
Mixing Time of Markov Chains, Dynamical Systems and
Evolution

Ioannis Panageas
Georgia Institute of Technology

ioannis@gatech.edu

Nisheeth K. Vishnoi
École Polytechnique Fédérale de Lausanne (EPFL)

nisheeth.vishnoi@epfl.ch

Abstract

In this paper we study the mixing time of evolutionary Markov chains over populations of a fixed size
(N) in which each individual can be one of m types. These Markov chains have the property that they are
guided by a dynamical system from the m-dimensional probability simplex to itself. Roughly, given the
current state of the Markov chain, which can be viewed as a probability distribution over the m types, the
next state is generated by applying this dynamical system to this distribution, and then sampling from
it N times. Many processes in nature, from biology to sociology, are evolutionary and such chains can
be used to model them. In this study, the mixing time is of particular interest as it determines the speed
of evolution and whether the statistics of the steady state can be efficiently computed. In a recent result
[Panageas, Srivastava, Vishnoi, Soda, 2016], it was suggested that the mixing time of such Markov chains
is connected to the geometry of this guiding dynamical system. In particular, when the dynamical system
has a fixed point which is a global attractor, then the mixing is fast. The limit sets of dynamical systems,
however, can exhibit more complex behavior: they could have multiple fixed points that are not necessarily
stable, periodic orbits, or even chaos. Such behavior arises in important evolutionary settings such as the
dynamics of sexual evolution and that of grammar acquisition. In this paper we prove that the geometry of
the dynamical system can also give tight mixing time bounds when the dynamical system has multiple
fixed points and periodic orbits. We show that the mixing time continues to remain small in the presence
of several unstable fixed points and is exponential in N when there are two or more stable fixed points. As
a consequence of our results, we obtain a phase transition result for the mixing time of the sexual/grammar
model mentioned above. We arrive at the conclusion that in the interesting parameter regime for these
models, i.e., when there are multiple stable fixed points, the mixing is slow. Our techniques strengthen the
connections between Markov chains and dynamical systems and we expect that the tools developed in this
paper should have a wider applicability.

1 Introduction

Evolutionary Markov chains and mixing time

In this paper we study Markov chains that arise in the context of evolution and which have also been used
to model a wide variety of social, economical and cultural phenomena, see [17]. Typically, in such Markov
chains, each state consists of a population of size N where each individual is of one of m types. Thus, the
state space Ω has size

(N+m−1
m−1

)
. At a very high level, in each iteration, the different types in the current

generation reproduce according to their fitnesses, the reproduction could be asexual or sexual and have
mutations that transform one type into another. This gives rise to an intermediate population that is subjected
to the force of selection; a sample of size N is selected giving us the new generation. The specific way in
which each of the reproduction, mutation and selection steps happen determine the transition matrix of the
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corresponding Markov chain. The size of the population (N), the number of types (m), the fitness of each type
({ai ≥ 0 : i ∈ [m]}), and the probabilities of mutation of one type to another ({Qi j ≥ 0 : i, j ∈ [m]}) are the
parameters of the model. If we make the natural assumption that all the fitnesses are strictly positive and there
is a non-zero probability of mutating from any type to the other, Qi j > 0 for all i, j ∈ [m], then the underlying
chain is ergodic and has a unique steady state.

Most questions in evolution reduce to understanding the statistical properties of the steady state of an
evolutionary Markov chain and how it changes with its parameters. However, in general, there seems to be
no way to compute the desired statistical properties other than to sample from (close to) the steady state
distribution by running the Markov chain for sufficiently long [5]. In the chains of interest, while there is
an efficient way to sample the next state given the current state, typically, the state space is huge1 and the
efficiency of such a sampling algorithm rests on the number of iterations required for the chain to be close to
its steady state. This is captured by the notion of its mixing time. The mixing time of a Markov chain, tmix,
is defined to be the smallest time t such that for all x ∈Ω, the distribution of the Markov chain starting at x
after t-time steps is within an `1-distance of 1/4 of the steady state.2 Apart from dictating the computational
feasibility of sampling procedures, the mixing time also gives us the number of generations required to reach
a steady state; an important consideration for validating evolutionary models [5, 23]. However, despite the
importance of understanding when an evolutionary Markov chain mixes fast (i.e., is significantly smaller
than the size of the state space), until recently, there has been a lack of rigorous mixing time bounds for the
full range of evolutionary parameters in even in the simplest of stochastic evolutionary models; see [7–9]
for results under restricted assumptions and [5, 24] for an extended discussion on mixing time bounds in
evolutionary Markov chains.

The expected motion of a Markov chain

In a recent result [19], a new approach for bounding the mixing time of such Markov chains was suggested.
Towards this, it is convenient to think of each state of an evolutionary Markov chain as a vector which captures
the fraction of each type in the current population. Thus, each state is a point the m-dimensional probability
simplex ∆m,

3 and we can think of Ω⊆ ∆m. If XXX (t) is the current state, then we define the expected motion of
the chain at XXX (t) to be the function

f (XXX (t))
def
= E

[
XXX (t+1)|XXX (t)

]
where the expectation is over one step of the chain. Notice that while the domain of f is Ω, its range could
be a larger subset of ∆m.What can the expected motion of a Markov chain tell us about the mixing time of a
Markov chain? Of course, without imposing additional structure on the Markov chain, we do not expect a
very interesting answer. However, [19] suggested that, the expected motion can be helpful in establishing
mixing time bounds, at least in the context of evolutionary dynamics. The first observation is that, while in
the case of general Markov chains, the expected motion function is only defined at a subset of ∆m, in the case
of evolutionary Markov chains, the expected motion turns out to be a dynamical system; defined on all points
of ∆m. Further, the Markov chain can be recovered from the dynamical system: it can be shown that given a
state XXX (t) of the Markov chain, one can generate XXX (t+1) equivalently by computing the probability distribution
f (XXX (t)) and taking N i.i.d. samples from it. Subsequently, their main result is to prove that if this dynamical

1For example, even when m = 40 and the population is of size 10,000, the number of states is more than 2300, i.e., more than the
number of atoms in the universe!

2It is well-known that if one is willing to pay an additional factor of log1/ε, one can bring down the error from 1/4 to ε for any
ε > 0; see [13].

3The probability simplex ∆m is defined to be {p ∈ Rm : pi ≥ 0 ∀i, ∑i pi = 1}.
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system has a unique stable fixed point and also all the trajectories converge to this point, then the evolutionary
Markov chain mixes rapidly. Roughly, this is achieved by using the geometry of the dynamical system around
this unique fixed point to construct a contractive coupling. As an application, this enabled them to establish
rapid mixing for evolutionary Markov chains in which the reproduction is asexual.

What if the limit sets of the expected motion are complex: multiple fixed points – some stable and some
unstable, or even periodic orbits? Not only are these natural mathematical questions given the previous work,
such behavior arises in several important evolutionary settings; e.g., in the case when the reproduction is
sexual (see [3, 16] and Chapter 20 in [?]) and an equivalent model for how children acquire grammar [11, 18].
While we describe these models later, we note that, as one changes the parameters of the model, the limit sets
of the expected motion can exhibit the kind of complex behavior mentioned above and a finer understanding
of how they influence the mixing time is desired.

Our contribution

In this paper we introduce prove that the geometry of the dynamical system can also give tight mixing time
bounds when the dynamical system has multiple fixed points and periodic orbits. This completes the picture
left open by the previous work. Recall that [19] proved that when there is a unique stable fixed point, then the
mixing time is about O(logN) when N is large compared to the parameters of the model. We complement
their result by proving the following mixing time bounds which depend on the structure of the limit sets of the
expected motion:

• One stable fixed point and multiple unstable fixed points – the mixing time is O(logN), see Theorem 6.

• Multiple stable fixed points – the mixing time is eΩ(N), see Theorem 7.

• Periodic orbits – the mixing time is eΩ(N), see Theorem 8.

Thus, we can prove that despite the presence of unstable fixed points the mixing time continues to remain
small. On the other hand, if there are two or more stable fixed points, the mixing time can undergo a phase
transition and become exponential in N.

As an application, we characterize the mixing time of the dynamics of grammar acquisition (or, as
explained later, sexual evolution). This Markov chain attempts to model a fascinating and important problem
in linguistics; to understand the mechanism by which a child acquires the capacity to comprehend a language
and effectively communicate [10, 15]. Here, a parameter of interest is the mutation rate τ which is to be
thought of as quantifying the error of learning; see Section 2.1. Corresponding to this, the probabilities of
mutation Qi j = τ for all i 6= j and Qii = 1− (m−1)τ.We first prove that there is a critical value where the
expected motion dynamical system goes through a bifurcation from multiple stable fixed points to one stable
fixed point. Our main results then imply that for τ < τc the mixing time is exponential in N and for τ > τc it
is O(logN), see Theorem 9. Thus, we arrive at the conclusion that, in the interesting parameter regime for an
important and natural dynamics, i.e., when there is a stable fixed point other than the uniform one, the mixing
is very slow.

Technically, there have been several influential works in the probability literature that use dynamical
systems to analyze stochastic processes, see for example [2, 14, 21, 25]. While the techniques used in these
results bear some similarity to ours, to the best of our knowledge, ours is the first paper which studies the
question of how the mixing time of a Markov chain behaves as a function of the guiding dynamical system
formally.
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Organization of the paper

The rest of the paper is organized as follows. In Section 2 we present the formal statement of our main
theorems and the model of grammar acquisition/sexual evolution. In Section 4, we present an overview of the
proofs of our main theorem. The proof of Theorems 6, 7, 8 and 9 appear in Sections 5, 6, 7 8 respectively.

2 Formal statement of our results

In this section we present formal statements of our main results. We begin by introducing the required notation
and preliminaries.

Notation

We use boldface letters, e.g., xxx, to denote column vectors (points), and denote a vector’s ith coordinate by xi.
We use XXX and YYY (often with time superscripts and coordinate subscripts as appropriate) to denote random
vectors. For a function f : ∆m → ∆m, by f n we denote the composition of f with itself n times, namely
f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

n times

. We use J f [xxx] to denote the Jacobian matrix of f at the point xxx. When the function f is clear

from the context, we omit the subscript and simply denote it by J[xxx]. Similarly, we sometimes use Jn[xxx] to
denote the Jacobian of f n at xxx.We denote by sp(A) the spectral radius of a matrix A and by (Axxx)i the sum
∑ j Ai jx j.

Dynamical Systems

Let xxx(t+1) = f (xxx(t)) be a discrete time dynamical system with update rule f : ∆m→ ∆m. The point zzz is called
a fixed point of f if f (zzz) = zzz. We call a fixed point zzz stable if, for the Jacobian J[zzz] of f , it holds that
sp(J[zzz])< ρ < 1. A sequence ( f t(xxx(0)))t∈N is called a trajectory of the dynamics with x(0) as starting point.
A common technique to show that a dynamical system converges to a fixed point is to construct a function
P : ∆m→ R such that P( f (xxx))> P(xxx) unless xxx is a fixed point. We call P a potential function. One of our
results deals with dynamical systems that have stable periodic orbits.

Definition 1. C = {xxx1, . . . ,xxxk} is called a periodic orbit of size k if xxxi+1 = f (xxxi) for 1 ≤ i ≤ k− 1 and
f (xxxk) = xxx1. If sp

(
J f k [xxx1]

)
< ρ < 1, we call C a stable periodic orbit (we also use the terminology stable limit

cycle).

Remark 1. Since f : ∆m → ∆m and hence ∑i fi(xxx) = 1 for all xxx ∈ ∆m, if we define hi(xxx) =
fi(xxx)

∑i fi(xxx)
so that

h(xxx) = f (xxx) for all xxx ∈ ∆m, we get that ∑i
∂hi(xxx)

∂x j
= 0 for all j ∈ [m]. This means without loss of generality we

can assume that the Jacobian J[xxx] of f has 111> (the all-ones vector) as a left eigenvector with eigenvalue 0.

The definition below quantifies the instability of a fixed point as is standard in the literature. Essentially, an α

unstable fixed point is repelling in any direction.

Definition 2. Let zzz be a fixed point of a dynamical system f . The point zzz is called α-unstable if |λmin(J[zzz])|>
α > 1 where λmin corresponds to the minimum eigenvalue of the Jacobian of f at the fixed point zzz, excluding
the eigenvalue 0 that corresponds to the left eigenvector 111>.
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Stochastic Evolution

Definition 3. Given an f : ∆m→ ∆m which is smooth,4 and a population parameter N, we define a Markov
chain called the stochastic evolution guided by f as follows. The state at time t is a probability vector XXX (t) ∈ ∆m.
The state XXX (t+1) is then obtained in the following manner. Define YYY (t) = f (XXX (t)). Obtain N independent
samples from the probability distribution YYY (t), and denote by ZZZ(t) the resulting counting vector over [m]. Then

XXX (t+1) def
=

1
N

ZZZ(t) and therefore E[XXX (t+1)|XXX (t)] = f (XXX (t)).

We call f the expected motion of the stochastic evolution.

Definition 4 (Smooth contractive evolution). A function f : ∆m→ ∆m is said to be a smooth contractive
evolution if it is smooth4, has a unique fixed point zzz in the interior of ∆m, this unique point is stable, and, for
every ε > 0, there exists an ` such that for any xxx ∈ ∆m, it holds that

∥∥ f `(xxx)− zzz
∥∥

1 < ε (i.e., f converges to the
fixed point).

The main result in [19] was Theorem 5 below. This theorem gives a bound on the mixing time of a stochastic
evolution guided by a function f that satisfies Definition 4.

Theorem 5 (Main theorem in [19]). Let f be a smooth contractive evolution, and let M be the stochastic
evolution guided by f on a population of size N. Then, the mixing time of M is O(logN).

Our Results

Given a dynamical system f , one of the main questions that one can ask is does it converge, and if so, how
fast. In general, if the behavior of a system is non-chaotic, we expect the system to reach some steady state
(e.g., a fixed point or periodic orbit). This steady state might be some (local) optimum solution to a non-linear
optimization problem. Therefore, it is important to understand what traits make a dynamical system converge
fast. The existence of many fixed points which are unstable can slow down the speed of convergence of a
dynamical system. In the case of the stochastic evolution guided by f , one would expect the existence of
multiple unstable fixed points to similarly slow down the mixing time. Nevertheless, our Theorem 6 shows
rapid mixing in the presence of α-unstable fixed points. Additionally, we change the assumption convergence
to the fixed point in 5 to the assumption that for all xxx ∈ ∆m the limit limt→∞ f t(xxx) exists and is equal to some
fixed point zzz, i.e., as in 5, there are no limit cycles.

Theorem 6. Let f : ∆m→ ∆m be twice differentiable in the interior of ∆m with bounded second derivative.
Assume that f (xxx) has a finite number of fixed points zzz0, . . . ,zzzl in the interior, where zzz0 is a stable fixed point, i.e.,
sp(J[zzz0])< ρ < 1 and zzz1, . . . ,zzzl are α-unstable fixed points (α > 1). Furthermore, assume that limt→∞ f t(xxx)
exists for all xxx ∈ ∆m. Then, the stochastic evolution guided by f has mixing time O(logN).

In our second result, we allow f to have multiple stable fixed points (in addition to any number of unstable
fixed points). For this setting, we prove that the stochastic evolution guided by f has mixing time eΩ(N). Our
phase transition result on a linguistic/sexual evolution model discussed in Section 2.1 relies crucially on
Theorem 7.

4For our purposes, we call a function f is smooth if it is twice differentiable in the relative interior of ∆m with bounded second
derivative.
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Theorem 7. Let f : ∆m → ∆m be continuously differentiable in the interior of ∆m. Assume that f (xxx) has
at least two stable fixed points in the interior zzz1, . . . ,zzzl , i.e., sp(J[zzzi])< ρi < 1 for i = 1,2, . . . , l. Then, the
stochastic evolution guided by f has mixing time eΩ(N).

Finally, we allow f to have a stable limit cycle. We prove that in this setting the stochastic evolution
guided by f has mixing time eΩ(N). This result seems important for evolutionary dynamics as periodic orbits
often appear [20, 22].

Theorem 8. Let f : ∆m→ ∆m be continuously differentiable in the interior of ∆m. Assume that f (xxx) has a
stable limit cycle with points www1, . . . ,wwws of size s≥ 2 in the sense that sp(∏s

i=1 J[wwws−i+1])< ρ < 1. Then the
stochastic evolution guided by f has mixing time eΩ(N).

2.1 Dynamics of grammar acquisition and sexual evolution

We begin by describing the evolutionary processes for grammar acquisition and sexual evolution. As we will
explain, the two turn out to be identical and hence we primarily focus on the model for grammar acquisition
in the remainder of the paper.

The starting point of the model is Chomsky’s Universal Grammar theory [4].5 In his theory, language
learning is facilitated by a predisposition that our brains have for certain structures of language. This
universal grammar (UG) is believed to be innate and embedded in the neuronal circuitry. Based on this theory,
an influential model for how children acquire grammar was given by appealing to evolutionary dynamics for
infinite and finite populations respectively in [18] and [11]. We first describe the infinite population model,
which is a dynamical system that guides the stochastic, finite population model. Each individual speaks exactly
one of the m grammars from the set of inherited UGs {G1, . . . ,Gm}; denote by xi the fraction of the population
using Gi. The model associates a fitness to every individual on the basis of the grammar she and others use.
Let Ai j be the probability that a person who speaks grammar j understands a randomly chosen sentence spoken
by an individual using grammar i. This can be viewed as the fraction of sentences according to grammar i that
are also valid according to grammar j. Clearly, Aii = 1. The pairwise compatibility between two individuals
speaking grammars i and j is Bi j

def
=

Ai j+A ji
2 , and the fitness of an individual using Gi is fi

def
= ∑

m
j=1 x jBi j, i.e.,

the probability that such an individual is able to meaningfully communicate with a randomly selected member
of the population.

In the reproduction phase each individual produces a number of offsprings proportional to her fitness.
Each child speaks one grammar, but the exact learning model can vary and allows for the child to incorrectly
learn the grammar of her parent. We define the matrix Q where the entry Qi j denotes the probability that the
child of an individual using grammar i learns grammar j (i.e. Q is column stochastic matrix); once a child
learns a grammar it is fixed and she does not later use a different grammar. Thus, the frequency x′i of the
individuals that use grammar Gi in the next generation will be

x′i = gi(xxx)
def
=

m

∑
j=1

Q jix j(Bxxx) j

xxx>Bxxx

(with g : ∆m 7→ ∆m encoding the update rule). Nowak et al. [18] study the symmetric case, i.e., Bi j = b and
Qi j = τ ∈ (0, 1/m] for all i 6= j and observe a threshold: When τ, which can be thought of as quantifying the
error of learning or mutation, is above a critical value, the only stable fixed point is the uniform distribution
(all 1/m) and below it, there are multiple stable fixed points.

5Like any important problem in the sciences, Chomsky’s theory is not uncontroversial; see [10] for an in-depth discussion.
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Finite population models can be derived from the linguistic dynamics in a standard way. We describe
the Wright-Fisher finite population model for the linguistic dynamics. The population size remains N at
all times and the generations are non-overlapping. The current state of the population is described by the
frequency vector XXX (t) at time t which is a random vector in ∆m and notice also that the population that uses
Gi is NX (t)

i . How does one generate XXX (t+1)? To do this, in the replication (R) stage, one first replaces the
individuals that speak grammar Gi in the current population by NX (t)

i (B(NXXX (t)))i and the total population has
size N2XXX (t)>BXXX (t).6 In the selection (S) stage, one selects N individuals from this population by sampling
independently with replacement. Since the evolution is error prone, in the mutation (M) stage, the grammar
of each individual in this intermediate population is mutated independently at random according to the matrix
Q to obtain frequency vector XXX (t+1). Given these rules, note that

E[XXX (t+1)|XXX (t)] = g(XXX (t)).

In other words, in expectation, fixing XXX (t), the next generation’s frequency vector XXX (t+1) is exactly g(XXX (t)),
where g is the linguistic dynamics. Of course, this holds only for one step of the process. This process is a
Markov chain with state space {(y1, . . . ,ym) : yi ∈ N,∑i yi = N} of size

(N+m−1
m−1

)
. If Q > 0 then it is ergodic

(i.e., it is irreducible and aperiodic) and thus has a unique stationary distribution. In our analysis, we consider
the symmetric case as in Nowak et al. [18], i.e., Bi j = b and Qi j = τ ∈ (0, 1/m] for all i 6= j.

Note that the linguistics model described above can also be seen as a (finite population) sexual evolution
model: Assume there are N individuals and m types. Let YYY (t) be a vector of frequencies at time t, where YYY (t)

i
denotes the fraction of individuals of type i. Let F be a fitness matrix where Fi j corresponds to the number of
offspring of type i, if an individual of type i chooses to mate with an individual of type j (assume Fi j ∈ N).
At every generation, each individual mates with every other individual. It is not hard to show that the number
of offspring after the matings will be N2(YYY (t)>FYYY (t)) and there will be N2YYY (t)

i (FYYY (t))i individuals of type i.
After the reproduction step, we select N individuals at random with replacement, i.e., we sample an individual
of type i with probability YYY (t)

i (FYYY (t))i

YYY (t)>FYYY (t) . Finally in the mutation step, every individual of type i mutates with
probability τ (mutation parameter) to some type j. Let Fii = A, Fi j = B for all i 6= j with A > B (this is called
homozygote advantage) and set b = B

A < 1. It is self-evident that this sexual evolution model is identical with
the (finite population) linguistic model described above since both end up having the same reproduction,
selection and mutation rule. It holds that E[XXX (t+1)|XXX (t)] = g(XXX t)7 with

gi(xxx) = (1− (m−1)τ)
N2xi(Bxxx)i

N2(xxx>Bxxx)
+∑

j 6=i
τ

N2x j(Bxxx) j

N2(xxxT Bxxx)
= (1−mτ)

xi(Bxxx)i

(xxx>Bxxx)
+ τ

where Bii = 1,Bi j = b with i 6= j.8 For the Markov chains described above (symmetric case) we can prove the
following phase transition result.

Theorem 9. There is a critical value τc of the error in learning/mutation parameter τ such that the mixing
time is: (i) exp(Ω(N)) for 0 < τ < τc and (ii) O(logN) for τ > τc where N is the size of the population.

The theorem below will be used to prove the rapid mixing result for the finite linguistic model when
τ > τc. It is used to construct a potential function and show that the deterministic dynamics g converges to
fixed points.

6Here we assume that Bi j is an positive integer and thus N2X (t)
i (BXXX (t))i is an integer since the individuals are whole entities; this

can be achieved by scaling and is without loss of generality.
7We use same notation for the update rule as before, i.e. g because it turns out to be the same function.
8Observe that this rule is invariant under scaling of fitness matrix B.
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Theorem 10 (Baum and Eagon Inequality [1]). Let P(xxx) = P({xi j}) be a polynomial with nonnegative
coefficients homogeneous of degree d in its variables {xi j}. Let xxx = {xi j} be any point of the domain
D : xi j ≥ 0,∑qi

j=1 xi j = 1, i = 1, . . . , p, j = 1, . . . ,qi. For xxx = {xi j} ∈ D, let Ξ(xxx) = Ξ{xi j} denote the point of
D whose i, j-th coordinate is

Ξ(xxx)i j =

(
xi j

∂P
∂xi j

∣∣∣∣
(xxx)

)
·

(
qi

∑
j=1

xi j
∂P
∂xi j

∣∣∣∣
(xxx)

)−1

.

Then P(Ξ(xxx))> P(xxx) unless Ξ(xxx) = xxx.

3 Preliminaries

Couplings and Mixing Times.

Let ppp,qqq ∈ ∆m be two probability distributions on m objects. A coupling C of ppp and qqq is a distribution on
ordered pairs in [m]× [m], such that its marginal distribution on the first coordinate is equal to ppp and that on
the second coordinate is equal to qqq. Couplings allow a very useful dual characterization of the total variation
distance, as stated in the following well known lemma.

Lemma 11 (Coupling lemma [13]). Let ppp,qqq ∈ ∆m be two probability distributions on m objects. Then,

‖ppp−qqq‖TV =
1
2
‖ppp−qqq‖1 = min

C
P(A,B)∼C [A 6= B] ,

where the minimum is taken over all valid couplings C of ppp and qqq.

Definition 12 (Mixing time [13]). LetM be an ergodic Markov chain on a finite state space Ω with stationary
distribution πππ . Then, the mixing time tmix(ε) is defined as the smallest time such that for any starting state
XXX (0), the distribution of the state XXX (t) at time t is within total variation distance ε of πππ . The term mixing time
is also used for tmix(ε) for a fixed values of ε < 1/2.

A well-known technique for obtaining upper bounds on mixing times is to use the Coupling Lemma above.
Suppose XXX (t) and YYY (t) are two evolutions of an ergodic chain M such that their evolutions are coupled
according to some coupling C . Let T be the smallest time such that XXX (T ) = YYY (T ). If it can be shown that
P [T > t]≤ 1/4 for every pair of starting states (XXX (0),YYY (0)), then it follows that tmix

def
= tmix(1/4)≤ t.

Operators, Norms

The following theorem, stated here only in the special case of the 1→ 1 norm, relates the spectral radius with
other matrix norms.

Theorem 13 (Gelfand’s formula, specialized to the 1→ 1 norm [12]). For any square matrix A, we have

sp(A) = lim
`→∞

∥∥A`
∥∥1/`

1→1 .

Taylor Theorem (First order Remainder)

Theorem 14. Let f : Rm→ R be differentiable and xxx,yyy ∈ Rm. Then there exists some ξξξ in the line segment
from xxx to yyy such that f (yyy) = f (xxx)+∇ f (ξξξ )(yyy− xxx).
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Concentration

We also mention some standard Chernoff-Hoeffding type bounds that will be used in our later arguments.

Theorem 15 (Chernoff-Hoeffding bounds [6]). Let Z1,Z2, . . . ,ZN be i.i.d. Bernoulli random variables with
mean µ . We then have for all ε > 0,

P

[∣∣∣∣∣ 1
N

N

∑
i=1

Zi−µ

∣∣∣∣∣> ε

]
≤ 2exp

(
−2Nε

2) .
4 Overview of proofs

We begin by explaining the proof technique of Theorem 5 in [19]. In order to prove a bound on the mixing
time, the authors constructed a coupling that contracts the distance between two chains. This contraction
does not happen at every step, rather at every k steps where k is some constant and depends on the function f .
Essentially, it is shown that given two chains XXX (t),YYY (t) that are close to the unique fixed point zzz of f , it holds
that ∥∥∥XXX (t+1)−YYY (t+1)

∥∥∥
1
≈
∥∥∥J[zzz](XXX (t)−YYY (t))

∥∥∥
1
≤ ‖J[zzz]‖1

∥∥∥(XXX (t)−YYY (t))
∥∥∥

1

with high probability due to Chernoff bounds. Thus, the `1 norm of the Jacobian captures the contraction if it
indeed exists. However it might be the case that ‖J[zzz]‖1 > 1. On the positive side, using Gelfand’s Theorem
they were able to show a k-step contraction, since∥∥Jk[zzz]

∥∥
1 ≈ (sp(J[zzz]))k < ρ

k < 1

for some k ∈N. Our proofs also use the idea of Gelfand’s formula to show contraction/expansion (in Theorems
7 and 6 respectively) and also make use of Theorem 5). Nevertheless, there are important technical barriers
that need to be crossed in order to prove our results as explained below.

4.1 Overview of Theorem 6

The main difficulty to prove this theorem is the existence of multiple unstable fixed points in the simplex from
which the Markov chain should get away fast. As before, we study the time T required for two stochastic
evolutions with arbitrary initial states XXX (0) and YYY (0), guided by some function f , to collide. By the conditions
of Theorem 6, function f has a unique stable fixed point zzz0 with

sp(J[zzz0])< ρ < 1.

Additionally, it has α-unstable fixed points. Moreover, for all starting points xxx0 ∈ ∆m, the sequence ( f t(xxx0))t∈N
has a limit. We can show that there exists constant c0 such that P [T > c0 logN]≤ 1

4 , from which it follows
that tmix(1/4) ≤ c0 logN. In order to show collision after O(logN) steps, it suffices first to run each chain
independently for O(logN) steps. We first show that with probability Θ(1), each chain will reach B(zzz0,

1
N1−ε )

after at most O(logN) steps, for some ε > 0.9 As long as this is true, the coupling constructed in [19] can be
used to show collision (see Section 3 for the definition of a coupling). To explain why our claim holds, we
break the proof into three parts.

9B(xxx,r) denotes the open ball with center xxx and radius r in `1, which we call an r-neighborhood of xxx.
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(a) First, it is shown that as long as the state of the Markov chain is within o
(

log2/3 N√
N

)
in `1 distance from

some α-unstable fixed point www, then, with probability Θ(1), it reaches distance Ω

(
log2/3 N√

N

)
after O(logN)

steps. Step (a) has the technical difficulty that as long as a chain starts from a o( 1√
N
) distance from an unstable

fixed point, the variance of the process dominates the expansion due to the fact the fixed point is unstable.

(b) Assuming (a), we show that with probability 1− 1
poly(N) the Markov chain reaches distance Θ(1) from any

unstable fixed point after O(logN) steps.

(c) Finally, if the Markov chain has Θ(1) distance from any unstable fixed point (the fixed points have pairwise
`1 distance independent of N, i.e., they are “well separated”), it will reach some 1

N1−ε -neighborhood of the
stable fixed point zzz0 exponentially fast (i.e., after O(logN) steps). For showing (a) and (b), we must prove an
expansion argument for ‖ f t(xxx)−www‖1 as t increases, where www is an α-unstable fixed point and also taking
care of the random perturbations due to the stochastic evolution. Ideally what we want (but is not true) is the
following to hold: ∥∥ f t+1(xxx)−www

∥∥
1 ≥ α

∥∥ f t(xxx)−www
∥∥

1 ,

i.e., one step expansion. The first important fact is that f−1 is well-defined in a small neighborhood of www due
to the Inverse Function Theorem, and it also holds that∥∥ f t(xxx)−www

∥∥
1 ≈

∥∥J−1[www]( f t+1(xxx)−www)
∥∥

1 ≤
∥∥J−1[www]

∥∥
1

∥∥ f t+1(xxx)−www
∥∥

1 ,

where xxx is in some neighborhood of www and J−1[www] is the pseudoinverse of J[www] (see the remark in Section
2). However even if www is α-unstable and sp

(
J−1[www]

)
< 1

α
, it can hold that

∥∥J−1[www]
∥∥

1 > 1. At this point, we
use Gelfand’s formula (Theorem 13) as in the proof of [19]. Since limt→∞(‖At‖1)

1/t → sp(A) , for all ε > 0,
there exists a k0 such that for all k ≥ k0 we have∣∣∥∥Ak

∥∥
1− (sp(A))k

∣∣< ε.

We use this important theorem to show that for small ε > 0, there exists a k such that∥∥ f t(xxx)−www
∥∥

1 ≈
∥∥(J−1[www])k( f t+k(xxx)−www)

∥∥
1 ≤

1
αk

∥∥ f t+k(xxx)−www
∥∥

1 ,

where we used the fact that ∥∥(J−1[www])k
∥∥

1 < (sp
(
J−1[www]

)
)k− ε ≤ 1

αk .

By taking advantage of the continuity of the J−1[xxx] around the unstable fixed point www, we can show expansion
for every k steps of the dynamical system. This fact is a consequence of Lemma 16. It remains to show for (a)
and (b) how one can handle the perturbations due to the randomness of the stochastic evolution. In particular,
if
∥∥∥XXX (0)−www

∥∥∥
1
is o
(

1√
N

)
, even with the expansion we have from the deterministic dynamics (as discussed

above), variance dominates. We examine case (b) first, which is relatively easy (the drift dominates at this

step). Due to Chernoff bounds, the difference
∥∥∥XXX (t+k)−www

∥∥∥
1
−
∥∥∥ f k(XXX (t))−www

∥∥∥
1
is O

(√
logN

N

)
(this captures

the deviation on running the stochastic evolution for k steps vs running the deterministic dynamics for k steps,
both starting from XXX (t)) with probability 1− 1

poly(N) . Since
∥∥∥XXX (t)−www

∥∥∥
1
is Ω

(
log2/3 N√

N

)
, then∥∥∥XXX (t+k)−www

∥∥∥
1
≥ (αk−oN(1))

∥∥∥XXX (t)−www
∥∥∥

1
.
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For (a), first we show that with probability Θ(1), after one step the Markov chain has distance Ω( 1√
N
) of www.

This claim just uses properties of the multinomial distribution. After reaching distance Ω

(
1√
N

)
, we can use

again the idea of expansion and being careful with the variance and we can show expansion with probability at
least 1

2 , every k steps. Then we can show that with probability at least 1
log2/3 N

, distance log2/3 N√
N

is reached after
O(log logN) steps and basically we finish with (b). For (c), we use a couple of modified technical lemmas
from [19], i.e., 34, 35 and our Lemma 21. We explain in words below: Let ∆ be some compact subset of ∆m,
where we have excluded all the α-unstable fixed points along with some open ball around each unstable fixed
point of constant radius. We show that given that the initial state of the Markov chain belongs to ∆, it reaches
a B(zzz0,

1
N1−ε ) for some ε > 0 as long as the dynamical system converges for all starting points in ∆ (and from

Lemma 21, it should converge to the stable fixed point zzz0). Lemma 34 (which uses Lemma 21) states roughly
that the dynamical system converges exponentially fast for every starting point in B to the stable fixed point zzz0
and Lemma 35 that with probability 1− 1

poly(n) the two chains independently will reach a
1

Nε neighborhood
of the stable fixed point zzz0. Therefore by (a),(b),(c) and the coupling from [19], we conclude the proof of
Theorem 6.

4.2 Overview of Theorems 7 and 8

To prove Theorem 8, we make use of Theorem 7, i.e., we reduce the case of the stable limit cycle to the case
of multiple stable fixed points. If s is the length of the limit cycle, roughly the bound eΩ(N) on the mixing
time loses a factor 1

s compared to the case of multiple stable fixed points. We now present the ideas behind
the proof of Theorem 7. First as explained above, we can show contraction after k steps (for some constant k)
for the deterministic dynamics around a stable fixed point zzz with sp(J[zzz])< ρ < 1, i.e.,∥∥ f t+k(xxx)− zzz

∥∥
1 ≈

∥∥Jk[zzz]
∥∥

1

∥∥ f t(xxx)− zzz
∥∥

1 ≤ ρ
k
∥∥ f t(xxx)− zzz

∥∥
1 .

This is Lemma 16 and uses Gelfand’s formula, Taylor’s theorem and continuity of J[xxx] where xxx lies in a
neighborhood of the fixed point zzz. Hence, due to the above contraction of the `1 norm and the concentration
of Chernoff bounds, it takes a long time for the chain XXX (t) to get out of the region of attraction of the fixed
point zzz. Technically, the error that aggregates due to the randomness of the stochastic evolution guided by f
does not become large due to the convergence of the series ∑

∞
i=0 ρ i. Hence, we focus on the error probability,

namely the probability the stochastic evolution guided by f deviates a lot from the dynamical system with rule
f if both have same starting point after one step. Since this probability is exponentially small, i.e., it holds that∥∥∥ f (XXX (0))−XXX (1)

∥∥∥
1
> εm

with probability at most 2me−2ε2N , an exponential number of steps is required for the above to be violated.
Finally, as we have shown that it takes exponential time to get out of the region of attraction of a stable
fixed point zzz we do the following easy (common) trick. Since the function has at least two fixed points,
we start the Markov chain very close to the fixed point that its neighborhood has mass at most 1/2 in the
stationary distribution (this can happen since we have at least 2 fixed points that are well separated). Then,
after exponential number of steps, it will follow that the total variation distance between the distribution of
the chain and the stationary will be at least 1/4.

4.3 Overview of Theorem 9

Below we give the necessary ingredients of the proof of Theorem 9. Our previous results, along with some
analysis on the fixed points of g (function of Linguistic Dynamics) suffice to show the phase transition result.
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To prove Theorem 9, initially we show that the model (finite population) is essentially a stochastic evolution
(see Definition 3) guided by g as defined in Section 2.1 and proceed as follows: We prove that in the interval
0 < τ < τc, the function g has multiple fixed points whose Jacobian have spectral radius less than 1. Therefore
due to Theorem 7 discussed above, the mixing time will be exponential in N. For τ = τc a bifurcation takes
place which results in function g of linguistic dynamics having only one fixed point inside simplex (specifically,
the uniform point (1/m, . . . , 1/m)). In dynamical systems, a local bifurcation occurs when a parameter (in
particular the mutation parameter τ) change causes two (or more) fixed points to collide or the stability of
an equilibrium (or fixed point) to change. To prove fast mixing in the case τc < τ ≤ 1/m, we make use of
the result in [19] (see Theorem 5). One of the assumptions is that the dynamical system with g as update
rule needs to converge to the unique fixed point for all initial points in simplex. To prove convergence to the
unique fixed point, we define a Lyapunov function P such that

P(g(xxx))> P(xxx) unless xxx is a fixed point. (1)

As a consequence, the (infinite population) linguistic dynamics converge to the unique fixed point (1/m, . . . , 1/m).
To show Equation (1), we use an inequality that dates back in 1967 (see Theorem 10, [1]), which intuitively
states the discrete analogue of proving that for a gradient system dxxx

dt = ∇V (xxx) it is true that dV
dt ≥ 0.

5 One stable fixed point

We start by proving some technical lemmas that will be very useful for our proofs. A modified version of the
following lemma appeared in [19]. It roughly states that there exists a k (derived from Theorem 13) such that
after k steps in the vicinity a stable fixed point zzz, there is as expected a contraction of the `1 distance between
the frequency vector of the deterministic dynamics and the fixed point.

Important Lemmas

Lemma 16 ( [19] Modified). Let f : ∆m→ ∆m and zzz be a stable fixed point of f with sp(J[zzz])< ρ . Assume
that f is continuously differentiable for all xxx with ‖xxx− zzz‖1 < δ for some positive δ . From Gelfand’s formula
(Theorem 13) consider a positive integer k such that

∥∥Jk[zzz]
∥∥

1 < ρk. There exist ε ∈ (0,1],ε depending upon
f and k for which the following is true. Let

(
xxx(i)
)k

i=0 be sequences of vectors with xxx(i) ∈ ∆m which satisfy the
following conditions:

1. For 1≤ i≤ k, it holds that
xxx(i) = f (xxx(i−1)).

2. For 0≤ i≤ k,
∥∥xxx(i)− zzz

∥∥
1 ≤ ε.

Then, we have ∥∥∥xxx(k)− zzz
∥∥∥

1
≤ ρ

k
∥∥∥xxx(0)− zzz

∥∥∥
1
.

Proof. We denote the set {xxx : ‖xxx− zzz‖1 < δ} by B(zzz,δ ). Since f is continuously differentiable on B(zzz,δ ),
∇ fi(xxx) is continuous on B(zzz,δ ) for i = 1, ...,m. Let A(yyy1, . . . ,yyym) be a matrix so that Ai j(yyy1, ...,yyym) =
(∇ fi(yyyi)) j.10 This implies that the function on ×mk

i=1B(zzz,δ ) defined by www11,www12, . . . ,www1m,www21, . . .wwwmk 7→

10Easy to see that A(zzz, . . . ,zzz) = J[zzz].
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∏
k
i=1 A(wwwi1, . . . ,wwwim) is also continuous. Hence, there exist ε1,ε2 > 0 smaller than 1 such that if

∥∥wwwi j− zzz
∥∥≤ ε1

for 1≤ i≤ k,1≤ j ≤ m then ∥∥∥∥∥ k

∏
i=1

A(wwwi1, . . . ,wwwim)

∥∥∥∥∥
1

≤
∥∥Jk[zzz]

∥∥
1− ε2 < ρ

k. (2)

From Taylor’s theorem (Theorem 14) we have that xxx(t+1) = A(ξ (k−t)
1 , . . . ,ξ

(k−t)
m )(xxx(t)− zzz) where ξξξ

(k−t)
i lies in

the line segment from zzz to xxx(t) for i = 1, . . . ,m. By induction we get that

xxx(k)− zzz =
k

∏
j=1

A(ξ ( j)
1 , . . . ,ξ

( j)
m )(xxx(0)− zzz).

We choose ε = min(ε1,δ ). Therefore since ξξξ
( j)
i ∈ B(zzz,ε) for i = 1, . . . ,m and j = 1, . . . ,k, from inequality 2

we get that
∥∥xxx(k)− zzz

∥∥
1 < ρk

∥∥xxx(0)− zzz
∥∥

1.

Lemma 17 below roughly says that the stochastic evolution guided by f does not deviate by much from
the deterministic dynamics with update rule f after t steps, for t some small positive integer.

Lemma 17. Let f : ∆m → ∆m be continuously differentiable in the interior of ∆m. Let XXX (0) be the state
of a stochastic evolution guided by f at time 0. Then with probability 1− 2t ·m · e−2ε2N we have that∥∥∥XXX (t)− f t(XXX (0))

∥∥∥
1
≤ tβ tεm, where β

def
= supxxx∈∆m

‖J[xxx]‖1.

Proof. We proceed by induction. For t = 1 the result follows from concentration (Chernoff bounds, Theorem
15). Using the triangle inequality we get that∥∥∥XXX (t+1)− f t+1(XXX (0))

∥∥∥
1
≤
∥∥∥XXX (t+1)− f (XXX (t))

∥∥∥
1
+
∥∥∥ f (XXX (t))− f t+1(XXX (0))

∥∥∥
1
.

With probability at least 1−2m · e−2ε2N (Chernoff bounds, Theorem 15) we have that∥∥∥XXX (t+1)− f (XXX (t))
∥∥∥

1
≤ εm, (3)

and also by the fact that ‖ f (xxx)− f (xxx′)‖1 ≤ β ‖xxx− xxx′‖1 and induction we get that with probability at least
1−2t ·m · e−2ε2N ∥∥∥ f (XXX (t))− f t+1(XXX (0))

∥∥∥
1
≤ β

∥∥∥XXX (t)− f t(XXX (0))
∥∥∥

1
≤ β · tβ t

εm. (4)

It is easy to see that εm+ tβ t+1εm≤ (t +1)β t+1εm, hence from inequalities 3 and 4 the result follows with
probability at least 1−2(t +1) ·m · e−2ε2N .

Existence of Inverse function

For the rest of this section when we talk about the inverse of the Jacobian of a function f at an α-unstable
fixed point, we mean the pseudoinverse which also has left eigenvector all ones 111> with eigenvalue 0 (see also
Remark in Section 2). Since we use a lot the inverse of a function f around a neighborhood of α-unstable
fixed points in our lemmas, we need to prove that the inverse is well defined.

Lemma 18. Let f : ∆m→ ∆m be continuously differentiable in the interior of ∆m. Let zzz be an α-unstable fixed
point (α > 1). Then f−1(xxx) is well-defined in a neighborhood of zzz and is also continuously differentiable in
that neighborhood. Also J f−1 [zzz] = J−1[zzz] where J f−1 [zzz] is the Jacobian of f−1 at zzz.
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Proof. This comes from the Inverse function theorem. It suffices to show that J[zzz]xxx = 0 iff ∑i xi = 0, namely
the differential is invertible on the simplex ∆m. This is true by assumption since the minimum eigenvalue
λmin of (J[zzz]), excluding the one with left eigenvector 111>, will satisfy λmin > α > 1 > 0. Finally the Jacobian
of f−1 at zzz is just the pseudoinverse J−1[zzz] (which will have as well 111> as a left eigenvector with eigenvalue
0).

Distance Ω

(
log2/3 N√

N

)
Lemma 19. Let f : ∆m→ ∆m be continuously differentiable in the interior of ∆m. Let XXX (0) be the state of a
stochastic evolution guided by f at time 0 and also zzz be an α-unstable fixed point of f such that

∥∥∥XXX (0)− zzz
∥∥∥

1

is O
(

log2/3 N√
N

)
. Then with probability at least Θ(1) we get that∥∥∥XXX (t)− zzz

∥∥∥
1
≥ log2/3 N√

N

after at most O(logN) steps.

Proof. We assume that XXX (t) is in a neighborhood of zzz which is oN(1) for the rest of the proof, otherwise
the lemma holds trivially. Let q be a positive integer such that

∥∥(J−1[zzz])q
∥∥

1 < 1
αq < 2

5 (using Gelfand’s
formula 13 and the fact that α > 1). First of all, it is easy to see that if

∥∥X (0)− zzz
∥∥

1 is o
(

1√
N

)
then with

probability at least Θ(1) = c1 we have after one step that
∥∥X (1)− zzz

∥∥
1 >

c√
N
(this is true because the variance

of binomial is Θ(N) and by CLT). We choose c =
√

2log(4mq)qβ qm where β
def
= supxxx∈∆m

‖J[xxx]‖1. From
Lemma 17 we get that with probability at least 1

2 the deviation between the deterministic dynamics and the
stochastic evolution after q steps is at most log(4mq)qβ qm√

2N
(by substitute ε = log(4mq)√

2N
in Lemma 17). Hence,

using Lemma 16 for the function h = f−1 around zzz and k = q, sp(J−1[zzz]) < 1
α
, after q steps we get that∥∥∥ f q(XXX (1))− zzz

∥∥∥
1
≥ αq

∥∥∥XXX (1)− zzz
∥∥∥

1
with probability at least 1

2 c1. From Lemma 17 and using the facts that

αq > 5/2 and
∥∥∥XXX (1)− zzz

∥∥∥
1
≥ 2 log(4mq)qβ qm√

2N
we conclude that

∥∥∥XXX (q+1)− zzz
∥∥∥

1
≥
∥∥∥ f q(XXX (1))− zzz

∥∥∥
1
− log(4mq)qβ qm√

2N

≥ α
q
∥∥∥XXX (1)− zzz

∥∥∥
1
− log(4mq)qβ qm√

2N
≥ 2

∥∥∥XXX (1)− zzz
∥∥∥

1
.

By induction, we conclude that
∥∥∥XXX (qt+1)− zzz

∥∥∥
1
≥ log2/3 N√

N
with t to be at most 2/3(log logN) with proba-

bility at least c1
(logN)2/3 . Since we have made no assumptions on the position of the chain (except the distance),

it follows that after at most c2(logN)2/3 · (log logN) = O(logN) steps, the Markov chain has reached distance
greater than log2/3 N√

N
from the fixed point with probability Θ(1).

Distance Θ(1)

Combining Lemma 19 with the lemma below we can show that after O(logN) number of steps, the Markov
chain will have distance from an α-unstable fixed point lower bounded by a constant Θ(1) with sufficient
probability.
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Lemma 20. Let f : ∆m → ∆m be continuously differentiable in the interior of ∆m. Let XXX (0) be the state
of a stochastic evolution guided by f at time 0 and also zzz be an α-unstable fixed point of f such that∥∥∥XXX (0)− zzz

∥∥∥
1
≥ log2/3 N√

N
. Then with probability 1− 1

poly(N) we have that
∥∥∥XXX (t)− zzz

∥∥∥
1
is r def

= Θ(1) after at most
O(logN) steps.

Proof. Let r be such that we can apply Lemma 16 for f−1 with fixed point zzz and parameters ρ = 1
a and q such

that aq < 1
2 since sp

(
J−1[zzz]

)
< 1

a and q is given from Gelfand’s formula. Using Lemma 17 for ε =
√

γ logN
N

we get that XXX (1), . . . ,XXX (q) have `1 distance Ω

(
log2/3 N√

N

)
from zzz, with probability at least 1− 2 mq

N2γ . Then by
induction for some t follows that∥∥∥XXX (t)− zzz

∥∥∥
1
≥
∥∥∥ f q(XXX (t−q))− zzz

∥∥∥
1
−qβ

qm

√
γ logN

N

= (1−oN(1))
∥∥∥ f q(XXX (t−q))− zzz

∥∥∥
1

≥ (1−oN(1))αq
∥∥∥XXX (t−q)− zzz

∥∥∥
1
> 2

∥∥∥XXX (t−q)
∥∥∥

1
.(Lemma 17)

Therefore, after at most T = q logN steps we get that
∥∥∥XXX (T )− zzz

∥∥∥
1
≥ r with probability at least 1− 2mq2 logN

N2γ

from union bound (and choose γ = 2).

Below we show the last technical lemma of the section. Intuitively says that given a dynamical system
where the update rule is defined in the simplex, if for every initial condition, the dynamics converges to some
fixed point zzz, then zzz cannot be an α-unstable unless the initial condition is zzz.

Lemma 21. Let f : ∆m→ ∆m be continuously differentiable and assume that f has zzz0, . . . ,zzzl+1 (l is finite) fixed
points, where zzz0 is stable such that sp(J[zzz0])< ρ < 1 and zzz1, . . . ,zzzl+1 are α-unstable with α > 1. Assume
also that limq→∞ f q(xxx) exists for all xxx ∈ ∆m (and it is some fixed point). Let B = ∪l

i=1B(zzzi,ri), where B(zzzi,ri)
denotes the open ball of radius ri around zzzi and set ∆ = ∆m−B. Then for every ε , there exists a t such that∥∥ f t(xxx)− zzz0

∥∥
1 < ε

for all xxx ∈ ∆.

Proof. If ∆ is empty, then it holds trivially. By assumption we have that for all xxx ∈ ∆, limq→∞ f q(xxx) = zzzi for
some i = 0, . . . , l +1. Let zzz be an α-unstable fixed point. We claim that the if limt→∞ f t(xxx) = zzz then xxx = zzz.
Let us prove this claim. Assume xxx0 ∈ ∆ and that xxx0 is not a fixed point. By assumption limq→∞ f q(xxx0) = zzzi for
some i > 0, hence for every δ > 0, there exists a q0 such that for q≥ q0 we get that ‖ f q(xxx0)− zzzi‖1 ≤ δ . We
choose some k such that sp

(
(J−1[zzzi])

k
)
< 1

αk and we consider an ε such that Theorem 16 holds for function
f−1 and k. We pick δ = min(ε,ri)

2 and assume a q0 such that by convergence assumption ‖ f q(xxx0)− zzzi‖1 ≤ δ

for q≥ q0. Hence Theorem 16 holds for the trajectory ( f t+q0(xxx0))t∈N. Set s = ‖ f q0(xxx0)− zzzi‖1 and observe
that for t = q0 + kd logα

2δ

s
k e it holds that ‖ f t(xxx0)− zzzi‖1 ≥ at−q0 ‖ f q0(xxx0)− zzz‖1 ≥ 2δ (due to Lemma 16), i.e.,

we reached a contradiction. Hence limt→∞ f t(xxx) = zzz0 for all xxx ∈ ∆. The rest follows from Lemma 22 which is
stated below.

Lemma 22. Let S⊂ ∆m be compact and assume that limt→∞ f t(xxx) = zzz for all xxx ∈ S. Then for every ε , there
exists a q such that

‖ f q(xxx)− zzz‖1 < ε

for all xxx ∈ S.
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Proof. Because of the convergence assumption, for every ε > 0 and every x ∈ S, there exists an d = dx

(depends on xxx) such that ∥∥ f d(xxx)− zzz
∥∥

1 < ε.

Define the sets Ai =
{

yyy ∈ S |||
∥∥ f i(yyy)− zzz

∥∥
1 < ε

}
for each positive integer i. Then, since f i is continuous, the

sets Ai are open in S, and therefore, by the above condition, form an open cover of S (since every yyy must lie in
some Ai). By compactness, some finite collection of them must therefore cover S, and hence by taking q to be
the maximum of the indices of the sets in this finite collection the lemma follows.

We are now able to prove the main theorem of the section, i.e., Theorem 6.

Proof of Theorem 6. Consider r1, . . . ,rl as can occur from Lemma 19 and assume without loss of generality
that the open balls B(zzzi,ri) for i = 1, . . . , l, with center zzzi and radius ri (in `1 distance) are disjoint sets and that
∆

def
= ∆m\∪l

i=1 B(zzzi,ri) is not empty (otherwise we could decrease ri’s since they remain constants and Lemma
19 would still hold). We consider two chains XXX (0),YYY (0). We claim that with probability Θ(1) (which can be
boosted to any constant) each chain reaches within 1

Nw distance of the stable fixed point zzz0 for some w > 0,
after at most T = O(logN) steps. Then the coupling constructed in [19] works because it uses the smoothness
of f and the stability of the fixed point, as long as the two chains are within 1

Nw for some w > 0 distance
of zzz0. Due to the coupling, as the two chains reach within 1

Nw distance of zzz0, they collide after O(logN)
steps (with probability Θ(1) which also can be boosted to any constant) and hence the mixing time will be
O(logN). To prove the claim, we first use Lemmas 20 and 19. It occurs that with probability say Θ(1) after
at most O(log2/3 N log logN)+O(logN) steps, each chain will have reached the compact set ∆. Moreover,
from Lemma 34 (A.1 in [19]) we have that for all xxx ∈ ∆, f t(xxx) converges to fixed point zzz0 exponentially fast.
Hence, using Lemma 35 (Claim 5.16 in [19]) follows that after O(logN) steps, each chain that started in ∆

comes within 1
Nw distance of zzz0 with sufficiently enough probability.

6 Multiple Stable fixed points

Staying close to fixed point

We prove the main lemma of this section, then our second result will be a corollary. The main lemma states that
as long as the Markov chain starts from a neighborhood of one stable fixed point, it takes at least exponential
time to get away from that neighborhood with probability say 9

10 .

Lemma 23. Let f : ∆m→ ∆m be continuously differentiable in the interior of ∆m with stable fixed points
zzz1, . . . ,zzzl and k (independent of N) be such that

∥∥J[zzzi]
k
∥∥

1 < ρk
i < 1 for all i = 1, . . . , l. Let XXX (0) be the state of

a stochastic evolution guided by f at time 0. There exists a small constant εi (independent of N) such that
given that XXX (0) satisfies

∥∥∥XXX (0)− zzzi

∥∥∥
1
≤ mεi for some stable fixed point zzzi, after t = e2εi

2N

20mk steps it holds that∥∥∥XXX (t)− zzzi

∥∥∥
1
≤ (k+1)β kεim

1−ρi
with probability at least 9

10 .

Proof. εi will be chosen later. By Lemma 17 it follows that∥∥∥XXX (t)− zzz
∥∥∥

1
≤
∥∥∥ f t(XXX (0))− zzz

∥∥∥
1
+ tβ t

εim
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with probability at least 1−2m · ke−2ε2
i N for t = 1, . . . ,k. Since

∥∥∥ f t(XXX (0))− zzz
∥∥∥

1
≤ β t

∥∥∥XXX (0)− zzz
∥∥∥

1
, it follows

that
∥∥∥XXX (t)− zzz

∥∥∥
1
≤ (t +1)β tεim with probability at least 1−2m · ke−2ε2

i N for t = 1, . . . ,k−1. Assume that∥∥∥XXX (t)− zzz
∥∥∥

1
≤ (t +1)β tεim is true for t = 1, . . . ,k−1. We choose εi small enough constant such that Lemma

16 holds with ε = (k+1)β kεim
1−ρi

. To prove the lemma, we use induction on t and show that
∥∥∥XXX (t)− zzzi

∥∥∥
1
≤(

(k+1)β kεim
)
·
(

∑
t
j=0 ρ

j
i

)
<

((k+1)β kεim)
1−ρi

< ε and hence Lemma 16 will hold. For t = k we have that∥∥∥XXX (k)− zzzi

∥∥∥
1
≤
∥∥∥ f k(XXX (0))− zzzi

∥∥∥
1
+
∥∥∥ f k(XXX (0))−XXX (k)

∥∥∥
1
(triangle inequality)

≤ ρ
k
i

∥∥∥XXX (0)− zzzi

∥∥∥
1
+ kβ

k
εim (Lemma 16 and Lemma 17)

< (1+ρ
k
i )(k+1)β k

εim < (
k

∑
j=0

ρ
j

i )(k+1)β k
εim.

Let t ′ = t− k, be a time index. We do the same trick as for the base case and we get that∥∥∥XXX (t)− zzzi

∥∥∥
1
≤
∥∥∥ f k(XXX (t ′))− zzzi

∥∥∥
1
+
∥∥∥ f k(XXX (t ′))−XXX (t)

∥∥∥
1

≤ ρ
k
i

∥∥∥XXX (t ′)− zzz
∥∥∥

1
+ kβ

k
εim

≤ ρ
k
i

(
(k+1)β k

εim
)
·

(
t ′

∑
j=0

ρ
j

i

)
+(k+1)β k

εim (induction)

=
(
(k+1)β k

εim
)
·

(
1+

t

∑
j=k

ρ
j

i

)
<
(
(k+1)β k

εim
)
·

(
t

∑
j=0

ρ
j

i

)
.

The error probability, i.e., at least one of the steps above fails and the chain gets larger noise than kβ kε1m, by
union bound will be at most e2ε2

i N

20mk ·2mk · e−2ε2
i N = 1

10 (by Lemma 17).

We can now prove the main theorem 7 which follows as a corollary from Lemma 23.

Proof of Thereom 7. Two stable fixed points suffice; let zzz1,zzz2. Consider the εi’s from the previous lemma
(Lemma 23) and set Si = {xxx : ‖xxx− zzzi‖1 ≤

(k+1)β kεim
1−ρi

} for i = 1,2 where β
def
= supxxx∈∆m

‖J[xxx]‖1. We can choose

ε1,ε2 so small such that S1∩S2 =∅ (by continuity). Let µ be the stationary distribution. Set S = S1,T = e2ε2
1 N

20mk

and yyy = zzz1 if µ(S1)≤ 1
2 , otherwise set S = S2,T = e2ε2

2 N

20mk and yyy = zzz2. Assume
∥∥X (0)− yyy

∥∥
1 ≤ εm. Therefore

from Lemma 23 we get that P
[
X (T ) ∈ S̄

]
≤ 1

10 . and also by assumption µ(S̄)≥ 1
2 . Let ν(T ) be the distribution

of X (T ). However ∥∥∥µ,ν(T )
∥∥∥

TV
≥
∣∣∣µ(S̄)−P

[
X (T ) ∈ S̄

]∣∣∣> 1
4

and the result follows, i.e., tmix(1/4) is eΩ(N).

7 Stable limit cycle

This part technically is small, because it depends on the previous section. We denote by www1, . . . ,wwws (s≥ 2)
the points in the stable limit cycle. Again we assume that wwwi’s are well separated.
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Proof of Theorem 8. Let h(xxx) = f s(xxx). It is clear to see that the Markov chain guided by h satisfies the
assumptions of 7. The fixed points of h are just the points in the limit cycle, i.e., www1, . . . ,wwws. Additionally,
it easy to see (via chain rule) that J f s [wwwi] = J f s−1 [ f (wwwi)]J[wwwi] = J f s−1 [wwwi+1]J[wwwi], where we denote by J f i the
Jacobian of function f i(xxx) and wwwl+1 = www1. Therefore

Jh[wwwi] =
i−1

∏
j=1

J[wwwi− j]
s

∏
j=i

J[wwws+i− j].

Matrices don’t commute in general but it is true that AB,BA have the same eigenvalues hence sp(Jh[wwwi])< ρ

is the same for all i = 1, . . . ,s. Finally, let k be such that
∥∥J f s [wwwi]

k
∥∥

1 < ρk (using Gelfand’s formula 13). For
each wwwi consider εi as in the proof of 23, for function h and upper bound ρ on the spectral radius of J f s [wi].

Then analogously follows that for t = e2ε2
i N

20mk·s with probability at least
9
10 we have that

∥∥∥XXX (t)−wwwi

∥∥∥
1
≤ (k+1)β kεim

1−ρ

and the proof for eΩ(N) mixing follows from Theorem 7.

8 Phase transitions in Linguistic/Sexual Evolutionary Models

8.1 Sampling from distribution g(x)

In this section, we prove that the finite population linguistic model discussed in preliminaries can be seen
as a stochastic evolution guided by the function g defined by g(xxx) = (1−mτ) xi(Bxxx)i

xxx>Bxxx + τ (we assume that
we have m grammars and g : ∆m→ ∆m, see Definition 3 to check what a stochastic evolution guided by a
function is). Given a starting population of size N on m types represented by a 1/N-integral probability vector
xxx = (x1,x2, . . . ,xm) we consider the following process P1:

1. Reproduction, i.e., the number of individuals that use grammar Gi becomes N2xi(Bxxx)i and the total
number is N2xxx>Bxxx.

2. Each individual that uses grammar S can end up using grammar T with probability QST .

We now show that sampling from P1 is exactly the same as sampling from the multinomial distribution g(xxx).
Taking one sample (individual) we compute the probability to use grammar t.

Claim 24. P [type t] = N2
∑ j Q jt x j(Bxxx) j

N2xxx>Bxxx = (1−mτ) xt(Bxxx)t
xxx>Bxxx + τ .

Proof. We have

P [type t] :=
m

∑
i=1

Qit ·
xi(Bxxx)i

xxx>Bxxx

= (1−mτ)
xt(Bxxx)t

xxx>Bxxx
+ τ

xt(Bxxx)t

xxx>Bxxx
+ τ ∑

i6=t

xi(Bxxx)i

xxx>Bxxx

= (1−mτ)
xt(Bxxx)t

xxx>Bxxx
+ τ

xxx>Bxxx
xxx>Bxxx

.

From 24, we see that producing N independent samples from the process P1 described above (which is
the finite linguistic model discussed in the introduction) produces the same distribution as producing N
independent samples from the distribution g(xxx). So, we assume that the finite linguistic model is a stochastic
evolution guided by g (see Definition 3).

18



8.2 Analyzing the Infinite Population Dynamics

In this section we prove several structural properties of the linguistic dynamics. We start this section by
proving that the linguistic dynamics converges to fixed points. 11

Theorem 25 (Convergence of Linguistic Dynamics). The linguistic dynamics converges to fixed points. In
particular, the Lyapunov function P(xxx) = (x>Bx)

1
τ
−m

∏i x2
i is strictly increasing along the trajectories for

0≤ τ ≤ 1/m.

Proof. We first prove the results for rational τ ; let τ = κ/λ . We use the theorem of Baum and Eagon [1]. Let

L(xxx) = (x>Bx)λ−mκ
∏

i
x2κ

i .

Then
xi

∂L
∂xi

= 2κL+
2xi(Bxxx)i(λ −mκ)L

xxx>Bxxx
.

It follows that

xi
∂L
∂xi

∑i xi
∂L
∂xi

=
2κL+ 2xi(Bxxx)i(λ−mκ)L

xxx>Bxxx
2mκL+2(λ −mκ)L

=
2κL
2λL

+
2L(λ −mκ)xi(Bxxx)i

2λLxxx>Bxxx

= (1−mτ)xi
(Bxxx)i

xxx>Bxxx
+ τ

where the first equality comes from the fact that ∑
m
i=1 xi(Bxxx)i = xxx>Bxxx. Since L is a homogeneous polynomial

of degree 2λ , from Theorem 10 we get that L is strictly increasing along the trajectories, namely

L(g(xxx))> L(xxx)

unless xxx is a fixed point. So P(xxx) = L1/κ(xxx) is a potential function for the dynamics.
To prove the result for irrational τ , we just have to see that the proof of [1] holds for all homogeneous

polynomials with degree d, even irrational.

To finish the proof let Ω ⊂ ∆m be the set of limit points of an orbit xxx(t) (frequencies at time t for t ∈ N).
P(xxx(t)) is increasing with respect to time t by above and so, because P is bounded on ∆m, P(xxx(t)) converges
as t → ∞ to P∗ = supt{P(xxx(t))}. By continuity of P we get that P(yyy) = limt→∞ P(xxx(t)) = P∗ for all yyy ∈ Ω.
So P is constant on Ω. Also yyy(t) = limn→∞ xxx(tn + t) as n→ ∞ for some sequence of times {ti} and so yyy(t)
lies in Ω, i.e. Ω is invariant. Thus, if yyy≡ yyy(0) ∈Ω the orbit yyy(t) lies in Ω and so P(yyy(t)) = P∗ on the orbit.
But P is strictly increasing except on equilibrium orbits and so Ω consists entirely of fixed points.

8.3 Fixed points and bifurcation

Let zzz be a fixed point. zzz satisfies the following equations:

zi− τ

zi(Bzzz)i
=

z j− τ

z j(Bzzz) j
=

1−mτ

zzzT Bzzz
for all i, j. (5)

11This requires proof since convergence to limit cycles or the existence of strange attractors are a priori not ruled out.
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The previous equations can be derived by solving zi = (1−mτ)zi
zi(Bzzz)i
zzz>Bzzz + τ . By solving with respect to τ we

get that

τ =
ziz j((Bzzz)i− (Bzzz) j)

zi(Bzzz)i− z j(Bzzz) j
for zi(Bzzz)i 6= z j(Bzzz) j.

Fact 26. The uniform point (1/m, . . . , 1/m) is a fixed point of the dynamics for all values of τ .

To seewhy 26 is true, observe that gi(1/m, . . . ,1/m)= (1−mτ) 1
m +τ = 1

m for all i and hence g(1/m, . . . ,1/m)=
(1/m, . . . ,1/m). The fixed points satisfy the following property:

Lemma 27 (Two Distinct Values). Let (x1, . . . ,xm) be a fixed point. Then x1, . . . ,xm take at most two distinct
values.

Proof. Let xi 6= x j for some i, j. Then it follows that

τ =
xix j((Bxxx)i− (Bxxx) j)

xi(Bxxx)i− x j(Bxxx) j
=

xix j(1−b)
(1−b)(xi + x j)+b

.

Hence if x j′ 6= xi then
x j′

(1−b)(xi + x j′)+b
=

x j

(1−b)(xi + x j)+b

from which follows that x j = x j′ . Finally, the uniform fixed point satisfies trivially the property.

We shall compute the threshold τc such that for 0 < τ < τc the dynamics has multiple fixed points and for
1/m≥ τ > τc we have only one fixed point (which by Fact 26 must be the uniform one). Let

h(x) =−x2(m−2)(1−b)−2x(1+b(m−2))+1+b(m−2).

By Bolzano’s theorem and the fact that h(0) = 1+b(m−2)> 0 and h(−1)< 0, h(1) = 1−m < 0, it follows
that there exists one positive solution for h(x) = 0 which is between 0 and 1; we denote it by s1.

We can now define
τc

def
=

(1−b)s1(1− s1)

(m−1)b+(1−b)(1+(m−2)s1)
.

Lemma 28 (Bifurcation). If τc < τ ≤ 1/m then the only fixed point is the uniform one. If 0 ≤ τ < τc then
there exist multiple fixed points.

Proof. Assume that there are multiple fixed points (apart from the uniform, see 26) and let (x1, . . . ,xm) be a
fixed point, where x and y being the two values that the coordinates xi take (by Lemma 27). Let k ≥ 1 be the
number of coordinates with value x and m−k the coordinates with values y where m > k and kx+(m−k)y = 1
(in case k = 0 or m = k we get the uniform fixed point). Solving by τ we get that τ = xy(1−b)

b+(1−b)(x+y) . We set
y = 1−kx

m−k and we analyze the function

f (x,k) =
(1−b)x(1− kx)

(m− k)b+(1−b)(1+(m−2k)x)

It follows that f is decreasing with respect to k (assuming x < 1/k+1 such that y > 0, see appendix B for
Mathematica code for proving f (x,k) is decreasing with respect to k). Hence the maximum is attained for
k = 1. Hence, we can consider

f (x) def
= f (x,1) =

(1−b)x(1− x)
(m−1)b+(1−b)(1+(m−2)x)

.
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By solving d f
dx = 0 it follows that h(x) = 0 (where h(x) is the numerator of the derivative of f ). This occurs at

s1. For τ > τc there exist no fixed points whose coordinates can take on more than one value by construction
of f , namely the only fixed point is the uniform one.

8.4 Stability analysis

The equations of the Jacobian are given below:

∂gi

∂xi
= (1−mτ)

(
(Bxxx)i + xiBii

xxx>Bxxx
− xi(Bxxx)i ·2(Bxxx)i

(xxx>Bxxx)2

)
, (6)

∂g j

∂xi
= (1−mτ)

(
x jB ji

xxx>Bxxx
−

x j(Bxxx) j ·2(Bxxx)i

(xxx>Bxxx)2

)
for j 6= i. (7)

Fact 29. The all ones vector (1, . . . ,1) is a left eigenvector of the Jacobian with corresponding eigenvalue 0.

Proof. This can be derived by computing
m

∑
j=1

∂g j

∂xi
= (1−mτ)

(
2(Bxxx)i

xxx>Bxxx
− 2xxx>Bxxx(Bxxx)i

(xxx>Bxxx)2

)
= 0.

We will focus on two specific classes of fixed points. The first one is the uniform, i.e., (1/m, . . . , 1/m) which we
denote by zzzu and the other one is (y, . . . ,y, x︸︷︷︸

ith

,y, . . . ,y) with x+(m−1)y = 1 and x > s1, which we denote

by zzzi (for 1≤ i≤ m).

Stability of zzzu. Let
τu

def
=

1−b
m(2−2b+mb)

.

Lemma 30. If τu < τ ≤ 1/m, then sp(J[zu])< 1 and if 0≤ τ < τu, then sp(J[zu])> 1.

Proof. The Jacobian of the uniform fixed point has diagonal entries (1−mτ)
(

1− 2
m + 1

1+(m−1)b

)
and non-

diagonal entries (1−mτ)
(

b
1+(m−1)b −

2
m

)
. Consider the matrix

Wu
def
= J[zzzu]− (1−mτ)

(
1+

1−b
1+(m−1)b

)
Im

where Im is the identity matrix of size m×m. The matrix Wu has eigenvalue 0 with multiplicity m− 1
and eigenvalue m(1−mτ)

(
b

1+(m−1)b −
2
m

)
with multiplicity 1. Hence the eigenvalues of J[zzzu] are 0 with

multiplicity 1 and (1−mτ)(1+ 1−b
1+(m−1)b) with multiplicity m− 1. Thus, the Jacobian of zzzu has spectral

radius less than one if and only if −1 < (1−mτ)(1+ 1−b
1+(m−1)b)< 1. By solving with respect to τ it follows

that
1−b

m(2−2b+mb)
< τ <

3−3b+2bm
m(2−2b+mb)

.

Because 1/m < 3−3b+2bm
m(2−2b+mb) (as b≤ 1), the first part of the lemma follows. In case 0≤ τ < 1−b

m(2−2b+mb) then
(1−mτ)(1+ 1−b

1+(m−1)b) and the second part follows.
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Hence, we conclude that τu is the threshold below which the uniform fixed point satisfies sp(J[zzzu])> 1 and
above which sp(J[zzzu])< 1.

Stability of zzzi.

Lemma 31. If 0≤ τ < τc then sp(J[zi])< 1.

Proof. Consider the matrix

Wi
def
= J[zzzi]− (1−mτ)

y+b+(1−2b)y
zzz>i Bzzzi

Im

where Im is the identity matrix of size m×m. The matrix Wi has eigenvectors of the form

(w1, . . . ,wi−1,0,wi+1, . . . ,wm)

with ∑
m
j=1, j 6=i w j = 0 (the dimension of the subspace is m−2) and corresponding eigenvalues 0. Hence the

Jacobian has m− 2 eigenvalues of value (1−mτ) y+b+(1−2b)y
zzz>i Bzzzi

. It is true that 0 < (1−mτ) y+b+(1−2b)y
zzz>i Bzzzi

< 1

(see appendix B for Mathematica code). Finally, since J[zi] has an eigenvalue zero (see Fact 29), the last
eigenvalue is

Tr(J[zi])− (1−mτ)(m−2)
y+b+(1−2b)y

zzz>i Bzzzi

=(1−mτ) ·
(

x+2b+(1−b)x+2y+(m−3)by
zzz>i Bzzzi

− 2x(b+(1−b)x)2 +2(m−1)y(b+(1−b)y)2

(zzz>i Bzzzi)2

)
which is also less than 1 and greater than 0 (see appendix B for Mathematica code).

Remark. In the case where m = 2 it follows that τu = τc =
1−b

4 . For m > 2 we have τu < τc (see
Mathematica code in Lemma B.3).

8.5 Mixing Time

In this section we prove our result concerning the linguistic model (finite population). The structural lemmas
proved in the previous section are used here. Now, we proceed by analysing the mixing time of the Markov
chain for the two intervals (0,τc) and (τc,1/m].

Regime 0 < τ < τc

Lemma 32. For the interval 0 < τ < τc. the mixing time of the Markov chain is exp(Ω(N)).

Proof. By Lemma 31 it is true that there exist m fixed points zzzi with sp(J[zzzi])< 1 and their pairwise distance
is some positive constant independent of N (well-separated). Hence using Theorem 7 and because the Markov
chain is a stochastic evolution guided by g (see 24), we conclude that the mixing time is eΩ(N).
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Regime τc < τ ≤ 1/m

We prove the second part of the of Theorem 9.

Lemma 33. For the interval τc < τ ≤ 1/m, the assumptions of the main theorem of [19] are satisfied, namely
the mixing time of the Markov chain is O(logN).

Proof. By Lemma 28, we know that in the interval τc < τ ≤ 1/m there is a unique fixed point (the uniform
zzzu) and also by Lemma 30 that sp(J[zzzu])< 1. It is trivial to check that g is twice differentiable with bounded
second derivative. It suffices to show the 4th condition in the Definition 4. Due to Theorem 25 we have
limk→∞ gk(xxx)→ zzzu for all xxx ∈ ∆m. The rest follows from Lemma 22 (by setting S = ∆m).

Our result on linguistic model is a consequence of 32, 33.

Remark. For τ = 1/m the Markov chain mixes in one step. This is trivial since g maps every point to
the uniform fixed point zzzu.
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A Lemmas from [19]

Lemma 34 (Exponential convergence [19] Modified). Choose zzz0,ρ,∆ as in the proof of Theorem 6, and
set β

def
= supxxx∈∆m

‖J[xxx]‖1. Then there exist a positive r such that for every xxx ∈ ∆, and every positive integer t,∥∥ f t(xxx)− zzz0
∥∥

1 ≤ rρ
t .
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Proof. Let ε and k be as defined in 16. From Lemma 21, we know that there exists an ` such that for all xxx ∈ ∆,∥∥ f `(xxx)− zzz0
∥∥

1 ≤
ε

β k . (8)

Note that this implies that f `+i(xxx) is within distance ε of zzz0 for i = 0,1, . . . ,k, so that 16 can be applied to the
sequence of vectors f `(xxx), f `+1 (xxx) , . . . , f `+k(xxx) and zzz0. Thus, we get

∥∥ f `+k(xxx)− zzz0
∥∥

1 ≤ ρ
k
∥∥ f `(xxx)− zzz0

∥∥
1 ≤

ρkε

β k .

Since ρ < 1, we can iterate this process. Using also the fact that the 1→ 1 norm of the Jacobian of f is at
most β (which we can assume without loss of generality to be at least 1), we therefore get for every xxx ∈ ∆,
and every i≥ 0 and 0≤ j < k

∥∥ f `+ik+ j(xxx)− zzz0
∥∥

1 ≤ ρ
ki+ j β j

ρ j

∥∥ f `(xxx)− zzz0
∥∥

1

≤ ρ
ki+ j+` β j+`

ρ j+`
‖xxx− zzz0‖1 ≤ ρ

ki+ j+` β k+`

ρk+`
‖xxx− zzz0‖1

where in the last line we use the facts that β > 1, ρ < 1 and j < k. Noting that any t ≥ ` is of the form
`+ ki+ j for some i and j as above, we have shown that for every t ≥ ` and every xxx ∈ ∆

∥∥ f t(xxx)− zzz0
∥∥

1 ≤
(

β

ρ

)k+`

ρ
t ‖xxx− zzz0‖1 . (9)

Similarly, for t < `, we have, for any zzz ∈ ∆∥∥ f t(xxx)− zzz0
∥∥

1 ≤ β
t ‖xxx− zzz0‖1

≤
(

β

ρ

)t

ρ
t ‖xxx− zzz0‖1 ≤

(
β

ρ

)`

ρ
t ‖xxx− zzz0‖1 , (10)

where in the last line we have again used β > 1,ρ < 1 and t < `. From 10, 9, we get the claimed result with

r def
=
(

β

ρ

)k+`
.

Lemma 35 ( [19]). Choose zzz0,ρ,∆ as in the proof of Theorem 6, set β
def
= supxxx∈∆m

‖J[xxx]‖1 and consider r
from Lemma 34. Define Tstart to be the first time such that∥∥∥XXX (Tstart+i)− zzz0

∥∥∥
1
,
∥∥∥YYY (Tstart+i)− zzz0

∥∥∥
1
≤ α

Nw for 0≤ i≤ k−1,

where α
def
= m+ r and w = min

(
1
6 ,

log(1/ρ)
6log(β+1)

)
. It holds that

P [Tstart > tstart logN]≤ 4mkto logN exp
(
−N1/3

)
, (11)

where tstart
def
= 1

6log(β+1) . The probability itself is upper bounded by exp
(
−N1/4

)
for N large enough.
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B Mathematica Code

B.1 Mathematica code for proving Lemma 28

Reduce[((1 - k*x)/(m - k))/(b + (1 - b)*(x + (1 - k*x)/(m - k))) < ((1 - (k + 1)* x)

/(m - k - 1))/(b + (1 - b)*(x + (1 - (k + 1)*x)/(m - k - 1))) && 1 > b > 0 &&

1 > x > 0 && 1/(k + 1) > x > 1/m && m >= 3 && m >= k + 2 && k >= 1]

False

B.2 Mathematica code for proving Lemma 31

First inequality in Lemma 31:

Reduce[1 > b > 0 && m >= 3 && -(m - 2) (1 - b) s^2 - 2 s (1 + b (m - 2)) + 1 +

b (m - 2) == 0 && 0 < s < x < 1 && y == (1 - x)/(m - 1) &&

t == (x*y*(1 - b))/(b + (1 - b)*(x + y)) && t <= 1/m &&

(1 - m*t)*(y + b + (1 - 2*b)*y)/(b + (1 - b)*x^2 + (1 - b)*(m - 1)*y^2) >= 1]

False

Second inequality in Lemma 31:

Reduce[1 > b > 0 && m >= 3 && -(m - 2) (1 - b) s^2 - 2 s (1 + b (m - 2)) + 1 +

b (m - 2) == 0 && 0 < s < x < 1 && y == (1 - x)/(m - 1) && 1/m >= t &&

t == (x*y*(1 - b))/(b + (1 - b)*(x + y)) && ((1 - m*t)*((2*(x + y) +

b*(2 - x + (m - 3)*y))/(b + (1 - b)*x^2 + (1 - b)*(m - 1)*y^2) -

(2*x*(b + (1 - b)*x)^2 + 2*(m - 1)*y*(b + (1 - b)*y)^2)

/((b + (1 - b)*x^2 + (1 - b)*(m - 1)*y^2)^2)) >= 1)]

False

B.3 Mathematica code for proving τc > τu when m > 2

Reduce[1 > b > 0 && m >= 3 && -(m - 2) (1 - b) s^2 - 2 s (1 + b (m - 2)) + 1 +

b (m - 2) == 0 && 0 < s < 1 && (s*(1 - s)*(1 - b))/((m - 1)*

b + (1 - b)*(1 + (m - 2)*s)) <= (1 - b)/(m*(2 - 2*b + m*b))]

False
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