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Enough cannot be said about Evolution, a theory for which was first formulated by Darwin and Wallace, which
drives life and, perhaps, is the reason for the emergence of the genetic information that forms its basis. At a
very high level, evolution is an iterative process which takes feedback from an environment in order to refine
existing information and bias it towards that which is more likely to be replicated. However, the evolutionary
forces that have been active on Earth for around four billion years have learned not to put all eggs in one basket;
maintaining diversity at the expense of purity is important in order to make information more robust against sudden
environmental changes. Thus, critical to evolution is a replication mechanism that introduces variability.

In its most basic form, the information about life on Earth is organized in molecules such as RNA and DNA.
An RNA molecule is a sequence composed of four nucleotides A,G,C and U while a DNA molecule consists of a
pair of complementary sequences over the alphabet A,G,C and T. The replication of RNA molecules is primitive
and error-prone when compared to that of DNA. DNA replicators have the ability to check and correct errors while
copying, something RNA replicators cannot do, making DNA replication a more robust and stable process. Thus,
from a diversity point of view, RNA seems to be at an advantage. DNA, however, has found a sophisticated strategy
to introduce diversity, namely, sex or recombination. Horizontal gene transfer, responsible for bacterial antibiotic
resistance, is another mechanism to introduce diversity. I will focus on abstinent, RNA-type evolution; more can be
found on sex, its advantages and how CS and Math can contribute in ongoing work at Berkeley [LPDF08, CLPV12].

How can an error-prone copying mechanism be advantageous? After all, wouldn’t errors corrupt the genetic
information in RNA? To understand this, notice that sequences differ in their fitness, i.e., their ability to survive and
replicate in a given environment. Hence, the above would indeed be true if a genetic sequence was the most fit in its
current environment. However, it is unlikely that, at the genesis of information, the optimal sequence was simply
handed over. It is more likely that life started with sub-optimal genetic information and erroneous copying gave the
ability to explore the more-than-astronomically-sized space of all sequences of A,G,C and U in a random manner.
In this process, RNA can discover sequences that are more likely to replicate; the imperfect copying mechanism
and feedback via fitness gives rise to improved genetic information through successive generations. An example
of this phenomena occurred in Mexico around 1545 where it is believed that a strain of Cocoliztli, an RNA virus,
mutated and gained the ability to be transmitted from humans to humans instead of rats to humans. 1 As a result,
the virus wiped out up to 70% of the defenseless Aztec population in a matter of few years.

Abstraction and modeling form the basis of any scientific inquiry as they allows one to ask if-then questions and
conduct thought and, these days, computer experiments. Many times, a good model or theory has the ability to
change lives. Manfred Eigen, a chemist, did exactly this in his seminal papers from the ’70’s [Eig71, ES77] which
address evolution of genetic information as described above. He introduced the quasispecies model, a remarkably
clean mathematical model that captured the error-prone evolution of molecules such as RNA and addressed the
origins-of-life question. It was argued, see [Eig93], that an important property in such a model of evolution is the
existence of the error threshold, i.e., a replication error rate below which genetic information is intact and above
which it is destroyed. Besides the insights the quasispecies model provides on the emergence of life, it has had a
powerful impact on design of drug strategies for RNA-viruses such as Foot-and-Mouth-Disease [HD98], Poliovirus
[CCA01] and even RNA retroviruses such as HIV [LEK+99]. In all these cases, the error threshold phenomena is
leveraged to attempt to mutate the virus to death.

1Typically, an RNA-virus lacks the ability to copy itself. When a virus has the right proteins to enter a living cell, it does so and hijacks
its copying machinery, disrupting the normal function of the cell and, hence, the life-form the cell is a part of. The proteins that form
the virus are also encoded in its RNA. Proteins themselves are nothing but sequences of amino acids and, rather remarkably, this sequence
completely determines how it folds. The protein, once folded, becomes like a nano-machine and performs all kinds of mechanical functions.
A small error in the part of virus RNA that encodes a particular protein results in a slightly modified amino acid sequence which means the
protein folds a bit differently. Hence, its mechanical behavior changes and it can gain abilities it previously did not possess, in this case, the
ability to hijack human cells directly.
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The rest of this overview is organized as follows: First, I will describe the quasispecies model and the associated
phenomenon of error threshold. Subsequently, I will discuss a stochastic, finite population model for evolution
which incorporates observed stochastic effects. In the process, I will point out several important mathematical and
computational problems whose resolution is currently assumed without due rigor. The problems involve topics
such as Boolean functions, threshold phenomena, and random walks and, should be of general interest to the TCS
and Math community. I sincerely hope that many of these will be resolved and, with more ideas coming in, we can
contribute to an area of science which holds the potential to explain why we are and help us continue to be.

The Quasispecies Model and the Error Threshold. Let us consider the quasispecies model for the evolution of
strings of length L composed of two building blocks 0 and 1 which gives rise to the sequence space {0,1}L. The
environment remains fixed throughout this evolutionary process and the fitness of sequences in this environment
is described by a function a from {0,1}L to the positive reals, often referred to as the fitness landscape. In other
words, the sequence space is the Boolean hypercube and the fitness landscape a Boolean function. The model
assumes that, while copying a sequence, each of its bits is flipped with probability µ which is called the error or
the mutation rate. Hence, the probability that a string σ mutates to τ is Qστ := µdH(σ ,τ)(1− µ)L−dH(σ ,τ) where
dH(σ ,τ) is the Hamming distance between σ and τ, i.e., the number of positions where σ and τ differ, implying
that Qστ = Qτσ . The model assumes infinite population and, hence, at any point keeps track of only the fraction
of sequences of each type. Evolution starts with an arbitrary distribution over {0,1}L and it iterates applying the
tenets of reproduction-selection-mutation as follows: In the reproduction stage each sequence σ in the current
population produces aσ copies of itself. Since the total mass could become more than one, in the selection stage we
normalize the mass of each sequence to bring the total mass back to one unit. The mutation step can be thought of
as deterministic since the population is infinite: One unit of population of σ gives rise to Qστ fraction of population
of τ. Thus, the eventual outcome of the evolutionary process is not a single sequence (i.e., a species), rather it is an
invariant distribution over sequences, justifying the term quasispecies.

More formally, suppose m0 is the starting distribution over the population at time 0 and mt
σ is the fraction of

the population of σ at time t ≥ 0. Combining the reproduction and mutation step, for every string τ , aτmt
τQτσ

(fractional) copies of σ are produced (without normalization). Thus, the population evolves via the following

coupled difference equations: ∀σ ∈ {0,1}L, mt+1
σ :=

∑
τ∈{0,1}L mt

τ aτ Qτσ

∑
τ∈{0,1}L mt

τ aτ
. Let Q be the matrix with rows and columns

indexed by sequences in {0,1}L where the entry corresponding to row σ and column τ is Qστ as above. Further,
let A be the diagonal matrix with Aσσ := aσ . Then the evolutionary equations above can be succinctly expressed in
the matrix form as mt+1 := QAmt

‖Amt‖1
. If we assume 0 < µ < 1, then QA > 0 and it follows from the Perron-Frobenius

Theorem that from any initial distribution, the process converges to a unique limit vµ , the principal right eigenvector
of QA. The population determined by vµ marks the culmination of the evolutionary process and is the quasispecies
for the evolution described by µ,L and a.

If µ is close to 0 then one would expect vµ to have its mass concentrated on sequences of high fitness but not
entirely on the fittest or master sequence. On the other hand note that if µ = 1/2, then vµ

σ = 1/2L for all σ . This
conforms with the intuition that if each bit, during copying, can be 0 or 1 with probability 1/2, then no genetic
information can be retained by the quasispecies. Interestingly, Eigen and his coworkers [ES77, EMS88, EMS89]
observed that when the fitness landscape is single-peaked, i.e., the master sequence has fitness above 1 while the
rest have fitness 1, this phenomena occurs much below µ = 1/2, in fact around 1/L. This led them to hypothesize
that there exists a particular mutation rate (below 1/2) beyond which all the 2L strings become nearly-equally
abundant. They called this critical mutation rate the error threshold as, beyond this rate the master sequence’s
genetic information is lost, and called this transition an error catastrophe.

Since vµ will hardly ever be U , the uniform distribution on {0,1}L, the goal is to find the smallest µ such that
vµ is close to U . Thus, to define the error threshold one first needs a function that measures closeness. We use the
most prevalent way to measure distance between probability distributions: ‖vµ−U ‖1 :=∑τ∈{0,1}L |vµ

τ −1/2L|. With
this, we define µ?(ε) := min{µ ∈ (0,1) : ‖vµ−U ‖1 ≤ ε}.2 When µ = 1/2, the steady state vector vµ is exactly U .
Hence, µ?(ε)≤ 1/2. Thus, it is sufficient to focus on the error-rate regime (0, 1/2].

2Other notions such as ‖vµ −U ‖2,‖vµ −U ‖∞ or the difference in Shannon entropies of vµ and U , can also be studied and µ? may
change accordingly.
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Interlude: The Error Threshold and an Anti-Viral Strategy. The notion of error catastrophe is important in antiviral
drug-design as several important viruses are RNA-viruses and their evolution can be captured to the first order by
the quasispecies model. From the virus’ point of view, a high mutation rate implies greater diversity, which in
turn could mean greater adaptability and greater ability to escape the hosts immune responses and pressure from
drug therapy. At the same time, too high a mutation rate induces a loss of genetic information. Thus, if we could
increase the mutation rate past the error threshold, we would severely compromise the virus’ identity. Intriguingly,
this strategy is already employed by the body which can produce antibodies that increase mutation rate. Artificially,
this effect can also be accomplished by mutagenic drugs such as ribavirin, see [CCA01, MHH+11]. In this setting,
knowing the error threshold to a high degree of precision is critical: Inducing the body with excess mutagenic drugs
could have undesired ramifications which could lead to complications such as cancer, where as increasing the rate
while keeping it below the threshold can increase the fitness of the virus, making it more lethal.

Mathematics of the Quasispecies Model. Since the usefulness of the quasispecies model depends on the existence
of the error threshold, the first problem is: Given L,a, and ε , analytically determine the smallest value of µ for
which the vector vµ comes ε-close to the uniform distribution in the `1 norm. The matrix Q is well studied in TCS
and is often referred to as the noisy hypercube matrix. All its eigenvalues and eigenvectors can be written explicitly
in terms of the parameters µ and L. Additionally, A is a diagonal matrix whose eigenvectors and eigenvalues
are explicit. Hence, it may be tempting to believe that the eigenvalues and eigenvectors for QA can be easily
determined. The problem is that A is not explicit (it is given as input) and the fact that it is a diagonal matrix is
superflous (we could always make either matrix diagonal). Hence, since the eigenspaces interact in a complex
manner, the largest eigenvector of QA does not seem to be derivable in closed form from the spectral data of Q and
A. In short, the Boolean function a, which gives the quasispecies model the ability to elegantly capture complex
evolutionary interactions, turns out to be the reason this process is difficult to analyze.

While there is abundant empirical proof that the error threshold exists for almost all Boolean/fitness functions of
biological relevance, proving this formally has remained an important open problem. Indeed, it is easy to construct
examples, even in the single-peaked case, of fitness functions where the error threshold is arbitrarily close to 1/2.
Thus, in order to reinforce the use of the quasispecies model in realistic biological settings where the error threshold
is observed much below 1/2, an important goal is to identify a class of fitness functions that are biologically relevant
and rigorously prove the existence of error threshold. One such study has been done recently in [Vis12a]. Here, a
class of fitness landscapes which capture a wide variety of practical settings, called (c,k)-finite and bounded, are
introduced and the existence of error thresholds established. These fitness landscapes have at most k sequences
whose fitness is more than the minimum fitness (1), but remains bounded by c. The error threshold turns out to be
about 1/L · ln(ck) and, as one would expect, deteriorates with c and k. Interestingly the proof relies on writing A in
the basis corresponding to eigenvectors of Q and using elementary ideas from Fourier analysis and linear algebra.

In the absence of analytic bounds on the error threshold one has to resort to computer simulations. Here, one
strategy is to start with a very small value of µ and increase it slowly until the dominant right eigenvector of QA
is close to uniform. For this algorithm to be finite, we must make finite increments in µ. But how small must the
increment be to ensure we do not miss the error threshold? This strategy implicitly assumes that once the error
threshold is reached and the mutation rate is increased beyond it, the eigenvector does not magically reorganize and
become far from the uniform distribution, i.e., the distance between the uniform distribution and the dominant right
eigenvector of QA is non-increasing. Thus, the next problem is the following: Does ‖vµ −U ‖1 go monotonically
to 0 as µ goes to 1/2?

The next question concerns the spectral ratio of the QA matrix which is defined as the ratio of the second-largest
to the largest eigenvalue of QA. The spectral ratio can be shown to capture the convergence rate or the speed of
evolution and, hence, is an important parameter from a biological perspective. For instance, when modeling the
effect of a mutagenic drug, the convergence rate determines the minimum required duration of treatment. Formally,
at time t, the distance ‖mt − vµ‖1 can be shown to go down geometrically with respect to the spectral ratio. One
tempting conjecture is that for µ ∈ (0, 1/2), the spectral ratio is at most 1− 2µ, the spectral ratio of the noisy
hypercube. This is false in general but can be shown easily when the fitness function is a tensor. The final problem
on quasispecies is: Establish bounds on the spectral ratio.
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Asexual Evolution in Finite Populations. Despite several remarkable advances, important gaps remain between the
quasispecies model and the realistic evolution of (haploid) asexual populations. Whereas the quasispecies model
assumes an infinite population size and, hence, adopts a deterministic approach, real populations are often small
enough to lend themselves to substantial stochastic effects. For instance, the effective population size of HIV-1 in
infected individuals is about 103− 106 [KAB06, BSSD11], which is believed to underlie the strongly stochastic
nature of its evolution. This stochasticity results in the empirical observation of the error threshold varying with
population size which has implications in mutagenic drug administration for HIV-1 [TBVD12]. There have been
numerous attempts to construct finite population models to serve as refinements of the quasispecies model, [Wil05].
However, most have fallen short since they either do not converge to the quasispecies model as the population
goes to infinity or the arguments establishing convergence lack rigor. In a recent study, [DSV12] considered a
simple, population-genetics-based model that augments the quasispecies model with randomness and an additional
population-size parameter N in the simplest possible way: At each time-step t, Nσ

t denotes be the number of
sequences (a random variable) of type σ the total population, ∑σ Nσ

t , is constrained to be N. In each time step, the
ensuing evolution is as follows:
Reproduction: In the reproduction step, each σ produces aσ copies of itself, giving rise to an intermediate popu-
lation It := ∑σ∈{0,1}L Iσ

t , where Iσ
t := aσ Nσ

t .
Selection: In the selection step, N sequences are chosen at random without replacement from the intermediate
population, resulting in the selection of Sσ

t sequences of type σ where ∑σ∈{0,1}L Sσ
t = N ≤ It .

Mutation: In the mutation step, each selected sequence is mutated with probability µ per bit, giving rise to the
next generation of Nσ

t+1 sequences of type σ , such that ∑σ∈{0,1}L Nσ
t+1 = N.

This (RSM-) model is best viewed as a Markov chain where the state space is the set of functions f : {0,1}2L 7→
{0,1, . . . ,N} such that ∑σ f (σ) = N. Thus, the number of states of this Markov chain is

(N+2L−1
N

)
which is roughly

N2L
. It is easy to show that for any 0 < µ < 1 the transition matrix of this Markov chain has a unique stationary

vector denoted by π. π is indexed by all f satisfying the property above and ∑ f π( f ) = 1. What is the relation
between the RSM model and the quasispecies model? It is immediate from the description that E [Nt+1/N|Nt ] =

QANt
‖QANt‖1

. Thus, the expected one step evolution equation in the RSM model is the same as that in the quasispecies
model. This also illustrates what makes the RSM model difficult: division of one random variable by another.

Analogous to the vector vµ in the quasispecies model is the vector Vµ which captures the expected fraction
of each sequence with respect to π for a fixed N : Vµ := Eπ [limt→∞

Nt/N] . Thus, the error threshold, µ?(ε,N) is
now defined to occur when ‖Vµ −U ‖1 ≤ ε for the first time as µ is increased from 0. It was shown in [DSV12]
that µ?(ε,N) converges µ?(ε) as N → ∞, however, it is not known how µ?(ε,N) varies with N. An important
question is to understand the dependence of µ?(ε,N) on N analytically. Experiments suggest that µ?(ε,N) ∼
(1−O(1)/

√
N)µ?(ε) when the fitness landscape and L are fixed.

The applicability of the RSM and related models to the calculation of error threshold relies on the fact that
the corresponding Markov chain mixes rapidly, i.e., in time significantly smaller than the number of states in the
Markov chain. However, there has been a lack of mixing time bounds. Since there is no easy way to determine if
a chain has mixed by looking at samples, in practice, specific parameters are tracked until they seem to stabilize.
Theoretical justification is required for this as we know that the Markov chains can get stuck and the mixing
can be slow; there are striking examples of this, see for instance [MV05, SV07, SV11]. This brings us to the
important question, an answer to which is needed in order to justify the use of the simulation techniques employed
in developing guidelines for drug design: For what Boolean/fitness functions does the RSM Markov chain mix
rapidly? This problem turns out not to be so straightforward even for L = 1, a case which was recently settled in
[Vis12b] by connecting the mixing time to the spectral ratio of the corresponding quasispecies model.

Conclusion. Through this short overview, which admittedly can only be considered the tip of an iceberg, the role
that mathematicians and theoretical computer scientists can play should be clear. Since many problems stated here
seem to lie at the boundary of or outside our current knowledge, pursuing them can not only provide useful tools
to biologists, but can also enrich the tool-set of mathematicans.
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