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Abstract

Graph models for real-world complex networks such as the Internet, the WWW and biological
networks are necessary for simulation-based studies of a variety of problems. Currently, there is
a fair amount of available data for such networks, and yet, the primitives of how these networks
grow and evolve are not well understood. On the positive side, the available data suggest robust
and persistent heavy tailed statistics, most notably on the degrees of the network topologies.
Consequently, a practical way to generate network topologies that meet the observed data is
the following degree-driven approach: First predict the degrees of the graph by extrapolation
from the available data, and then construct a graph meeting the degree sequence and, possibly,
additional constraints such as connectivity, randomness, low cost, to name a few. In particular,
within the networking community, this is currently accepted as the most successful approach
for modeling the topology of the Internet.

Constructing a simple graph that meets a given degree sequence is a classical problem in
graph theory and theoretical computer science. This problem is intimately related to the theory
of matchings, and hence, many generalizations of the problem can be also addressed in a strict
theoretical framework.

In this paper we review a range of theoretical primitives that are relevant to the degree-driven
network generation approach. Some of these primitives can be readily adapted in practice, and
enrich the output of existing network topology generators. More importantly, we formalize
several theoretical problems for which efficient algorithms can greatly impact the application
context. Since the practical applications involve tens of thousands of nodes, approximation
algorithms become particularly important. We thus hope that this paper will bring to the
attention of the network modeling community some relevant classical graph theory, as well as
bring to the attention of mathematicians and theoretical computer scientists a variety of new
problems whose resolution may have direct practical impact.

1Research supported by NSF-ITR-0220343, and by a Georgia Tech Edenfield Faculty Fellowship.
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1 Introduction

There has been a recent surge of interest in complex real-world networks. These include the
WWW [26, 4, 8, 14, 27, 28] where a node corresponds to a Web page and there is an edge between
two nodes if there is a hyperlink between the corresponding pages, the Internet at the level of Au-
tonomous Systems [18, 25, 31, 38, 21] where a node corresponds to a distinct routing administration
domain (such as a University, a corporation, or an ISP) and an edge represents direct exchange
of traffic between the corresponding domains, and biological networks [24, 11] where, nodes cor-
respond to genetic or metabolic building blocks (such as genes and proteins) and edges represent
direct interactions between these blocks. Obtaining accurate graph models for such real-world
networks is necessary for a variety of simulation-based studies.

A very robust and persistent characteristic of complex networks, including the WWW, the
Internet and biological networks, is that their degree sequences follow heavy tailed statistics. By
this we mean (a)the ith largest degree of the graph is proportional to i−α, with α approaching 1
from below, (b)the frequency of the ith smallest degree of the graph is proportional to i−β , with
β approaching 2 from above (see [18] for detailed Internet measurements, see [4, 14, 27, 28] for
WWW measurements, and see also [1] for mathematical explanation why β ' 1+ 1

α). This is a
sharp departure from the Erdös-Rényi random graph model where the degrees are exponentially
distributed around the mean. Consequently, several papers have proposed plausible graph models,
based on the syntactic notion of “preferential attachment” [4, 7, 28, 3, 13], and on the semantic
notion of multi-objective optimization [17], for explaining this phenomenon. Despite the elegant
principles of the above approaches, none of them predicts accurately all the observed measurements.
On the other hand, graph models for complex networks are often expected to pass strict performance
requirements. For example, the networking community uses such graph models to simulate a wide
range of network protocols [42, 18, 25, 30, 31, 35, 38, 9, 21], and hence the accuracy of the underlying
topology model is very important.

Therefore, the following alternative approach for generating network topology models has been
considered. First predict the degrees of the graph to be generated by extrapolation from available
data (for example, according to (a) and (b) above or according to other heuristics aiming to
match real data [25]), and then generate a graph that satisfies the target degree sequence, and
additional constraints, the first and most natural of which is connectivity. In the theory community
this approach was first formalized in [2, 10] who especially addressed the connectivity issue. In
particular, [2, 10] generate a random graph from a probability space parameterized by the target
degree sequence, and show that for a wide range of parameters of practical interest the generated
graph has a giant connected component.

In the networking community the degree-driven approach is typified by the Inet topology gen-
erator [25]. The current implementation of Inet uses the following heuristic for constructing a
connected graph that meets a predicted degree sequence: First it places a spanning tree to guar-
antee connectivity, and then it tries to match the remaining degrees “as much as possible” using
a “preferential connectivity heuristic”. It is worth noting that the degree-driven approaches of [2]
and [25] are currently the method of choice for generating Internet-like topologies, and yet, neither
of these methods is guaranteed to match degree sequence exactly or even approximately.

Generating a graph that meets a certain degree sequence is a classical problem in graph theory,
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dating back to the work of Erdös and Gallai and the algorithms of Havel and Hakimi [16, 23, 22,
5]. In Section 2 we point out these basic graph theoretic primitives that can be readily adapted
in practice, and enrich the output of existing network topology generators. All graph theoretic
primitives of Section 2 are well known, and the new point here is that these primitives have the
described direct practical consequences.

In Section 3 we formalize several extensions of the problem of generating a graph that meets a
prescribed degree sequence and explain the practical significance of these problems. These exten-
sions include costs on links, evolutionary models, and directed graphs. The structure of all these
problems arises from an intimate relation between the degree sequence problem and matching the-
ory. For most of these extensions we outline polynomial time algorithms by reduction to matchings.
However, the involved polynomials are of high degree, which makes the algorithms impractical. For
example, todays’ Internet topologies have approximately 15K nodes [34]. In Questions Q1, Q2, Q3,
Q4, Q5, Q6, and Q7 we formalize theoretical questions for which answers would yield algorithms
efficient in practice. All the problems addressed in Section 2 are new.

In Section 4 we discuss the the Markov chain method for generating a random connected graph
that meets a certain degree sequence. This method has been also discussed in [20].

We thus hope that this paper will bring to the attention of the network modeling community
some relevant classical graph theory, as well as bring to the attention of mathematicians and
theoretical computer scientists a variety of new problems whose resolution may have direct practical
impact. A preliminary version of our paper appeared in [32].

2 Foundations of Degree-Based Graph Generation

Let n denote the number of nodes of the graph we wish to generate. Let vi, 1≤ i≤ n denote the
nodes and d1 ≥ d2 ≥ . . .≥ dn denote the intended degrees of these nodes. We would like a simple
undirected graph (i.e., without self-loops or multiple links) meeting the above degree sequence. In
addition, we want the graph to be connected. In this section we review the classical Erdös-Gallai
theorem [5, 16] and Havel-Hakimi construction [22, 23] for addressing this question. We point out
that the connectivity requirement can be dealt with separately, and that the supporting theory
allows great flexibility in the generated output graph. From the practical point of view, these
fundamental theoretical primitives can replace all ad-hoc heuristics of current implementations.

A sequence of degrees d1≥ d2≥ . . .≥ dn is called realizable if and only if there exists a simple
graph whose nodes have precisely this sequence of degrees. A straightforward necessary condition
for a degree sequence to be realizable is that for each subset of the k highest degree nodes, the
degrees of these nodes can be “absorbed” within the nodes and the outside degrees. Stated formally,
for 1 ≤ k ≤ n−1:

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di} (1)

The Erdös-Gallai theorem states that this necessary condition is also sufficient [5, 16]. The proof
is inductive and provides the following natural construction algorithm [22, 23]. The algorithm is
iterative and maintains the residual degrees of vertices. In each iteration, it picks an arbitrary vertex
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v and adds edges from v to dv vertices of highest residual degree, where dv is the residual degree
of v. The residual degrees of the latter dv vertices are updated appropriately. The significance of
connecting with dv highest degree vertices is that it ensures that condition (1) holds for the residual
problem instance.

For example, the algorithm can start by connecting the highest degree vertex with d1 other high
degree vertices and obtain a residual degree sequence by reducing the degrees of these vertices by
one, and repeat the same process until all degrees are satisfied (otherwise output “not realizable”).
Alternatively, the algorithm can connect the lowest degree vertex dn (resp. or a randomly chosen
vertex di) with the dn (resp. di) highest degree vertices, reduce their degrees and proceed as above.

Clearly the above algorithm runs in n iterations, each iteration invoking the degree of a vertex
(and some book-keeping for maintaining residual degrees in sorted order). Thus the running time
is very efficient, both in theory and in practice. In addition, since the sequence in which it picks
vertices can be chosen, it provides the flexibility alluded to above. For example, when we start
with higher degree vertices we get topologies that have very “dense cores”, while when we start
with low degree vertices we get topologies that have very “sparse cores”.

The Erdös-Gallai condition (1) allows for additional flexibility, which results in topologies more
closely resembling real data. The idea is to use the principle of preferential attachment for choosing
the dv vertices to which v will be connected, rather than the maximum degree dv vertices. Thus,
the dv vertices can be chosen with probabilities proportional to their residual degrees. After each
iteration, we need to ensure that condition (1) is satisfied by the residual graph (this part was
automatic in case maximum degree vertices are chosen). If not, the probabilistic choice needs to
be repeated. If it fails several times, we can go back to choosing maximum degree vertices.

Next, let us deal with the second requirement of obtaining a connected topology. If condition (1)
is satisfied, then a necessary and sufficient condition to have a connected realization is that the
graph contains a spanning tree [5], which means that the sum of the degrees must be at least
2(n−1). We can then construct a connected realization as follows. First construct a realization as
stated above. If this graph turns out to be unconnected, then one of the connected components
must contain a cycle. Let (u, v) be any edge in a cycle and let (s, t) be an edge in a different
connected component. Clearly, the graph does not have edges between the pairs u, s and v, t. By
removing the edges (u, v) and (s, t), and inserting the edges (u, s) and (v, t), we merge these two
components. Note that the resulting graph still satisfies the given degree sequence. Proceeding in
this manner, we can get a connected topology.

3 Extensions and Approximations for Costs, Constraints and Di-
rection on Edges

3.1 Mincost Realizations

The first natural extension arises when links have costs. This is particularly relevant in In-
ternet topologies where several papers have identified strong correlations, for example, between
the underlying geography and the placement and density of routers and links [21, 40]. So let
d1 ≥ d2 ≥ . . . ≥ dn be a realizable degree sequence, and suppose that there is a cost c(i, j) associ-
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ated with a link between vi and vj , 1≤ i, j ≤n, and since we consider undirected graphs we have
c(i, j)=c(j, i). We now want a mincost realization of the degree sequence, i.e., the total cost of the
used links is minimized among all realizations.

We first observe that there is a polynomial-time algorithm to find a mincost realization by re-
duction to mincost perfect matching. However, this algorithm is not efficient in practice. Questions
(Q1) and (Q2) outline theoretical questions whose answer(s) may yield practical algorithms.

A Polynomial-Time Algorithm via Matchings

For d = (d1, . . . , dn) as above, let Md be the following graph. For each 1 ≤ i ≤ n, Md contains
a complete bipartite graph Hi = (Li, Ri), where |Ri|= n−1 and Li|= n−1−di. The vertices of
Ri are labeled so that there is a label for each 1≤ j ≤ n other than i; let us denote these labels
by {ui,1, . . . , ui,i−1, ui,i+1, . . . , ui,n}. In addition, for each 1≤ i, j ≤ n with j 6= i, Md has an edge
between ui,j and uj,i. Now each perfect matching M of Md gives rise to a unique realization G of
d in the natural way: G has a link between vi and vj if and only if M contains the edge between
ui,j and uj,i. Similarly, each realization G of d is associated with

∏n
i=1(n−1−di)! perfect matchings

of Md.
Now suppose that we assign costs to edges of Md as follows: the cost of the edge between ui,j

and uj,i is equal to the cost c(i, j) of the link between vi and vj , for all 1≤ i, j ≤n. The costs of
each edges of the bipartite graphs Hi is a fixed quantity λ. Now the total cost of the edges of each
perfect matching M of Md is of the form C+λ

∑n
i=1(n−1−di)!, where the cost C is due to edges

between ui,j ’s and uj,i’s, and the factor λ
∑n

i=1(n−1−di)! is due to edges of the Hi’s. Consequently,
each perfect matching M of Md of total cost C+λ

∑n
i=1(n−1−di)! gives rise to a unique realization G

of d of total cost C in the natural way described in the paragraph above. Similarly, each realization
G of d of total cost C is associated with

∏n
i=1(n−1−di)! perfect matchings of Md, each one of cost

C+λ
∑n

i=1(n−1−di)!. It can be now seen that a mincost perfect matching of Md directly suggests
a mincost realization of Md. Since finding a minimum cost perfect matching is in polynomial
time [29, 33, 12], it follows that finding a mincost realization is also in polynomial time.

Open Questions

From the practical point of view, the drawback of the method described in the previous subsection
is that the reduction graph Md is of size Ω(n2). We are thus invoking mincost perfect matching
algorithms for a graph with Ω(n2) vertices, with n in the order of 10K to 20K; this is practically
unacceptable. The hope in moving to more practical running times lies in the fact that the under-
lying graph has special structure, and that reasonable approximations [41] would be acceptable for
all practical purposes. We thus raise the following question:
Q1: Find algorithms that solve the mincost realization problem for a network of size n, even in
an approximate sense, even when costs are of special kind (metric or Euclidean), even for special
classes of degree sequences (which include sequences with heavy tailed statistics on the degrees),
and have running times substantially lower than invoking mincost perfect matching for a graph
with Ω(n2) vertices.
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Now let us revisit the requirement that the realization is mincost and connected. For this case,
we do not even know of a polynomial time algorithm. We thus raise the following question:
Q2: What is the complexity of finding a mincost connected realization for a network of size n? Is
there an efficient algorithm, even in an approximation sense, even when costs are of special kind
(metric, Euclidean, “highly clustered”), and even for special classes of degree sequences (which
include sequences with heavy tailed statistics on the degrees)?
Remark: In practice, even partial answers to the above questions are likely to be significant. For
example, a good algorithm to solve (Q1) can be combined with a heuristic along the lines of the
last paragraph of Section 2 and yield reasonable practical performance.

3.2 Restrictions on Links and Evolutionary Models

A second natural extension arises when certain links are not allowed. This can be thought of as
a special case of mincost realizations, by assigning a very large cost to each disallowed link. We
discuss this case separately because it has special practical significance. In particular, we may think
of two degree sequences d1≥d2≥ . . .≥dn and d′1≥d′2≥ . . .≥d′n, with d′i ≥ di, 1≤ i≤n, aiming to
capture the fact that the second degree sequence is an evolution of the first one. Let δi = d′i−di,
1≤ i≤n. Now if G is a realization of the first degree sequence, we may wish to construct a realization
of the degree sequence δ1,. . . ,δn which does not use links present in G, thus representing a certain
evolution of G (note that the above notation the δi’s are not necessarily non-increasing, but this
does not have any impact on any of the algorithmic arguments). Now the following questions arise:

Open Questions

Q3: Given a degree sequence d1 ≥ d2 ≥ . . . ≥ dn, and a set E of disallowed links over a set of
n vertices, find algorithms that solve the realization problem, even in an approximate sense, even
when the structure of E is of special kind, even for special classes of degree sequences (which include
sequences with heavy tailed statistics on the degrees), and have running times substantially lower
than invoking mincost perfect matching for a graph with Ω(n2) vertices.
Q4: Given degree sequences d1≥d2≥ . . .≥dn and d′1≥d′2≥ . . .≥d′n, with d′i ≥ di, 1≤ i≤n, construct
respective realizations G and G′, where G is a subgraph of G′ (or decide that such realizations do
not exist). What is the complexity of the above question? Are there efficient algorithms, even in
an approximate sense, even for special classes of degree sequences (which include sequences with
heavy tailed statistics on the degrees)?

3.3 Graphic Approximations of Non-Graphic Sequences

Let f1≥f2≥ . . .≥fn be a non-realizable degree sequence (i.e., condition (1) fails and let d1≥d2≥
. . .≥dn be a realizable degree sequence. Say that a vertex vi has “deficit” if fi > di and let fi−di

be this deficit. Say that a vertex vi has “surplus” if fi < di and let di−fi be this surplus. Define
dist(f ,d) as the sum of the deficits and the surpluses.

Given a non-realizable degree sequence f , it is natural to ask for a realizable degree sequence d
which minimizes dist(f ,d). For this problem, there is a polynomial time algorithm which invokes
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maximum cardinality matching of a graph with O(n2) vertices. In particular, where Mf is the
reduction graph related to f , as described in Section 3.1, it can be verified that maximum car-
dinality matchings of Mf give rise to realizable “approximations” d) of the non-realizable degree
sequence f which minimize dist(f ,d). It would be particularly elegant to find a direct (and faster)
approximation algorithms, for example reminiscent of the Havel-Hakimi construction of Section 2.
Q5: Given a sequence of n integers f in non-increasing order, we wish to find a realizable degree
sequence d that minimizes dist(f ,d). Is there a natural extension of the Havel-Hakimi construction
for this problem? Is there a generalization of the Erdös-Gallai condition (1)?
Remark: It is easy to see that min-dist approximations of a non-realizable degree sequence have
several interesting structural properties: The subgraph induced by surplus vertices form an inde-
pendent set, subgraph induced by deficit vertices form a clique, and there are min-dist realizations
that involve only surplus or only deficit vertices.
Q6: Given a sequence of n integers f in non-increasing order, and a realizable degree sequence
d, what are other natural notions of “distance” between f and d? Are there efficient algorithms
“approximate” f by a realizable d of whose “distance” from f is small?

3.4 Directed Network Models and a Reduction to Flows

So far we dealt with undirected graphs. However, in various application contexts, there are strong
semantics suggesting directed edges. In the WWW these semantics are transparent and they
denote the direction of a hyperlink. In the Internet topology context these semantics denote certain
“customer-provider” relationships. As opposed to the WWW, these relationships are opaque (i.e.,
pre-negotiated between partners, but never explicitly advertised in the transparent parts of the
network protocols), and considerable research effort has been put to “infer” these relationships
from routing tables and traces [19, 37]. As expected, the degrees of the corresponding directed
complex networks also follow heavy tailed statistics. In particular, the large in-degrees follow a
Zipf law with exponent approaching 1 from below, and the small out-degrees follow a power-law
with exponent approaching 2 from above (similar to (a) and (b) of Section 1). It is therefore
natural to address the issue of generating a directed graph that satisfies, simultaneously a given
degree sequence for in-degrees, and a given degree sequence for out-degrees (even though, to date,
the correlation of in-degrees and out-degrees is not well understood).

Let din=(din,1, din,2, . . . , din,n) and dout=(dout,1, dout,2, . . . , dout,n) be sequences of integers (in
no particular sorted order), with

∑n
i=1 din,i =

∑n
i=1 dout,i. We wish to construct a directed graph on

n nodes, such node vi has din,i incoming edges and dout,i outgoing edges, 1≤ i≤n.
Consider the following network. There is a source s, a sink t, a set of nodes L={l1, . . . , ln} and

a set of nodes R={r1, . . . , rn}. There is a link of capacity one directed from each li to each rj , for
1≤ i, j≤n and i 6=j. There a link of capacity dout,i directed from s to each li, for 1≤ i, j≤n. Finally,
there is a link of capacity din,i directed from each ri to t, for 1≤ i, j ≤ n. We may now consider
integral maximum flows from s to t. If there is a such a flow of value

∑n
i=1 din,i =

∑n
i=1 dout,i, then

the corresponding degree sequences are realizable, and the flow gives a directed graph that satisfies,
simultaneously, in-degrees din,i and out-degrees dout,i.
Q7: Are there more efficient algorithms (beyond max-flow on bipartite networks), for the maximum
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flow problem stated above?

4 Random Graphs and the Markov Chain Method

We now turn to the question of generating a random instance from the space of all possible
connected graphs that realize a target degree sequence. In experiment, it has been observed that
“random” such instances are excellent fits for several characteristics of complex network topolo-
gies [2, 38, 20] (albeit, all these experiments fall short of guaranteeing that the generated instances
are either “correct” connected realizations of the target degree sequence, or “close” to random).

For any sequence of integers that has a connected realization, consider the following Markov
chain. Start from a connected graph Gt with this degree sequence. Pick two edges at random, say
(u, v) and (x, y) with distinct endpoints. If (u, x) and (v, y) are not edges then consider a graph G′
by removing the edges (u, v) and (x, y) and inserting the edges (u, x) and (v, y). Observe that G′ still
satisfies the given degree sequence. We further have to check whether G′ is a connected graph. If it is
connected then we perform the switching operation and let Gt+1 be G′. Otherwise we do not perform
the switching operation and Gt+1 remains Gt. It follows from a theorem of Taylor [5, 39] that, using
the above switching operation, any connected graph can be transformed to any other connected
graph satisfying the same degree sequence (we note that the proof of Taylor’s theorem is somewhat
more involved than the corresponding fact for realizations without the connectivity constraint; the
latter fact is straightforward). It now follows from standard Markov chain theory [33, 36] that, in
the limit, the above Markov chain will generate a random graph with the given degree sequence.

What is the mixing rate? Similar questions have been considered elsewhere [36] without the
connectivity requirement. In the context of generating connected models for complex networks,
[20] have performed extensive experiments and given interesting speed-ups of the Markov chain.
However, all these results fall short of analytic bounds for the mixing time of the Markov chain.
Remark: In general, the problem of rapid mixing for connected realizations is strictly harder than
that of arbitrary realizations (there is a simple reduction from the latter problem to the former by
forcing one vertex that is connected to all other vertices). However, special cases, such as trees, are
still of interest.
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