
Deterministic Identity Testing for Multivariate Polynomials

Richard J. Lipton ∗ Nisheeth K. Vishnoi †

Abstract
In this paper we present a simple deterministic algorithm
for testing whether a multivariate polynomial f(x1, . . . , xn)
is identically zero, in time polynomial in m, n, log(d + 1)
and H. Here m is the number of monomials in f, d is the
maximum degree of a variable in f and 2H is the least upper
bound on the magnitude of the largest coefficient in f. We
assume that f has integer coefficients.

The main feature of our algorithm is its conceptual

simplicity. The proof uses Linnik’s Theorem which is a

deep fact about distribution of primes in an arithmetic

progression.

1 Introduction

The problem of testing whether a multivariate polyno-
mial f(x1, . . . , xn) is identically zero has proven to be
extremely useful in theoretical computer science. This
has been used in designing fast randomized algorithms:
most notably for program checking [5, 13] and perfect
matching in graphs [14, 18, 6]. It is also heavily used in
complexity theory in proving results like IP=PSPACE
[21, 15, 4] and the optimal PCP characterization of NP
[3]. For more details on the applications the reader is
referred to the book of Motwani and Raghavan [17].

To make the problem more precise, one needs to fix
the representation of the given polynomial. Clearly if
the polynomial is given as a list of its coefficients, the
problem is trivial. Often we are given some implicit rep-
resentation of the polynomial such as the determinant of
a matrix or an arithmetic circuit. It is easy to see that
there exists a set S, with size polynomial in s and d,
such that any nonzero multivariate polynomial of total
degree d which can be described using s bits, evaluates
to a nonzero value at at least one of the points of S.
Finding such a set deterministically seems elusive and
it seems likely that this will involve substantial algebraic
and number theoretic ideas. This fact is illustrated in
the papers of Chen and Kao [7] and Lewin and Vadhan
[11].

∗College of Computing, Georgia Institute of Technology, At-

lanta GA 30332. Email: rjl@cc.gatech.edu
†College of Computing, Georgia Institute of Technology, At-

lanta GA 30332. Email: nkv@cc.gatech.edu

2 Previous Work

The earliest work on zero testing can be traced to
DeMillo and Lipton [8], Schwartz [20] and Zippel [22]
back to late 1970’s. The basic idea in their work was
that a univariate polynomial of degree at most d can
have at most d roots. So fixing a large enough set and
evaluating the polynomial at randomly chosen points
from this set gives an efficient randomized test with high
probability of success.

Only recently have there been improvements in
these algorithms. In a remarkable paper, Chen and
Kao [7] show how to reduce randomness using irrational
numbers. Contrary to the classic algorithms, the error
probability is reduced not by increasing the number of
random bits, but by letting the algorithm run for more
time.

This technique was generalized and proved optimal
under the black box model of computation by Lewin
and Vadhan [11]. They give an algorithm which works
over any field and uses

∑n
i=1dlog(di + 1)e random bits,

where di is the degree of f in xi.
Further improvements and generalizations were

made in the work of [2] and notably in [10]. Klivans and
Spielman [10] use ideas from error correcting codes and
a variant of the Isolation Lemma [18] to give a random-
ized polynomial time algorithm which uses O(log mnd)
random bits. Here m is the number of monomials, and
d is the total degree of f.

3 Our Result

3.1 Notation Let k be a field and f(x1, . . . , xn) ∈
k[x1, . . . , xn]. The problem is to determine whether
f ≡ 0.

The following notation is used throughout the paper

1. Represent the polynomial as

f =
∑
α

cαxα.

We assume that all the coefficients cα are integers.
Moreover xα = xα1

1 · · ·xαn
n .

2. n denotes the number of variables in f.

3. m denotes the number of monomials in f.

4. di, for 1 ≤ i ≤ n be the degree of xi in f. Let
d = maxi di. d is called the maximum degree of
f.

5. L denotes Linnik’s constant (explained later).

6. H denotes the height of f, that is if f =
∑

α cαxα,
then H is the least number such that

max
α

|cα| ≤ 2H .

7. All logs in this paper are base 2 unless stated
otherwise.

8. We assume that the only operation we are allowed
with polynomial f is to evaluate it on inputs. We
refer to this as the Black Box model. We further
assume that the implementation of f is over a field
of characteristic zero.

3.2 Main Theorem and Discussion Now we are
ready to state the result of this paper.

Theorem 3.1. Given a multivariate polynomial
f(x1, . . . , xn) with integer coefficients as a black
box, there is a deterministic algorithm which decides
whether f is identically zero in time polynomial in
m,n, log(d + 1) and H. Moreover the bit lengths
of the queries to the black box are logarithmic in
m,n, log(d + 1) and H.

The input bit lengths are important. This is
illustrated in a later section on the number of roots of
sparse polynomials.

Although we use some deep results from analytic
number theory, the main idea in the paper is a clever
use of the following mantra

A positive integer s can have at most log s
distinct prime factors.

We do not attempt to optimize the running time of
the algorithm in this paper, instead just illustrate the
basic ideas to get a deterministic test for zero testing
with parameters mentioned above.

We remark here that via a different approach,
Klivans and Spielman [10] obtain similar results. But
their result implies a deterministic identity test which
runs in time polynomial in m,n, d compared to ours,
which runs in time polynomial in m,n,H and log(d+1).
So for exponential degree sparse polynomials, Klivans-
Spielman implies an exponential algorithm, while ours
is still a polynomial time algorithm.

The main feature of our algorithm is that it is
conceptually simpler than the one by Klivans and
Spielman.

We also mention the basic lower bound argument
for any deterministic test: Any oracle access to f gives
a linear equation over the coefficients of the polynomial.
So One has to make at least Ω(m) queries to decide
whether f is identically zero or not. So apart from the
restriction on the largest coefficient, our algorithm is
tight up to a polynomial. But notice that the degree d
does not play a role in the lower bound. That is where
our is better than the previous algorithms.

3.3 Organization First we give an interesting fact
about roots of sparse polynomials. In the next section
we introduce some number theoretic preliminaries we
will be needing for the algorithm.

Then we give the algorithm and in the subsequent
section its analysis.

4 Number of Positive Roots of Sparse
Polynomials

In this section we address the following question

How many real positive roots can a univariate
polynomial (over the reals) with at most m
monomials can have ?

The answer to this question follows from a result of
Michell ([16]) and also from the well known Descartes’
Rule of Signs: the number of such zeros has to be less
than m. So for such a polynomial, evaluating them at
{1, . . . ,m} is good enough to decide whether it is zero
or not. First notice that such a result is not possible for
multivariate polynomials: consider x− y. Moreover the
reduction of a multivariate polynomial to a univariate
one may cause an exponential blow up in the degree.
So the input bit lengths may become exponential in the
number of variables, which is not desirable.

5 Number Theoretic Preliminaries

For integers a, d, (a, d) denotes the greatest common
divisor of a and d. For d > 0, let φ(d) be the Euler’s
totient function of d, or the cardinality of the set

{a|(a, d) = 1, 1 ≤ a ≤ d}.

Notice that for a prime p, φ(p) = p− 1.

Lemma 5.1. The number of distinct prime divisors of
an integer s ≥ 1 is at most log2 s.

For a prime p let GF (p) be the finite field on p
elements.

Theorem 5.1. For a prime p, and integers s, t the
polynomials xs and xt are the same over GF (p) if and
only if p− 1 divides (s− t).

5.1 Distribution of Primes in Arithmetic Pro-
gressions The following Lemma follows easily from the
Prime Number Theorem or even relaxed versions of it.

Lemma 5.2. [19] There is a constant c > 0 such that
the n-th prime pn ≤ cn log n.

Theorem 5.2. (Dirichlet) [19] For integers d ≥ 2
and a ≥ 1, with (a, d) = 1, there are infinitely many
primes in the arithmetic progression {a + kd|k ≥ 0}.

For integers d ≥ 2 and a ≥ 1, with (a, d) = 1,
let p(d, a) be the smallest prime in the arithmetic
progression {a + kd|k ≥ 0}. Define

p(d) = max
1≤a<d,(a,d)=1

p(d, a).

Under the widely believed Generalized Riemann
Hypothesis, Heath-Brown proved ([19]) that there is a
constant c such that

p(d) ≤ c(φ(d))2(log d)2.

The following unconditional theorem which we will
use is attributed to Linnik can be found in [12].

Theorem 5.3. There is a constant L > 1 (called
Linnik’s constant) such that for every sufficiently large
d ≥ q0,

p(d) < dL.

The best known value for L is 5.5 [9], while Schinzel,
Sierpinski, and Kanold ([19]) have conjectured the value
value to be 2. We mention here that it follows from the
Prime Number Theorem that for every ε > 0 and large
enough d :

p(d) > (1− ε)φ(d) log d.

For a detailed discussion on these facts the reader is
referred to the book by Ribenboim [19].

6 The Algorithm

First we need the following simple but useful Lemma.

Lemma 6.1. Given a polynomial f(x1, . . . , xn) over a
characteristic zero field with maximum degree no more
than d, the substitution xi → x(d+1)i−1

has the property
that f is identically zero if and only if the new univariate
polynomial is identically zero. Denote this polynomial
by gf (x). The degree of gf (x) is at most n(d + 1)n.

Note that the above transformation preserves spar-
sity.

Let t be a parameter to be fixed later. Denote by
qr the r-th prime bigger than q0. Here q0 is the constant
above which one can use Linnik’s Theorem. Further let
pi be the smallest prime in the arithmetic progression
{jqi + 1|j ≥ 1}. It follows from Linnik’s Theorem that
pi < qL

i . Now we are ready to describe the algorithm:

For r = 1, . . . , t, compute gf (x) at all points of
the field GF (pr) and output f ≡ 0 if and only
if the value at each evaluated point is 0.

Notice that it may be the case that pi = pj for i 6= j,
but we do not care as long as there are enough distinct
primes we run the algorithm on. We consider this issue
in the analysis below. First we prove that the algorithm
is correct for a suitable choice of t.

We also remark that since we assume an oracle
access to f, we can implement the function g as follows:
Once a prime p is fixed, and a point x ∈ GF (p),
we compute the transformation mentioned in Lemma
6.1 modulo p. Though the degree is exponential, still
exponentiation can be done fast modulo a prime. Once
we have the transformation, we query f at that point.
Then we take the output modulo p. Since the oracle of f
is over a characteristic zero field, the modular arithmetic
described above is justified.

6.1 Analysis Let gf (x) =
∑

i cix
ki . So g has at most

m nonzero terms. Call a prime p from our test set bad
if at least one of the following occurs

1. If p− 1|(ki − kj) for some 1 ≤ i 6= j ≤ m.

2. If p divides ci for some 1 ≤ i ≤ m.

Fact 6.1. It follows from 5.1 that if gf (x) is not iden-
tically zero, then the algorithm works correctly as long
as we make sure that there is at least one prime in our
set p1, . . . , pt which is not bad.

To estimate the number of bad primes for the first
case notice that whenever p− 1 divides some di − dj we
have a prime factor q of di − dj . Since the number of
such terms is O(m2), and each of them could be at most
(d + 1)n. Hence we have the following:

Fact 6.2. By Lemma 5.1 The number of bad primes
for the first case is at most m2n log(d + 1).

Fact 6.3. By Lemma 5.1 the number of bad primes for
the second case is at most∑

i

log |ci| ≤ H ·m.

For the second case we have to deal with the case
when for i 6= j, pi = pj . Or qi, qj have the same smallest
prime in their corresponding arithmetic progressions.
We do so with the following Lemma.

Lemma 6.2. Let q0 < q1 < q2 < · · · qv be primes
such that the smallest prime in each of the arithmetic
progression {jqi + 1|j ≥ 1} is p, and q0 is the constant
above which Linnik’s Theorem applies, then

v < L.

Proof. By hypothesis, there is an integer k′ > 1 such
that

p− 1 = k′q1q2 = · · · qv.

But qv
1 < p < qL

1 . Here the last inequality follows from
Linnik’s Theorem. This implies the Lemma.

Remark 6.1. In fact one can tighten the analysis by
the observation that all we need to consider is just
one non-zero coefficient and its monomial in case the
polynomial is not identically zero. This way we get rid
of a factor of m.

This Remark and the Lemma above helps establish
the following Theorem which lower bounds the value of
t.

Theorem 6.1. There is a constant c > 0 such that the
algorithm works correctly if

t > c · (mn log(d + 1) + H).

As a Corollary we get Theorem 3.1.

6.2 A Number Theoretic Remark It is a result
of Adelman, Pomerance and Rumely that there are
infinitely many numbers m such that, the number of
divisors of it of the form p− 1, where p is some prime is
of the order exp(c log m log log m). This means that the
least common multiples of these divisors coming from
these primes is very small.

A direct Corollary of Linnik’s Theorem which seems
to lie at the heart of our algorithm is the following
number theoretic fact:

Corollary 6.1. For any t ≥ 1, there is a constant
q and a set of primes {p1, . . . , pt}, such that the least
common multiple of the numbers {p1 − 1, . . . , pt − 1} ≥
qt.

It will be interesting to find other applications of
this Corollary.

7 Acknowledgments

The authors would like to thank Salil Vadhan for
bringing to their attention the paper by Klivans and
Spielman [10] and Igor Shparlinski for referring us to
[1].

References

[1] L. Adleman, C. Pomerance, R. Rumely On distin-
guishing prime numbers from composite numbers, Ann.
Math., 117, 173–206, 1983.

[2] M. Agarwal, S. Biswas. Primality and Identity Testing
via Chinese Remaindering. IEEE conference on Foun-
dations of Computer Science, 1999.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, M.Szegedy,
Probabilistic checking of proofs: a new characterization
of NP, Journal of the ACM, Vol. 45 No. 1, 70–122,
1998.

[4] L. Babai, L. Fortnow, C. Lund, Non-deterministic
exponential time has twoprover interactive protocols.
Computational Complexity, 1(1):3-40, 1991.

[5] M. Blum, S. Khanna, Designing Programs that Check
their Work. ACM Symposium on the Theory of Com-
puting, 86-97, 1989.

[6] S. Chari, P. Rohatgi, A. Srinivasan, Randomness-
optimal unique element isolation with applications to
perfect matching and related problems, SIAM J. Com-
put. 24(5):1036-1050, 1995.

[7] Z. Chen, M. Kao, Reducing randomness via irrational
numbers, ACM Symposium on Theory of Computing,
200-209, 1997.

[8] R. DeMillo, R. Lipton, A probabilistic remark on alge-
braic program testing. Information Processing Letters
7, 4 (1978), 193-195.

[9] D. R. Heath-Brown, Zero-free regions for Dirichlet L-
functions and the least prime in an arithmetic progres-
sion , Proc. Lond. Math. Soc., 64, 265–338, 1992.

[10] A. Klivans, D. Spielman, Randomness efficient identity
testing of multivariate polynomials, ACM Symposium
on Theory of Computing, 216–223, 2001.

[11] D. Lewin, S. Vadhan, Checking polynomial identities
over any field: towards a derandomization?,ACM Sym-
posium on Theory of Computing, 438–447, 1998.

[12] Yu. V. Linnik, On the least prime in an arithmetic
progression, I. The basic theorem; II. The Deuring-
Heilbronn’s phenomenon, Rec. Math. (Mat. Sbornik)
N.S. 15(57), (1944). 139–178 and 347–368.

[13] R. Lipton, New Directions in Testing, Distributed
Computing and Cryptography, DIMACS Series on Dis-
crete Mathematics and Theoretical Computer Science
2 (1991), American Mathematical Society, 191-202.

[14] L. Lovasz, On determinants, matchings and random al-
gorithms, In L.Budach, editor, Fundamentals of Com-
puting Theory, Akademia-Verlag, 1979.

[15] C. Lund, L. Fortnow, H. Karloff, N. Nisan, Algebraic
methods for interactive proof systems. Journal of the
ACM, Vol. 39, 859-868, 1992.

[16] O. H. Michell, Note on Determinants of Powers, Amer-
ican Journal of Mathematics, Vol 4, 341-344, 1881.

[17] R. Motwani, P. Raghavan, Randomized Algo-
rithms, Cambridge University Press, 1995.

[18] K. Mulmuley, U. Vazirani, V. Vazirani, Matching is as
Easy as Matrix Inversion, ACM Symposium on Theory
of Computing, 345-354, 1987.

[19] P. Ribenboim, The Book of Prime Number
Records, Springer Verlag, 1989.

[20] J. Schwartz, Fast probabilistic algorithms for verifica-
tion of polynomial identities, Journal of the ACM, Vol.
27, 701-717, 1980.

[21] A. Shamir, IP=PSPACE, Journal of the ACM, Vol. 39,
No. 4, 869–877, 1992.

[22] R. Zippel, Probabilistic Algorithms for Sparse
Polynomials. Ph.D. thesis, MIT 1979.

