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Abstract. Many visual tasks depend upon the interpretation of visual
structures that are flow fields, such as optical flow, oriented texture, and
shading. The computation of these visual flows involves a delicate trade-
off: imaging imperfections lead to noisy and sparse initial flow measure-
ments, necessitating further processing to infer dense coherent flows; this
processing typically entails interpolation and smoothing, both of which
are prone to destroy visual flow discontinuities. However, discontinuities
in visual flows signal corresponding discontinuities in the physical world,
thus it is critical to preserve them while processing the flow. In this paper
we present a computational approach motivated by the architecture of
primary visual cortex that directly incorporates boundary information
into a flow relaxation network. The result is a robust computation of
visual flows with the capacity to handle noisy or sparse data sets while
providing stability along flow boundaries. We demonstrate the effective-
ness of our approach by computing shading flows in images with intensity
edges.

1 Introduction

Many visual structures, including optical flow [7], oriented texture [14], and
shading [4], appear as flow fields in the image plane. Accurate knowledge of the
geometry of these flows is a key step toward the interpretation of visual scenes,
both two dimensional [13,14] and three dimensional [19, 21].

Perceptually, visual flow fields are characterized by their dense, smoothly
varying (almost everywhere) oriented structure. Formally a flow is an orienta-
tion function 6(z,y) over the image plane. Initial measurements of a flow field,
made locally with imperfect sensors (like V1 receptive fields), are likely to suffer
from noise and perhaps even fail altogether in some regions of the image. Hence,
an effective computational process for the inference of coherent visual flow must
be able to do so from a noisy, incomplete set of measurements. Furthermore, as
we discuss below, it should localize singularities, reject non-flow structures, and
behave appropriately along line discontinuities and boundaries. We have devel-
oped a computational model that addresses all these issues within a framework
that is inspired by the columnar architecture of the primary visual cortex [2,1].
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The requirement that flow discontinuities be preserved is particularly impor-
tant since their presence typically indicates physical discontinuities in the world.
However, there is a delicate trade-off between handling sparse and noisy data
sets and achieving stability along boundaries. To solve this some nonlinear in-
teraction between the flow and its boundaries needs to be made explicit. In this
paper we describe a biologically motivated way of achieving that goal.

Of the different types of visual flows, one — the shading flow field [4] — has
a special relationship to its corresponding visual boundaries. The relationship
between the geometry of the shading and that of the bounding edge provides
a basis for classifying edges [4], and can be used to resolve occlusion relation-
ships [10]. Since shading flow boundaries (i.e., the curves along which the flow
should be segmented into coherent parts) are defined as intensity edges, shading
is a clear example of a visual flow for which both the flow field and its boundaries
can be directly measured from the image. Thus in this paper we focus on the
case of shading and edges.

2 The Differential Geometry of Coherent Visual Flows

Given that the initial measurements of a visual flow field may contain spurious
or missing values, we would like to refine the flow field so as to counteract
these effects. Interpolating and fitting [18], smoothing [17], and diffusing [20]
the orientation function 6(x,y) corresponding to the flow are commonly used
approaches to achieving this goal, but they also prone to affect the underlying
geometry of the flow in undesirable ways. In particular, they can distort flow
singularities that must be preserved to correctly interpret visual scenes [1,2]. To
overcome this problem we process the visual flow by enforcing local coherence,
that is, by ensuring that each local measurement of the flow field is consistent
with its neighboring measurements. Toward this we first examine the differential
geometry of visual flows.

A natural representation of a visual flow which highlights its intrinsic geom-
etry is its frame field [15]. Here a local frame {Ep, Ex} is attached to each point
q of the flow, with Ep tangent and En normal to the flow. Small translations in
direction V from the point g rotate the frame, a change which is characterized
through the covariant derivatives Vy Er and Vy En of the underlying pattern.
Cartan’s connection equation [15] expresses these covariant derivatives in terms
of the frame field itself:

(%ﬁ) B [—wg(V) wuo(v)} (52) (1)

The connection form wi(V') is a linear function of the tangent vector V' and
can thus be represented by two scalars at each point. In the basis {Er, En}
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these scalars are defined as kr = wi2(Er) and Ky = wi2(En), which we call
the tangential curvature and the normal curvature - they represent the rate of
change of the flow’s dominant orientation in the tangential and normal directions,



Fig. 1. The frame field representation of visual flows. The
local behavior of the frame is described by its covariant
derivatives Vv Er and Vv Enx which are always normal
to ET and En, respectively. Since the connection form —
the operator that describes the frame’s rotation for any
direction V' — is linear, it is fully characterized by two
numbers computed as projections on two independent
directions. In the basis of the frame this yields the cur-
vatures k7 and Kn.

respectively. In terms of 6(x,y) and its differential, these curvatures become:

kr =df(Er) =V0-Er = V6 -(cosb,sinb) (2)
kN =dO(En)=V60-Exy =V0-(—sinf, cosh).

Knowledge of Er, En, kT, and Ky at a point g enables us to construct a
local approximation to the flow which has the same orientation and curvatures
at ¢; we call such an approximation an osculating flow field. The osculating flow
field is important in that it predicts flow values in the neighborhood of ¢q. Com-
paring these predictions to the measured flow values indicates how consistent
the measured values of the flow at ¢ are with those at its neighbors and suggests
how to update them to be consistent. An analogous technique to refine curve
measurements using cocircularity was developed in [16].

There are an infinite number of possible osculating flow fields to choose
from. However, there exist criteria for “good” osculating flow fields. One such
criterion is the minimization of the harmonic energy E[f] = [ [||V8|]*dzdy
associated with the orientation function of the flow, as is used in orientation
diffusion [20]. Viewing the orientation function as a surface in R? x S!, how-
ever, suggests that the osculating flow field should minimize the surface area

Alf] = [[ /14 62 + 62dxdy. Finally, the duality of the curvatures k7 and kx

suggests that the osculating flow field should exhibit unbiased curvature covari-
ation. Surprisingly, there is a unique osculating flow field which satisfies all of
these criteria simultaneously [1,2]. In the space R? x S* of orientations over the
image plane it takes the form of a right helicoid (Fig. 2):

Proposition 1. Assume (w.l.o.g) that a visual flow 6(z,y) satisfies ¢ = (0,0)
and 0(q) =0, kr(q) = Ky, and kn(q) = Kn. Of all possible orientation func-
tions 0(x,y) around q that satisfy these constraints, the only one that extremizes
both E[0] and A[f], and has curvature functions that covary identically (i.e.,
% =const= g—}”\;) is the right helicoid 0(z,y) = tan_l(%).

Armed with a model of the local structure of visual flow we are in a position
to compute a globally coherent flow, the procedure for which is described in the
next section.



Fig. 2. Examples of right helicoidal visual flows, both in (x,y, #) space (left) and the
image plane. Note that tuning to different curvatures at the origin (point marked with
a cross) produces qualitatively different coherent behaviors in its neighborhood.

3 Computing Coherent Visual Flows

The advantage of having a model for the local behavior of visual flow lies in
the ability to assess the degree to which a particular measurement is consistent
with the context in which it is embedded. This, in turn, can be used to refine
noisy measurements, remove spurious ones, and fill in “holes” so that global
structures become coherent. A framework in which one can pursue this task by
iteratively maximizing the average local consistency over the domain of interest
is relazation labeling [11]. We have developed such a network for the organization
of coherent visual flows [2]. The following is a short overview of that system.

A direct abstraction of the relaxation process for visual flow should involve an
image-based 2D network of nodes i = (z,y) (i.e., pixels) whose labels are drawn
from the set A = {no-flow} U {(8,kr,kn) |0 € (—3,3], kr,6v € [-K,K]} after
the appropriate quantization. To allow for the representation of either “no-flow”
or multiple flows at a pixel, we replace this abstraction with a 5D network of
nodes i = (z,y,0, kT, xn) whose labels are either TRUE (T') or FALSE (F).
For each node ¢, p;(T") denotes the confidence that a visual flow of orientation 6
and curvatures kp, Ky passes through pixel (x,y). Since p;(F) = 1 — p;(T) we
need to maintain and update the confidence of only one label at each node.

The geometrical compatibilities r;;(A, A") that drive our relaxation process
are computed from the osculating flow field as defined by the right helicoid. Mea-
surement, quantization implies that every possible node ¢ represents an equiva-
lence class of measurements, each of which induces a field of compatible labels
in the neighborhood of i. In the continuum, the union of all these fields forms
a consistent 5D “volume” that after quantization results in a set of excitatory
labels. See Fig. 3

With the network structure, labels, and compatibilities all designed, one can
compute the support s;(A) that label A\ at node i gathers from its neighbor-
hood. s;(A) is typically the sum of the individual support of all labels j in the

neighborhood of i
Sl(>\) = ZZH]’ ()\,)\I)pj(Al) . (3)
Jj X

Having computed the support for a label, s;(A) is then used to update the
confidence p;(\) by gradient ascent, followed by non-linear projection. Under the



Fig. 3. Examples of compatibility structure (for different values of 8, kr and k) pro-
jected onto the image plane (brightness represents degree of compatibility, black seg-
ments represent an inhibitory surround). As is illustrated on the right, these structures
are closely related to long range horizontal connections between orientation columns
in V1.

2-label paradigm and the appropriate weighing of negative (F') versus positive
(T') evidence [2], the projection operator takes a particularly convenient form
and the update rule reduces to

pi(A) I (pi(N) + 8si(N)) (4)

where I} (z) projects its operand to the nearest point on the interval [0, 1] and
¢ is the step size of the gradient descent.

While the relaxation labeling network described is an abstraction based on
the differential geometry of flow fields, it is motivated by the architecture of the
primary visual cortex. The columnar structure of V1 clearly lends itself to the
representation of orientation fields [9], and is capable of the necessary curvature
computations [6]. Considerable speculation surrounds the functional significance
of long-range horizontal connections [8] between orientation columns; we posit
that they may play a role not unlike the compatibility structures of our network
(Fig. 3, right panel).

3.1 Stability at Discontinuities

In computing coherent visual flows it is important to respect its discontinuities,
as these often correspond to significant physical phenomena. The relaxation pro-
cess described above does not destroy these structures because in the high di-
mensional space in which it operates the flow structures that meet along a line
discontinuity, either in orientation or curvature, are separated and thus do not
interact. However, without proper tuning, the relaxation process will quickly
shrink or expand the flow in the neighborhood of boundaries. It is this behavior
we seek to suppress.

To achieve stability we normalize the compatibility function, and thus the
support function s;(A), to account for reduced support in the neighborhood
of a discontinuity. Given the compatibility volume V; which corresponds to a
particular node ¢, we compute the maximal support a node can receive, Sy;q2, as
the integral of the compatibility coefficients assuming a consistent flow traverses
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Fig. 4. Practical stability of the relaxation labeling process at line discontinuities in
the flow can be achieved through the normalization of the support function. (a) At each
node i, Smqz is determined by integrating the support gathered from a full confidence,
compatible flow that traverses the entire compatibility volume V;. (b) The minimal
accepted support spi, of a flow of some minimally accepted confidence pmin < 1
(depicted here by the brighter surface intensity) that terminates along a line that
intersects i.

V; with all supporting nodes at full confidence (Fig. 4). It is clear that the closer
i is to a flow discontinuity, the less context supports it. At the discontinuity,
the flow should neither grow nor shrink, leading us to define the minimal level
of support for which no change in confidence occurs, s;,i,- Observe that spin
depends on both the geometry of the discontinuity and the minimally accepted
confidence of the supporting nodes. For simplicity we assume the discontinuity
(locally) occurs along a straight line. The support from neighboring nodes of
minimally accepted average confidence p, (Fig. 4) can be approximated as
Smin = Pminimez  Normally ppi, would be set to 0.5, which is the minimal
confidence that cannot be disambiguated as the TRUFE label. In the context
of the two-label relaxation labeling paradigm and the gradient ascent update
rule (Eq. 4), a decrease in the confidence of a label occurs only if s; < 0. Thus, it
remains to normalize the support values by mapping the interval [Spin, Smaz] tO
the unit interval [0, 1] via the transformation s; - ;#=fmir— hefore applying
the update rule.

The result of the normalized relaxation process is usually very good (Fig. 5).
Nevertheless, the fact that both the support function (Eq. 3) and the normaliza-
tion are linear creates a delicate balance: while better noise resistance suggests
smaller s,,:n, it also implies that at discontinuities the flow will eventually grow
uncontrollably. Some solutions to this problem are discussed in [2]. However,
in the case of shading flow fields, discontinuities are intensity edges and thus
can be explicitly identified by edge detection. As we discuss below, this infor-
mation can be directly embedded into the network to decouple the handling of
discontinuities from the support normalization.



Fig. 5. Visual flow organization based on right helicoidal compatibilities. Shown (left to
right) are: Tree bark image and a region of interest (ROI), perceptual structure (drawn
manually), initial flow measurements (gradient based filter), and the relaxed visual
flow after few iterations of relaxation labeling with the right helicoidal compatibilities.
Compare the latter to the perceptual structure and note how the non-flow region was
rejected altogether.

4 Edges as Shading Flow Boundaries

Edges in images are important because they signify physical changes in a scene;
hence the numerous efforts to detect them. The physical nature of an edge is
often discernible from the appearance of the edge in the image. In particular, the
relationship between the edge and the shading flow field in the neighborhood of
the edge can be used to identify the physical cause of the edge. The shading flow
field is defined as the unit vector field aligned with the iso-brightness contours
of the image [4]. For example, the shading flow field is continuous across an edge
caused by an abrupt albedo change but discontinuous across an edge caused by
a cast shadow [4].

Significantly, occlusion edges can be distinguished on the basis of the shading
flow field as well. At an occlusion edge of a smooth object, the edge results from
the object’s surface curving away from the viewer; we call this type of edge a
fold. At a fold, the shading flow field is generically tangent to the edge due to
the projective geometry of the situation (Fig. 6). On the occluded side of the
edge the shading flow has an arbitrary relationship to the edge and is generically
non-tangent; we call this side of the edge a cut [10].

The ability to compute the flow field structure in the neighborhood of the
edge is exactly what we are looking for to classify the edge. However, techniques
that compute flow field structure without explicitly accounting for edges can
destroy the relationship between the flow field and the edge and thus prevent
the correct interpretation and classification of the edge. What we describe next
is how we endow the connectivity structure of our relaxation labeling network
with the ability to explicitly consider edge information and thus prevent the
problem just mentioned. Naturally, this places some dependence on the edge
detector used; however this is clearly preferable to completely ignoring the edge.
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Fig. 6. Illustration of shading flow in the neighborhood of an edge. When a shaded
surface is viewed such that an edge appears, the shading flow field takes on different
appearances depending on the nature of the edge. A fold occurs (a) when the surface
bends smoothly away from the viewer (the typical occlusion case), and the shading
flow field appears tangent to the edge. At a cut (b), the surface is discontinuous (or
occluded), and shading flow is generally non-tangent to the edge.

5 Edges as Nonlinear Inhibition

Due to its physical nature, an edge can be thought of as dividing the shading
flow field domain into distinct regions, implying that the computation of the
shading flow on either side of the edge can and should be done separately. This
is an intuitive but powerful argument: incorporating edges into the relaxation
labeling network to regulate the growth of flow structure obviates the trade-
off between high resistance to noise and strict stability along discontinuities we
mentioned in Section 3.

To implement this idea in the framework of relaxation labeling, what is
needed is a specialized set of interactions between edge nodes and nearby shad-
ing flow nodes. These interactions would block the flow input if it comes from
across the edge. With this input blocked, and so long as sy, is positive, the
flow on one side of the edge will not extend across the edge, because the total
support contributed to the other side will never exceed zero. This frees the selec-
tion of s, from stability considerations and allows us to determine it solely on
the basis of noise resistance and structural criteria. A cartoon illustrating these
interactions appears in Fig. 7. Interestingly, a nonlinear veto mechanism that is
reminiscent of the one proposed here also exists in biological systems in the form
of shunting inhibition [3].

We have tested this adaptive relaxation labeling network on a variety of
synthetic and natural images, two of which are shown in Fig. 8. We used the
Logical/Linear [12] and the Canny [5] edge detectors and the shading flow fields
were measured using standard differential operators.

6 Conclusions

In this paper we have described a computational approach that integrates bound-
ary and visual flow cues for the computation of coherent shading flow fields in
images. It is important to capture this interaction between flows and boundaries
accurately as it indicates the geometry of the scene underlying the image. Based
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Fig. 7. Edge-flow interactions for boundary stability. Assume the flow structure in the
image plane is bounded by the indicated edge. Flow cell A is connected to a set of other
cells (B and C) which are a part of the same coherent flow. Although A is not active
(there is no flow in its corresponding retinotopic position), its facilitory interaction
with the cells on the other side of the edge may eventually raise its activity level. To
prevent cell C from affecting A, an active edge cell D blocks the facilitory inputs from
C, thus effectively limiting A’s context to cell B only. Unless enough of these cells are
also active, A will not reach its activation potential, and thus will not signal any flow.

on a geometrical analysis, our computation is carried out in a relaxation labeling
network whose nodes are tuned to position, orientation, and two flow curvatures.
Boundary information is used to adaptively alter the context which influences a
given node, a mechanism which enables the network to handle noisy and sparse
data sets without affecting the flow’s discontinuities. Both the flow computa-
tion and the incorporation of edges as boundary conditions are motivated by
the columnar architecture of the primary visual cortex and neurophysiological
shunting inhibition. While here we applied our system to shading flow fields and
edges, the same ideas can be used for other flow-like visual cues like motion,
texture, and color.
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