bits (which is not parity or constant)
has a nonzero Fourier coefficient of order1 or 2. In our
proof we use this fact to obtain the bound of3k/31 for large
enoughk. A search beyond30 bits may yield better bounds.

Related work

Previously, the idea of reducing binomial coefficients
modulo a prime number has been used in [15] to prove
lower bounds on the degree of polynomials representing
symmetric boolean functions. In [15], their problem re-
duces to showing that a certain sum of binomial coefficients
is non-zero, which is done by reducing the sum modulo a
prime number. Our problem involves a collection of sums
which we have to prove are unequal. For this we need to
consider reductions modulo two different carefully chosen
primes and combine the information obtained by the two
reductions in a combinatorial manner.

The result of [15] has in fact been used in the proof of
the previous bestn2k/3 bound for learning symmetric jun-
tas [11]. Using [15], it is shown in [11] that if a symmetric
function f is balanced, i.e., Pr[f(x) = 1] = 1/2, then
it has a non-zero Fourier coefficient of ordero(k). The
2k/3 bottleneck comes in the case ofunbalancedsymmet-
ric functions, which are analyzed through a different argu-
ment. As noted in [11], the result of [15] does not seem to
be applicable to learning unbalanced functions.

2 Fourier Coefficients of Boolean Functions

2.1 Notation

We consider boolean functions from{0, 1}k → {0, 1}.
For a setS ⊆ [k], define χS : {0, 1}k → {1,−1}
to be the functionχS(x) := (−1)

P
i∈S xi (by conven-

tion, the boldfacex denotes the vector(x1, . . . , xk)). For

a function f : {0, 1}k → {0, 1}, and S ⊆ [k], de-
fine theFourier coefficientcorresponding toS as f̂(S) :=
1
2k

∑
x∈{0,1}k f(x)χS(x). The order of a Fourier coeffi-

cient f̂(S) is |S|. The Fourier expansion off is: f(x) =∑
S⊆[k] f̂(S)χS(x).
If f is symmetric,f is completely determined by its

value on anyk + 1 vectors of distinct weights, where
the weight of a boolean vector is the number of1’s in
it. We will use the following vector representation off :
ν(f) := (f0, f1, . . . , fk)T . Here fi is the value off on
a vector of weighti. Furtherf has preciselyk + 1 (non-
equivalent) Fourier coefficients,(f̂0, . . . , f̂k). Heref̂t is de-
fined asf̂(S), for someS ⊆ [k] with cardinalityt. Sincef
is symmetric, this does not depend on the choice ofS. The
following four special symmetric functions onk variables
will appear often: the two constant functions0 and1, the
parity function⊕, and its complement⊕.

2.2 An equivalent formulation as a Diophantine
problem

In this section we give an equivalent condition for the ex-
istence of a non-zero Fourier coefficient of a boolean func-
tionf . While we prove the equivalence for all boolean func-
tions, we use it only for the special case of symmetric func-
tions.

Let f : {0, 1}k 7→ {0, 1} be a boolean function. For
a vectorx = (x1, . . . , xk), and a setS ⊆ [k], let xS be
the projection ofx on the indices ofS. Let σ ∈ {0, 1}|S|.
Define the following probabilities:

pS,σ(f) := Pr [f(x) = 1 | xS = σ]

Unless mentioned, all probabilities are over the uniform
distribution. Fort ≥ 1, call a boolean functionf on k
variablest-null, if for all setsS ⊆ [k], with |S| = t, and
for all σ ∈ {0, 1}t, the probabilitiespS,σ(f) are all equal
to each other. The following lemma reveals the connection
with the Fourier coefficients off .

Lemma 1 Letf be a boolean function onk variables.f is
t-null for some1 ≤ t ≤ k, if and only if, for all∅ 6= S ⊆ [k]
with cardinality at mostt, f̂(S) = 0.

Proof : It can be easily verified that iff is t-null, then for
all ∅ 6= S ⊆ [k] with cardinality at mostt, f̂(S) = 0. This
follows from the fact that the Fourier coefficients of order
at mostt can be expressed as±1 combinations ofpS,σ(f)
with σ ∈ {0, 1}t, andS ⊆ [k], |S| = t. Whenf is t-null,
the terms cancel out. The proof of the other direction is by
induction and we omit it here. �

The following is an immediate corollary of this lemma.



Corollary 2 Letf be a boolean function onk variables. If
f is t-null for some1 ≤ t ≤ n thenf is s-null for 1 ≤ s ≤
t.

When we consider the case of symmetric functions,
pS,σ(f) just depends ons := |S| and the weightw of σ.
We denote this byps,w(f). It is clear that:

ps,w(f) =
1

2k−s

k∑
i=0

fi

(
k − s

i− w

)
where

(
l
m

)
is 0 if m < 0 or m > l, and

(
0
0

)
is 1. By

definition, f is s-null if for 0 ≤ w ≤ s, ps,w(f) are all
equal. Hence,f is s-null iff there existsc := c(f, s, k) such
that

k∑
i=0

(
k − s

i− w

)
fi = c, ∀ 0 ≤ w ≤ s. (1)

Thus we have:

Lemma 3 For 1 ≤ s ≤ k, letAk,s be the(s + 1)× (k + 1)
matrix:

Ak,s(j, i) :=
(

k − s

i− j

)
A symmetric functionf is s-null if and only if there exists a
positive integerc := c(f, s, k) such that:

Ak,s · ν(f) = c1

It is easy to see that the constant boolean functions
{0,1} satisfy this system of equations for alls, i.e. they
ares-null for all s, s.t.1 ≤ s ≤ k. One can also see that the
boolean functions{⊕,⊕} ares-null for all s s.t.1 ≤ s < k.
From Lemma 1 and Lemma 3 we get:

Corollary 4 All symmetric boolean functionsf 6∈
{0,1,⊕,⊕} have a non-zero Fourier coefficient of order
at mosts0 (and at least1) iff there existss, 1 ≤ s ≤ s0 s.t.
{0,1,⊕,⊕} are the only solutions to

k−s∑
i=0

fi

(
k − s

i

)
= ... =

k∑
i=s

fi

(
k − s

i− s

)
(2)

The question is how large musts0 in the statement of
Corollary 4 be. In the next section, we show thats0 ≤ 3

31k
for large enoughk.

3 The Main Result

3.1 Number theoretic preliminaries

We will first present some facts that we are going to use
in proving our main theorem. The next easy result is a spe-
cial case of Lucas’ Theorem [6] and illustrates theself sim-
ilar nature of the Pascal’s Triangle modulo primes.

Lemma 5 For a primep, an integerl ≥ 0 and0 ≤ i ≤ lp,(
lp
i

)
≡

(
l
j

)
mod p if i = jp for some0 ≤ j ≤ l, and 0

otherwise.

Proof : For a primep, and0 ≤ j ≤ p,
(
p
j

)
≡ 1 mod p if

j = 0 or j = p, and
(
p
j

)
≡ 0 mod p otherwise. Hence, for

an indeterminatex, (1 + x)p ≡ 1 + xp mod p. Consider∑lp
i=0

(
lp
i

)
xi = (1 + x)lp = ((1 + x)p)l

. Reducing this
sum modulop, and using the fact above, one obtains

lp∑
i=0

(
lp

i

)
xi ≡ (1 + xp)l mod p.

But (1 + xp)l =
∑l

j=0

(
l
j

)
xpj . Comparing coefficients of

xpj on both sides of the above equation, one gets the desired
conclusion. �

On numerous occasions, we will use the following result
about the density of primes. This follows from the Prime
Number Theorem.

Lemma 6 For large enoughn, there is a primep ≤ n, such
thatp = n− o(n).

3.2 The case ofk/2

In this section we give a self-contained proof of the fol-
lowing (weaker) result. The aim is to illustrate the key ideas
behind the proof of Theorem 9.

Theorem 7 For any symmetric boolean functionf on k
variables withf 6∈ {0,1,⊕,⊕}, there exists1 ≤ t ≤
k
2 + o(k) such thatf̂t 6= 0.

We need the following combinatorial lemma. For posi-
tive integersk, p, q, s.t. p 6= q, let Gk,p,q be the graph with
vertex set{0, 1, 2, . . . , k}, and the edge set{(i, j) : |i−j| =
p or q}.

Lemma 8 For positive integersk, p, q such that(p, q) = 1
andp + q ≤ k, Gk,p,q is connected.

Proof : We proceed by induction onp + q. Without loss
of generality, letp > q. Clearly, the lemma holds for the
base case. Leti, j be s.t.0 ≤ i < j ≤ k andj − i = p− q.
Sincep+q ≤ k, eitheri+p ≤ k or i−q ≥ 0. In either case,
there is a path of length2 betweeni andj. Hence replacing
the edges{(u, v) : |u−v| = p} by the new edges{(u′, v′) :
|u′ − v′| = p− q} does not increase the connectivity of the
graph. It suffices to show thatGk,p−q,q is connected, which
follows by the induction hypothesis. �

Proof of Theorem 7 : Let f be a symmetric function
such that for every1 ≤ t ≤ k

2 +o(k), f̂t = 0. We will show
thatf ∈ {0,1,⊕,⊕}.



By Lemma 6, we can pick primesp, q, s.t. k
2 − o(k) =

p < q ≤ k
2 . Sincek−p andk−q are both at mostk2 +o(k),

we get from Lemma 1 thatf is (k−p)-null and(k−q)-null.
Hence, by Lemma 3,∃ c1, c2 such that

Ak,k−pν(f) = c11 and Ak,k−qν(f) = c21

Consider these two systems of equations modulop and q
respectively. Let0 ≤ cp < p and 0 ≤ cq < q be s.t.
cp ≡ c1 mod p, and cq ≡ c2 mod q. We will use≡p

to denote congruencesmod p (and similarly forq). The
systems become:

Ak,k−pν(f) ≡p cp1 and Ak,k−qν(f) ≡q cq1

Now, from Lemma 5, we see that
(
p
i

)
≡p 1 if i = 0 or

i = p, and
(
p
i

)
≡p 0 otherwise (and similarly forq). Hence

we see that the equations are of the form

fi + fi+p ≡p cp for 0 ≤ i ≤ k − p

and

fi + fi+q ≡q cq for 0 ≤ i ≤ k − q

Sincefi ∈ {0, 1} andp > 2, these modular equations are
in fact exact equalities andcp, cq ∈ {0, 1, 2}. If cp = 0 then
it follows that cq = 0 andf = 0 (because every variable
fi is present in at least one equation, sincep ≤ k/2). If
cp = 2 thencq = 2 andf = 1. The only remaining case is
cp = cq = 1. This gives

fi = f̄i+p for 0 ≤ i ≤ k − p

and

fi = f̄i+q for 0 ≤ i ≤ k − q

In other words,|i− j| = p or q implies thatfi = f̄j . Since
Gk,p,q is connected (Lemma 8) it follows that fixing the
value of anyfi uniquely determinesf , and hence, there are
at most 2 possible choices forf . We can see that{⊕,⊕} are
solutions to the equations, hence they are the only solutions
in this case.

�

3.3 The main theorem

In this section we prove our main theorem. Recall that
τ(k) is the smallest numbert such that every symmetric
boolean functionf on k variables, withf 6∈ {0,1,⊕,⊕},
has a non-zero Fourier coefficient of order at least1 and at
mostt.

Theorem 9 Let 0 < s ≤ l be fixed integers such that
τ(l) ≤ s and let ε > 0. There exists a constantk0 :=
k0(l, ε) such that, for allk ≥ k0, τ(k) ≤

(
s+1
l+1 + ε

)
k.

Proof :
Let f be a symmetric boolean function onk variables.

Suppose thatf is t-null, for all t ≤
(

s+1
l+1 + ε

)
k. We will

show thatf ∈ {0,1,⊕,⊕}.
Let m = l − s. Assume that there is a primep such that

k = (m+ s+1)p− 1. We handle the case when there is no
such primep later. Sett := k −mp = (s + 1)p− 1. Since
p = k+1

l+1 ,

t =
(

s + 1
l + 1

)
k +

s + 1
l + 1

− 1 ≤
(

s + 1
l + 1

)
k.

Hence,f is t-null and there is an integerc such that

Ak,tν(f) = c1. (3)

We remark that the role ofε is redundant in this case. It will
play a role when we cannot choosep such thatk− t = mp.

Reducing to a smaller problem

Note that, by definition oft, k − t = mp. For0 ≤ i ≤ p−
1, let Fi := (fi, fi+p, fi+2p, . . . , fi+lp). Hence, reducing
Equations (3) modulop, and using Lemma 5, one obtains
the following systems of equations.

Al,sF0 ≡p c′1

Al,sF1 ≡p c′1
...

Al,sFp−1 ≡p c′1

Herec′ ≡ c mod p. By choosingk0 large enough, we can
ensure that fork ≥ k0, p > 2l. In that case, the modular
equations are in fact exact. That is, there is an integerd ≥ 0,
such that the following set of equations hold:

Al,sF0 = d1

Al,sF1 = d1
...

Al,sFp−1 = d1

(4)

Using the fact thatτ(l) ≤ s, we deduce that for anyi, the
system of equationsAl,sFi = d1 has at most4 solutions,
namely the constant and parity solutions (when treatingFi

as a symmetric function onl bits). This implies that there
are at most4p choices forf . Now we show how to narrow
down these choices to4.

Combining the smaller instances
Let k

2 < mp ≤ q ≤ (m + 1)p be a prime. Sincef is t-null,
and t = k − mp ≥ k − q, by Corollary 2,f is (k − q)-
null. Consider the system of equationsAk,k−qν(f) = c1



modulo the primeq. As in the proof of Theorem 7, we get,
for somee ≥ 0, exact equations of the following form:

f0 + fq = e

f1 + fq+1 = e

...

fk−q + fq = e.

(5)

The idea is that these equations, along with Equations (4),
are sufficient to restrictf to one of the four functions,
{0,1,⊕,⊕}, as desired. First, we need a simple fact. For
an integerr ≥ 0, let (r)p := r mod p. Also, for 0 ≤ i ≤
p−1, let [iq]p := {(iq)p, (iq)p +p, . . . , (iq)p +(m+ s)p}.

Fact 10 For 0 ≤ i < j ≤ p− 1, [iq]p ∩ [jq]p = ∅.

Now, fix f0, fp ∈ F0. As noticed before, this fixes all
the variables inF0. Using Equations (5), in particular, we
get thatfq andfq+p are fixed. Now Equations (4) imply
that all the indices inF(q)p

get fixed. Iterating the alternate
use of these two systems of equations, along with Fact 10,
one obtains that all the variables inFi, for everyi, are fixed,
oncef0 andfp are fixed. Hence,f has at most four choices:
{0,1,⊕,⊕}, one for every possible fixing of{f0, fp}.

Since we needp > 2l and sincek = (l+1)p−1, we can
choosek0 := k0(l) such that for allk ≥ k0, τ(k) ≤ t =(

s+1
l+1

)
k + s+1

l+1 − 1 ≤
(

s+1
l+1

)
k.

Handling the residual class of variables

Now we consider the case when there is no primep such
thatk = (m + s + 1)p − 1. In this case, we pick a prime

p in the interval
[

k
m+s+1 − o(k), k

m+s+1

]
. We are guar-

anteed the existence of such a prime by Lemma 6. Let
t = k − mp. Hence,(s + 1)p + o(p) ≥ t ≥ (s + 1)p.
Since we think ofm as a constant,p = Ω(k). Hence,
there is a small number (o(k)) of variables, sayR, which
remain to be dealt with in the previous argument. In par-
ticularR = {f(l+1)p, f(l+1)p+1, ..., fk} and{f0, ..., fk} =(
∪p−1

i=0 Fi

)
∪R. By the argument in the previous case, fixing

f0 andfp fixes all the variables in∪p−1
i=0 Fi. Further, since

|R| = o(k), andq > k/2, every variable inR appears in
one of the Equations (5) along with a variable in∪p−1

i=0 Fi,
and hence gets fixed.

As before, we need to ensure thatp > 2l. Since
p = k

l+1 − o(k), we can choose, for everyε > 0, large
enoughk0 := k0(l, ε), such that for allk ≥ k0, τ(k) ≤ t ≤(

s+1
l+1 + ε

)
k. This completes the proof of Theorem 9.

�

3.4 An explicit bound onτ(k)

Using a computer search, we verified (among others) that
τ(30) = 2. Plugging this in Theorem 9, we obtain the fol-
lowing Corollary:

Corollary 11 Let ε > 0. There exists a constantk0 :=
k0(ε) such that, for allk ≥ k0, and for every symmetric
boolean functionf on k variables withf 6∈ {0,1,⊕,⊕},
there is an integer1 ≤ t ≤

(
3
31 + ε

)
k, such thatf has a

non-zero Fourier coefficient of ordert.

4 Learning symmetric juntas

In this section we apply Corollary 11 to obtain fast learn-
ing algorithms for the class of symmetrick-juntas onn vari-
ables. First we need some preliminaries and well known
tools from computational learning theory.

4.1 Preliminaries

We consider the PAC learning model [12]. The learn-
ing problem at hand is aConcept ClassC =

⋃
n Cn, where

eachCn is a collection of boolean functions from{0, 1}n →
{0, 1}. Let ε be anaccuracy parameterandδ a confidence
parameter. A learning algorithmA for C has access to an
oracle I(f) for f ∈ Cn. A query toI(f) outputs a la-
beled example〈x, f(x)〉, wherex is drawn from{0, 1}n

according to some probability distribution.A is said to be a
learning algorithm for the classC if for all f ∈ C, whenA
is run with oracleI(f), it outputs, with probability at least
1− δ, a hypothesish such thatPrx[h(x) = f(x)] ≥ 1− ε.
Although Valiant’s PAC model is defined for general distri-
butions, in this paper we will be concerned only with the
uniform distribution.

We recall the definition of ak-junta. Letf : {0, 1}n →
{0, 1} be a boolean function. We say thatf dependson the
variablei, if there are vectorsx andy that differ only on the
i’th coordinate andf(x) 6= f(y). A function that depends
only on an (unknown) subset ofk � n variables is called
a k-junta. The variables on whichf depends are called the
relevantvariables off . Typically k = O(log n). Hence,
a running time that is polynomial in2k, n and log(1/δ) is
considered efficient. A symmetrick-junta is a boolean func-
tion which is symmetric in the variables it depends on. The
class of all such functions defined onn variables is the class
of symmetrick-juntas. In this section, we present an algo-
rithm for learning this class in the uniform PAC model.

4.2 Analysis of the Fourier based algorithm

We will use the following facts about learning in the PAC
model which are well known.



(i) We can exactly calculate the Fourier coefficients
of the target function with confidence1 − δ in
time poly(log 1/δ, 2k, n) using standard Chernoff-
Hoeffding bounds (see [9, 11]).

(ii) We can decide whether the target functionf is constant
or not in timepoly(log 1/δ, 2k).

(iii) We can learn a parity function in time
nωpoly(log 1/δ, 2k) [7]. Here ω is the exponent
for matrix multiplication,ω < 2.376.

We state the standard Fourier based algorithm below:
Throughout the algorithm, we maintain a set of relevant

variables,R.

• Check if the function is constant or parity.

• If not, setR := ∅, t := 1.

1. For every subset oft variables, sayS =
{xi1 , ..., xit

} do:

(a) Computef̂(S).
(b) If f̂(S) 6= 0, thenR := R ∪ S.

2. If for all setsS of sizet, f̂(S) = 0 thent := t+1
and go to step 1.

3. Else,R now contains all the relevant variables.
Draw enough samples to buildf ’s truth table and
halt.

If xi is an irrelevant variable forf , then it is easy to see
that for anyS containingxi, f̂(S) = 0. Hence iff̂(S) 6= 0,
for someS, thenS contains only relevant variables. Since
the function is symmetric, for any two setsS, T of rele-
vant variables such that|S| = |T |, we havef̂(S) = f̂(T ).
Hence the first time that we will identify some relevant vari-
ables in the algorithm (̂f(S) 6= 0 for someS, |S| = s), we
will actually be able to identify all the relevant variables,
and the running time will be roughlyns. As a direct conse-
quence of Corollary 11 we obtain the following Theorem:

Theorem 12 The class of symmetrick-juntas can be
learned exactly under the uniform distribution with confi-
dence1− δ in timen

3k
31 +o(k) · poly(2k, n, log(1/δ)).

5 Conclusion

The most important open problem that remains is to as-
certain the true behavior of the functionτ(k). It may even
be thatτ(k) is a constant for allk, but resolving this seems
hard. A relatively easier problem, which seems approach-
able, is to show thatτ(k) is at most a constant for in-
finitely manyk. Using Theorem 9, this will already imply
τ(k) ≤ εk, for all ε > 0, for large enoughk. Among other

problems, it will be very useful to be able to determineτ(l)
quickly for l > 30. Right now, we know of no method other
than essentially an exponential algorithm.

6 Results of the Computer Search

The following table is based on a computational search
for τ(l) for small values ofl. The rows in the table corre-
spond to values ofl. The columns correspond to various
values ofs. The(l, s)-th entry of the table is the number of
symmetric boolean functionsf such thatAl,sν(f) is a con-
stant vector. Hence, whenever this entry is4, τ(l) ≤ s. The
least value ofs+1

l+1 for which τ(l) ≤ s is for l = 30, s = 2,
giving the ratio3/31.

l s=1 s=2 s=3 s=4
2 4 4 4 4
3 6 4 4 4
4 8 4 4 4
5 8 4 4 4
6 20 4 4 4
7 26 8 4 4
8 48 10 6 4
9 42 10 6 4

10 64 6 6 4
11 66 4 4 4
12 144 4 4 4
13 178 8 4 4
14 452 14 6 4
15 428 26 8 4
16 576 12 12 4
17 514 4 4 4
18 1072 4 4 4
19 1442 12 4 4
20 2864 16 8 4
21 2534 16 8 4
22 4608 8 8 4
23 6402 8 4 4
24 12448 10 6 4
25 9350 22 6 4
26 - - - 4
27 - - - 4
28 - - - 4
29 - - - 4
30 - 4 4 4
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