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Non Uniform Random Walks
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Giveng; € [0,1) for each 1< i < n, a particle performs the following random walk b, 2,...,n}:

If the particle is atn, it chooses a point uniformly at random (u.a.r.) frdh...,n—1}. If the current position

of the particle ism (1 < m < n), with probability en, it decides to go back, in which case it chooses a point u.a.r.
from {m+1,...,n}. With probability 1— &n, it decides to go forward, in which case it chooses a point u.a.r. from
{1,...,m—1}. The particle moves to the selected point.

What is the expected time taken by the particle to relifhit starts the walk at @

Apart from being a natural variant of the classical one dimensional random walk, variants and special cases of this
problem arise in Theoretical Computer Science [1, 2, 3, 6]. In this paper we study this problem and observe interesting
properties of this walk. First we show that the expected number of times the particlé (isfsre getting absorbed

at1) is the same when the walk is starteg,dor all j > i. Then we show that for the following parameterized family
ofe's: g = ﬁh , 1< i <nwherea does not depend anthe expected number of times the patrticle visits

the same when the walk is startedjator all j < i. Using these observations we obtain the expected absorption time
for this family of€’'s. Asa varies from infinity to 1 this time goes fron®(logn) to ©(n).

Finally we study the behavior of the expected convergence time as a functioortafemains an open question to
determine whether this quantity increases whewg'slre increased. We give some preliminary results to this effect.

Keywords: Non uniform random walk

Contents

1 Introduction 346
2 Our Results and Organization 346
3 Preliminary Results 347
4 Analyzing the Problem 350
5 Monotonicity 354
6 Conclusion 356
A Analysis for generala 357

1365-8050%C) 2003 Maison de I'Informatique et des Métiatiques Disates (MIMD), Paris, France



346 Nisheeth K. Vishnoi

1 Introduction

Consider the following random walk performed by a particle{@r?, ..., n}:

Problem 1.1. Giveng; € [0,1) for eachl < i < n: If the particle is at n, it chooses a point u.a.r. from
{1,...,n—1}. If the particle is at m { < m < n), with probabilitye, it decides to go back, in which case
it chooses a point u.a.r. frofim+1,...,n}. With probabilityl — &, it decides to go forward, in which
case it chooses a point u.a.r. frof,...,m—1}. The particle moves to the selected point.

What is the expected time taken by the particle to relaifhit starts the walk at

Variants and special case of this problem arise in Theoretical Computer Science. In particular in the
analysis of randomized algorithms [3]. A special case of this random walk is the analysis of an algorithm
which finds thek-th smallest element in a list. This simple randomized algorithm, which is essentially
the best known, corresponds to the walk withealzero. For more motivation for studying this problem
from the Computer Science point of view, one can referto [1, 2, 3, 5, 6].

In this paper we study this random walk and give various results regarding its convergence time.

2 Our Results and Organization

In Section 3 we set up Problem 1.1 in the language of Markov chains. We show that the expected number
of times the particle visits(before getting absorbed at 1) is the same when the walk is starjetbagll
j>i

In Section 4 we show that for the following parameterized familg'sif

n—i .
§i=———>, 1<i<n
Tn—ita-(i-1)

wherea does not depend on the expected number of times the particle visits the same when the
walk is started af, for all j < i. Using these observations we obtain the expected absorption time for this
family of €'s.

For some important special cases éorwe have the following theorem. We defer the statement for
generala for the full version. LetX, denote the time it takes the particle performing the random walk,
starting am, to get absorbed at 1

Theorem 2.1.

1. Fora = o, E[Xy] = ©(logn).
2. Fora =n, E[X,] = ©(logn).
3. Fora =1, E[X)] = O(n).

We prove this theorem in Section 4. In Appendix A we give a general formul&[pf] depending
ona. It seems hard to get a bound for generfal Hence it seems interesting to investigate other natural
¢€'s for which reasonable bounds can be obtained on the convergence time.

In Section 5 we give some preliminary results regarding how the expected absorption time will change
if we changee’s. This leads to some interesting questions, some of which remain open.
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3 Preliminary Results

In this section we build up the basics and then prove the main lemmata which we will use in the next
section to analyze the random walk.
Let the set of states for Problem 1.1 be

S:={1,2,...,n}.

If we consider the transition matriR(e) (we will drop € when it is clear from the context) whose rows
and columns are labeled by the element§,dhe matrix can be characterized by the vector

€= (0,¢&p,€3,...€n-1,0).

The matrixP(¢) is

1 0 0 0 0 7
£ £ £
l1-& 0 2 2 2
1-€&3 1-€3 0 & &3
2 2 n-3 n-3
Sl ol 0 ez
1 1 1 1 0
L n-1 n—-1 n—1 n—1 J
The matrixP(g) has the following generic structure
1 0 e 0
1
RE) | Q) @

0 & & &
n-2 n-2 n-2

1-&3 0 €3 &
2 n-3 n-3

n-2 n— 0 &n2
1 1 ... 1 9
n-1 n-1 n-1

N

Henceforth we will drop the’s and just refer to these matricesR, R.
The following proposition tells us that the particle of Problem 1.1 will reach state 1 with probability 1

Proposition 3.1. [4] Leti € {2,...,n} andgj < 1, for all 1 < j < n. Then the probability that a particle
starting at position i will be at staté after k steps, tends tbas k tends to infinity.
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Proof. Leti € {2,...,n}. The probability that the particle is in state 1 after first ste;lij%. Let

p = min; % (Notice p > 0). Hence the probability that startingiathe particle is not at 1 in at mokt

steps is at mostL — p)¥, which goes to zero dsgoes to infinity. O
Corollary 3.2. Let P be the transition matrix as above with its elements labeled;pyhen

p —0 2<ij<n

pi(ll()—>1 1<i<n
as k— oo,

Let Q be the sub-matrix dP excluding the first row and first column. Using the corollary above we get
an interesting characterization for maté(sub-matrix ofP).

Proposition 3.3. [4]

Proof. Consider the identity
(1-Q- (I +Q+Q@+ - +Q=1-Q%

By previous corollary we have th&¥t! tends to the zero matrix dstends to infinity. Hence for suffi-
ciently largek, detl — Q1) #£ 0. But

det(l — Q1) = detl — Q) -det(l + Q+---+QY)
Thus detl — Q) # 0, and hence
|4+ Q+ Q%+ +Q=(1-Q (1 - QY

Taking limits both side ak — o, we have that

e

k

im$Q = (1-Q7 1 lm(-Q<h
>

= (-9

The next result gives an intuitive interpretation to the entries of the misitrix (I — Q).

Lemma 3.4. LetY; (i,]j € {2,...,n}) be the random variable indicating the number of times the particle
is in state j if it starts at state i. Then[B;] = ;.
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Proof. Define a §'1 random variable fok > 0, such that

statej afterk steps

1 if particle starting at is at
0 otherwise

Theny;; = zokO:OZi(jk)- Hence by linearity of expectation

But E[Zi(jk)] = Pr[Zi<jk) =1 = pi(jk). HenceE[Y;j] =S¢ o pfjk) which by Proposition 3.3 isjj. O

The following lemma is an interesting characteristic of Problem 1.1 and is not true in general. This is
one of the main insights in this paper about the random walk.

Lemma 3.5.
Njsi = Njai
whereiji1,j2€{2,...,n} and j, j2 > i.
Proof. LetU := (1 — Q). Then
N — Adjoint(U)
~ detU)
Let Uik denote the matrix obtained frooh by removing thd-th row andk-th column. Then
i del(Ui- )
p——— | +]1 J1
nJl' ( ) deT(U)
iiodetUi,)
o (L1)i2 I2
nJZ' ( ) de(U)

We will show that o o

(1) deqUij,) = (—1)"2deqUij,)
Assumeji < j2. InU we first arrange thaj,-th column is immediately after colump. Call the new
matrixV. ThusVij, andVjj, (defined similar tdJ;j,,Uij,) differ only at theirj;-th column. Also note that

detUij,) = (~1)2711" detVij;) and detUsj,) = det(Vij,)

Let Sj, be the matrix obtained frond;, by replacing itsji-th column byR\{i} (R without itsi-th ele-
ment). (See (1), the generic structure of maRifor definition ofR.) Let Tjj; be the matrix obtained from
Vij, by adding to itsj;-th column the vectoR\{i}. Then

det(Vij,) +det(S;,) = det(Tj, )

We claim that defS;,) = 0. This will be proved later. Now since dgfj,) = det(T;j,), we concentrate
on detTij, ). To thej;-th column ofTjj,, we add the remaining columns @f,. The determinant will not
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change. Thejs-th column of the new matrix would beconte 1) times that of matrin/j,. Hence we
have that dé¥j, ) = —det(Vij,). Thus detU;j,) = (—1)12~1det(U;;,) and hence

(—1)"*idetUyj,) = (—1) HadetU;,)

Notice that till this point we have not used the fact that we have a particular Markov chain (of Problem
1.1) in hand. This fact is crucially used in the proof of the claim.

To prove the claim, consid&Y, the sub-matrix 0, , formed by the intersection of its ro&, ... ,R,_>
(sinceSj, is a(n—2) x (n—2) matrix) and column€y, ..., C;,Cj,. Let the columns of the new matrix be

617627 e aéiaéjl
Then we have from the definition &j, that
612622...:61 :—éjl

ThusW has rank 1. Now add-Cj; in §j, to columnsCy,...,C;. Call this new matrixZ. Then defZ) =
det(Sj,). ButZ is a matrix with all the entries in the submatrix formed by the figlumns and the last
n—i—1rows are OHence defZ) = det(Sj,) = 0. Hence the lemma follows. O

4 Analyzing the Problem

In this section we analyze Problem 1.1 for an infinte familg’sf
Let X; be a random variable which denotes the number of steps taken by the particlé tooin
(1 <i< n). Then we have

L - Do g n _
EX]=1+>—" 'J: EXj]+ = 'J_:ZrlE[XJ]
n-1
B =1+ o

We can write this in the form
(1-Q)-x=b

whereQ is the matrix defined in the previous section,

X= [E[XZ]vaE[XnHt

and

b=[1,1,---,1'e R™L
The problem now reduces to finding the matx= (I — Q). In what follows we assume that> 4.
Now we present the analysis for the case when

n—i .
g§=———,1<i<n
n—i+a-(i—1)
wherea does not depend on First we need an important lemma which will enable us to analyze the
problem for these values ef.
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Lemma 4.1. If the g’s are given by the following equation

n—i .
g§i=——+—,1l<i<n
n—i+a-(i—1)
wherea does not depend on i, then
Njai = Njai

whereij1,j2€{2,...,n}and ji, j2 <.

Proof. The proof is almost same as the proof of Lemma 3.5, except for the proof of the claim. Here
assume thaj; < j2 < i and arrange such that is just beforej,. The proof of the claim follows with
slight difference. The difference is that to show that the determinant of the nzaisizero, we use the

fact that 1;?‘ =a- % The matrixW is formed by the intersection of its rowR, ..., R and columns
Cj,,Gi,...,Cnh2. Then the columns &V will be

6j1,67...,6n,2.

Then we have from the definition &, and the fact that

wherea does not depend dn
G =Cii=...=Cno=—a-Cj,.

AgainW has rank 1. Now add-a -Cj; in §j; to columnsG;,...,C, . Call this new matrixZ. Then
det(Z) = det(Sj,). ButZ is a matrix with all the entries in the submatrix formed by the finsiws and
the lastn—i — 1 columns are OHence defZ) = det(S;,) = 0. Hence the lemma follows. O

Assuming the results of Lemma 4.1 and Lemma 3.5, it is easy to see thattihmlumn of matrixN
will have at most three distinct elements. All the entries in a particular column above the diagonal element
will take the same value, those below the diagonal element will take the same value and the diagonal
element itself. Hence the problem reduces to finding solution ta & 8ystem of linear equations.

A general formula can now be worked out (depending on the valog @fe do so it for three illustrative
values ofa. (Here we label the rows and columns Mfby {2,...,n}.) The reader is referred to the
Appendix A for the general formula.

The casen = «

This would imply that; = 0 for all 1 < i < n. In this case the matrid = | — Q becomes
1 ifi =j;
o l . . HR
uj=< —x Ifi>j;
0 otherwise.

for2<i,j<n.



352 Nisheeth K. Vishnoi

Theorem 4.2. The inverse of the matrix described above is N defined by

1 ifi=j;
nj=< 7 ifi>j;
0 otherwise
for2<i,j<n.
Hence from this we conclude that

EX] = zj :

= O(logn).

For an alternative proof of this fact the reader may go through [3]. Notice that the lower bound does not
follow from it in an obvious manner.

The Casea =1 o
In this case +-g =1— "1 = -1 Thus B = 1 and1-% — L In this case the matri¥ = | — Q
becomes

" _{ 1 =]
' —-L  otherwise.
for2<i,j<n.

Theorem 4.3. The inverse of the matrix described above is N defined by

2(n=1) . s,
Njj :{ n Ifl_]'

n-l otherwise

for2<i,j<n.

Thus in this case we have that

E [Xn]

Il
~—~
|
N
SN~—
S
]
S
|_\
~~_
+
N
N
>
S
|_\
N~

; o(n).

Hence if we do not restricts, the expected time might be as large®).
The Casea =n

In this case ¢ = I”((r']jg and thus(liji) =n (%) . In this case the matrid = | — Q becomes
1 ifi=j;
Uij = —i(nﬂl) if i > ];
— if i <j.
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for 2 <, j < n. Define

A (_n2j2_n2j+2nj2_j2_n+j)
‘ j(n—1)
_ _(j(n—l)((n+1)(j+1)—21')+n>
j(n—1)
Theorem 4.4. The inverse of the matrix U described above is N defined by
4(n-1 T )
ﬁ ifi=j=2
w7 fi=2i>2
e~ if2<i<nj=n;
njj = nzn—;il ifi=j=n;
—A—”j ifi<j,2<j<n
”ij“—l ifi=j,2<j<n;
—%t ifixj2<j<n
for2<i,j<n.
To calculateE[X,], we have that
n
EXi) = Mnj
&
_ 2 (n- 1) n? — N —1)j(n—1)
-2 n+1 Za n+1)( 1)—-2j)+n
2n 1)j(n—-1) )
< 142 -
v *Z( (1] + 1)~ 2])

n—-1 2 1

B 3+Z(n+1><r;+1> 21)
n—-1 2 2

- 3+Z(n+1><r;11> 21)

) +zz<1+ m)

n— 12
=y
= O(logn).

< 2+

HenceE[X,] = O(logn). In fact a more careful analysis will show tHaEx,] = ©(logn).
This completes the proof of Theorem 2.1.
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5 Monotonicity

In the previous section we showed how to analyze Problem 1.1 for an infinite family (with paraneter
instances. Analyzing the problem for an arbitrary veeteseems hard. One way to get around this is the
following. First, analyze the problem forgeneralenough family ofe’s. Then given any vectar for the
problem, find two vectors!©"¢") ande(UPPe) from the analyzed family, such thais dominated in both
directions by these two. Then use the expected time of absorptia$¥#”) ande(UPPe) as lower and
upper bounds fog respectively. But to be able to do this we have to answer in affirmative the following
question:

Problem 5.1. Lete™ and&(® be two given vectors for Problem 1.1. Thes® < &1 (ai(z) < si(l) for

all 1 <i < n), is it true that the expected number of steps required by the particlesittbe more than
that required withe(@?

It is not clear what the answer to this question is and seems difficult to resolve. Here we give some
results which shed some light on this problem.
Let XX denote the position of the particle startingraafterk steps. It is natural to ask if there are natural

restrictions ore’s for which E [X,‘;] >E [Xr(nk”)} . The following theorem gives one such condition.

Theorem 5.2. Giveng; < =1; for 1 <i < n. Then for any ne {2,...,n}

e ] > et
forallk > 0.

Proof. Assumen > Xr‘ﬁ > 1, else we have nothing to prove. By definition we have that

l1-e € K
B = (e 0 ) (0 k)
1-¢ @ N0
_ Xm (k) Xm (k)
= ( 5 >Xm +—2 (n+Xm +1)
< X%

Here the last inequality follows from the hypothesis of the theorem. Hence

et el ] <]

O

Hence we have that the expected position of the particle never increases, no matter where it starts from,
if €'s satisfy the condition of the above theorem. Define the suffix vectarfofm) such that

For a probabilty vectort, o(T)(i) measures the probability that the particle’s position is at ie&¥e can
show that this random variable satisfies a certain monotonicity property.
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Theorem 5.3. G|ven avectorte R" all of whose entries are positive, asd, €2, such thagM) > (2.
Let P(eM) and R(e) be the transition matrices. Then

idnpw%xnzigmpﬁ®mn

Proof. Letp = 1t- P(¢Y)). Then

o@®n1m>m<>
i=kj=
and
n o nnn A
|(Zlo(p)( ) kzliz J:l”(l) pji ()

[
M=

J 1T[(J)<kzl|Z<p“( )>

For j = 1,n, sincep;i () = pji (& ) the sums above are the same. Now considerjl< n. Then

We will show that for allj

n n 1- 851)
> > pil = — (424 +j-1)
k=1i=

+ o5 ) (j+D)+(+2)+---+n)

1 efl 31
1 1 1
= §~(J+nsg)+s§ ))
Hence now the theorem follows trivially. O

Remark. The above theorem has a stronger form that is true. It can be shown that

n n

o(PIK = 3 i) pi(e)
i=kj=

is a non-decreasing function effor all k.
A problem similar to Problem 5.1, which seems important to resolve, is the following
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Problem 5.4. Lete and €@ be two given characteristic vectors for Problem 1.1. Thesi3f < ¢
(term-wise), is it true that the expected position of the particle after k steps, for ea€h &f the particle
with €@, be more than that wita(®?

Using standard path coupling arguments, we can show affirmatively Problem 5.1, bistdine quite
restricted. We omit the details.

6 Conclusion

The main contribution of this work is to propose a new random walk special cases of which arise in
Theoretical Computer Science. We analyze this problem for an infinite natural family. Many problems
remain open.

1. Obtain intuitive proofs of Lemmata 3.5 and 4.1. These Lemmata seem to be the crux of the matter
hence it is natural to develop a deeper understanding here.

2. Resolution to Problems 5.1 and 5.4 seems important from the point of view of furthering our un-
derstanding as well as to allow the application of the results to more general settings.

3. We leave as an open problem to analyze (asymptotically) the expected absorption time for more
generak-s. To start with when ali-s are a constant, say4

4. Results about the distribution of, also seem interesting. For instance, how concentrateq is
aboutE[X,] ?
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Appendix

A Analysis for general a

For givene-s satisfying the condition of Lemma 4.1, it follows from Lemmata 3.5, 4.1%hat (I — Q)1
looks like the following

Y2 X3 X4 -+ Xn
2 Y3 X4 - Xn
2 23 Ya - Xn
3 L Xn
Z Z3 44 -+ X

|l 2 38 Z -+ Yn |

The goal is to find the;, y;, z by noticing that(l — Q) -N =, thus reducing this task to solving &3
system of linear equations. Once we halgt follows thatE[X,] = Z?;% zj +Yyn. Hence we concentrate

on calculating the quantities in this summation. Bet % ForA; :=1—¢,, defineA, as below.

p—
A=
17[3(”72))\2

Then itis clear from the fact that — Q)-N =1, that

=[5

Its easy to verify that

B(n—=2)A; -2
A71 o szn—ZB)\z—Z [3)\2n72[3)\272
2 1 -1 :
BAN—2PA,—2  PBAn—2Ph,—2
=
Similarly for A, defined as:
n-2
=z 1
. n-1 . Xn o 1
wee | L5 L e[ [8]
It follows that
T DD
14+Bn— —
-1 _
Ao = (+B)(n-1) _n-2

1+pn—B 1+Bn—B

Hencey, = 7(11?&5]”_’31).
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For 2< j < n, define

—Aj (J—) 1 —AB(—1)
Again it is true that

DefineAj to be
AjiBn—2A;Bj2+6BNjj —3BAjn—2BA; +2jBn—2Bj%+ jA;B?n—3Bn+3Bj + 27BN —2A;B%j + | — 1 — BZn?A,.

The inverse ofA; can be computed as follows.

_ B(—n+2j-1
ALY = B(n+2)-1) A, )
-1 __ B(—j—BAN+PBAjj)
1 . j*lfB)\jnJrB)\jj
AN13) = y
_ . .2 _ ._.
Al21) = - 2jBn+2Bj“+3pn—3Bj—j+1
i A
Atz - Ph(Ein+i®+3n-3j+pn°—2jpn+b’)
i A
A (—j?+3j-2—]j j2+2pn—2Bj
A2z - _M(I°81-2-iBn+pi®+2Bn—26))
i A
A‘ (3,1 = Zp’ZJHBn
-1 _ _BAI—2PBA —1-Bn+Bj
_ Ajj—2\j+j—-2
1 _ A i
ARSI =
2B+1+Bn

This means that for 2 j < n, z;
Now we are ready to state the expected absorption time of the particle stamingtatms of thee-s.

= 2[3+1+[3n) (1+p)(n—1)
EDAl= 2 8% = Bign— 2[37\2—2 23 TTiapn-p




