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Abstract 
We present a new approach to effect the transition between local and global representations. It is based on the 
notion of a covering, or a collection of objects whose union is equivalent to the full one. The mathematics of 
computing global coverings are developed in the context of curve detection, where an intermediate representation 
(the tangent field) provides a reliable local description of curve structure. This local information is put together 
globally in the form of a potential distribution. The elements of the covering are then short curves, each of which 
evolves in parallel to seek the valleys of the potential distribution. The initial curve positions are also derived from 
the tangent field, and their evolution is governed by variational principles. When stationary configurations are 
achieved, the global dynamic covering is defined by the union of the local dynamic curves. 

1 Introduction 

One of the key questions in computational vision is how 
to effect the transition from local representations to 
global ones. For example, edge operators give an indi- 
cation of local edge position and orientation; how can 
they be threaded together into a global contour? A pop- 
ular solution is commonly called "edge following" or 
contour tracing [Ballard and Brown 1982; Levine 1985] 
and it works as follows: from a starting edge position, 
move in the direction indicated by the orientation until 
the next edge point is encountered, then move in that 
direction, and so on until the final point is reached. 
But such algorithms are inherently sequential, and 
result in myriad "garden paths" if any errors or noise 
are present. Global parameters, such as starting and 
ending points; total number of edge points; or total con- 
tour length, aid in their application, but are rarely avail- 
able (except through user interaction, e.g., Kass, Witkin, 
and Terzopoulos [1987]). To make matters worse, infer- 
ring global parameters, such as the total length of a 
curve, raises problems as difficult as global curve detec- 
tion itselfl Other methods, more sophisticated than sim- 
ple edge following, have been developed in an attempt 
to apply global constraints; these include minimizing 
properties such as contrast variation along the curve, 
total curvature [Montanari 1971; Martelli 1976], smooth- 

ness across scale space [Lowe 1988], energy within 
plate and membrane models [Blake and Zisserman 1987; 
Terzopoulos 1986], or applying top-down information 
[Tsotsos 1987; Draper et al. 1989]. However, few of the 
objects in our visual world are made from bent plates, 
and verifying problems generally arise when verify- 
ing such constraints are valid globally. It is almost as 
if the cart is being put before the horse, in that (hypo- 
thetical) global information is being used to force local 
decisions. 

In an attempt to turn this situation around, we intro- 
duce a new class of algorithms for synthesizing contours 
from local representations of their differential structure. 
These algorithms are inherently parallel and are natural 
for vision applications. The mathematical idea behind 
these new algorithms is to compute properties of global 
structures indirectly by computing a covering of them. 
Loosely speaking, a covering of an object is a collection 
of different objects whose union is equivalent to it. In 
our case, we shall define a covering of a global curve 
that consists of a collection of short, overlapping curves. 
Each of these derives from a local representation of 
image information (which we call a tangent field) and 
then evolves like the "snakes" of Kass et al. [1988] ac- 
cording to a potential distribution also derived from the 
tangent field. But unlike standard "snakes," ours are 
local objects; it is their union that comprises the cover. 
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Each element of the cover evolves dynamically and in 
parallel, and no external global information is required. 
It is all available by construction in the potential dis- 
tribution. For these reasons we refer to our representa- 
tion of global curves as dynamic coverings. 

The idea of computing dynamic coverings developed 
in a biologically oriented project of curve detection, 
a brief overview of which is provided next (see also 
[Zucker et al. 1989]). Within this context, the key to 
computing dynamic coverings is to impose two repre- 
sentations between the image and global curves: a tan- 
gent field and a potential distribution. The tangent field 
(defined in section 2) represents the local properties 
reliably, and the potential distribution puts them to- 
gether globally. These intermediate representations thus 
break the enormous gulf between images and global 
contours into more manageable "chunks" and represent 
another key difference between our approach and other 
recent ones [Kass et al. 1988; Blake and Zisserman 
1987]. We infer the tangent field from the image, and 
then build the potential distribution and snakes from 
it; other researchers attempt to build the potential dis- 
tribution directly from the image. We can actually cal- 
culate the generators for the potential distribution from 
the equivalence class of curves that map into each tan- 
gent field entry. 

This article is organized as follows. Following the 
overview of our approach to curve detection (section 2), 
we develop the preliminary notions of potential distribu- 
tions (section 3) and deformable curves (section 4). We 
then get to the heart of the article in section 5, where 
the precise definition of a global covering is developed. 
Examples of the dynamic computation of global cover- 
ings are finally shown in section 6, for both artificial 
and natural images. 

2 Overview of the Algorithm 

The algorithm for curve detection consists of two dis- 
tinct stages, the first leading to a coarse description of 
the local structure of curves, and the second to a much 
finer, global one [Zucker et al. 1988]. 

2.1 Stage 1: Inferring the Tangent Field 

Orientation selection is the inference of a local descrip- 
tion of a curve everywhere along it. Formally, this 
amounts to inferring the trace of the curve, or the set 
of points (in the image) through which the curve passes, 

its quantized tangent and curvature at those points, and 
the discontinuities [Zucker 1985]. Through all this 
work, we will refer to such information as the tangent 
field. 

This first stage of orientation selection is in turn 
modeled as a two-step process: 

Step 1.1: Initial Measurement of the local fit at each 
point to a model or orientation and curvature. The form 
of the initial measurements is biologically motivated, 
and a model of endstopped simple cells, which encode 
both the orientation and curvature estimates [Dobbins 
et al. 1987] is used to perform them. The local measure- 
ments are quantized into discrete classes of orientation 
and curvature. However, since the local measurements 
are inherently inaccurate, we require 

Step 1.2: Interpretation of the local measurements such 
that they become globally consistent. Curvature, which 
relates neighboring tangents, is used to define a natural 
functional to be minimized in order to attain consistenc~¢ 
[Parent and Zucker 1989; Iverson and Zucker 1987]. 
Relaxation labeling [Hummel and Zucker 1983] pro- 
vides the formal framework for this. 

A complete treatment of this first stage can be found 
in Iverson [1988]. 

At the end of the first stage, the tangent field gives 
the discrete trace of the curves in an image. The two 
steps above are necessary to guarantee that this trace 
contains reliable information. More precisely, the 
tangent field is a set of n 3-tuples, 

{((x,, y,), Oi, K,) I (xi, Yi) ~ I, Oi ~ O, Ki ~ 3£} 

i = 1 . . . .  , n, where n is the number of trace points 
in the image/ ,  (x~, y~) denotes the (quantized) grid 
coordinate of the ith trace point indexed over the image 
I, and Oi and ~i are its quantized orientation and curva- 
ture, respectively. Typically, O consists of eight often- 
tation classes, and 3£ of five curvature classes (see 
figure la). Thus the tangent field summarizes the local 
differential properties of curves in what Zucker [1987] 
described as a qualitative manner. 

Two topological properties of the tangent field are 
important: (1) each curve in the image is represented 
as a connected (in the discrete sense) set of tangent- 
field entries; and (2) discontinuities, intersections, and 
bifurcations are represented as multiple tangent-field 
entries at identical coordinates. To elaborate on (1), 
recall that, except on the border, each point (x, y) of 
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(a) (b) 
Fig. 1. Illustration of the two intermediate structures between the image and the global curves: the tangent field and the potential distribution. 
The image is a section of a fingerprint image, where each individual pixel is shown as a little block. (a) The tangent field, superimposed 
onto the original image. Each tangent is represented as a unit-length straight line in the tangent direction (curvature is not displayed). (b) The 
potential distribution, computed from the discrete tangent field by pointwise summation of elongated 2D Gaussians. Notice the presence of 
smooth valleys, corresponding to the curves in the image. 

a (digital) image has four horizontal and vertical neigh- 
bors, and four diagonal neighbors; these eight points 
are called the (3×3) neighborhood of (x, y). A chain 
between two points (xx, Yl) and (x~, Y2) is a sequence 
of points where the first one is (x~, Yl), the last one 
is (x2, Y2), and each point of the sequence is in the 
neighborhood of the preceding one. A set of points of 
an image is then said to be connected when there exists 
a chain between any two points of the set [Rosenfeld 
and Kak 1982]. For an elaboration of (2), see [Zucker 
et al. 1988]. 

2.2 Stage 2: Inferring a Covering of the Curve 

Since the tangent is the first derivative of a curve (with 
respect to arc length), the global curve can be recovered 
as an integral through the tangent field. Such a view 
typically leads to sequential recovery (numerical inte- 
gration) algorithms (e.g., contour following). But these 
algorithms require starting points and some amount of 
topological structure (i.e., which tangent point follows 
which), and there are immense difficulties inherent in 
obtaining these parameters directly from the image. 
Moreover, because we are interested in biologically 
plausible models, we shall require that all the algo- 
rithms be parallel. 

The key idea behind our approach is to recover the 
global curve by computing a coveting that is sufficient 
for obtaining any global properties of the curve required 
for subsequent visual processing. The elements of the 
covering are short curves, initially born at each (dis- 
crete) tangent location with unit length, but which then 
evolve according to a potential distribution constructed 
from the tangent field. Thus the algorithm that we are 
proposing can be viewed, mathematically, as approxi- 
mating the computation of integral curves through a 
direction field in a parallel manner with very nonstan- 
dard initial conditions (provided, of course, that multiple 
entries at the same position are properly interpreted). 

Again, there are two conceptually distinct steps to 
stage 2 of the algorithm: 

Step 2.1: Constructing the Potential Distribution from 
the discrete tangent field. Assuming that each tangent 
in the tangent field gives a coarse hypothesis about the 
behavior of the curve in its neighborhood, for each 
tangent-field entry we represent this class of hypotheses 
by an elongated (in the tangent direction) 2D Gaussian. 
This weighting function indicates the (equivalence) class 
of curves that project to each tangent-field entry in ex- 
tending the discrete tangent in both length and width. 
The potential distribution is the pointwise summation 
of these n (one per tangent-field entry) Gaussians. The 
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key feature of the potential distribution is the presence 
of smooth valleys, constructed by summation of nearby 
Gaussians. These valleys indicate, with theoretical con- 
tinuum precision (although the implementation is limited 
to machine precision), the expected positions of the 
curves in the picture (see figure lb). The construction 
of the potential distribution thus effects a transition from 
a local to a global representation of structure and shape. 

Step 2.2: Curve Dynamics.  The valleys of the potential 
distribution are located by dynamic unit-length curves, 
born at each tangent position in the tangent field. They 
evolve according to a variational scheme that depends 
on curve properties (tension and rigidity) as well as on 
the potential distribution. The evolution takes two forms: 
(i) a migration in position to achieve smooth coverings 
at subpixel accuracy; and (ii) a growth in length such 
that nearby covering elements overlap; see figure 2. At 
the end of the migration process, we shall have that each 
valley is completely covered by this collection of curves, 
and each curve will have deformed itself to fit the exact 
shape of the valley. We call this collection of curves 
the global  covering of the curves in the image. 

The dynamic curves of the second stage are a general- 
ization of "snakes" [Kass et al. 1988]. The key differ- 
ences between our approach and theirs are twofold: 
(i) our scheme is parallel, so questions about total 
length, boundary points, etc., are handled implicitly; 
and (ii) our scheme is constructive, with the potential 
distribution computed directly from the tangent field, 
so questions about features, degree of image blurring, 
etc., are handled explicitly. We do not need a user to 
interactively supply information as did, for example, 
Kass et al., nor must we--to avoid smoothing across 
discontinuities--distribute penalties globally as, for 
example, Blake and Zisserman were required to do. 
Imposing stable intermediate structures--the tangent 
field and the potential distribution (see figure 1 ) -  
between the image and the global curves was the key, 
and the mathematical notion of coverings provided the 
unifying structure. 

We now proceed to develop the notions of potential 
distribution and dynamic curves, before putting them 
together into global dynamic coverings in section 5. 

3 The Potential Distribution 

The local descriptors in the tangent field are synthesized 
into a global description represented as a potential dis- 

tribution. In this section, we first articulate this con- 
struction process, then define a mathematical notion 
of a valley in the potential distribution. And, finally, 
since valleys are intended to be the locus of points that 
represent (the trace of) a curve, we show that, for simple 
potential distributions, these valleys do indeed corre- 
spond to the global curves. 

3.1 Constructing the Potential Distribution 

The tangent field, consisting of discrete trace, discrete 
tangent, and discrete curvature, gives, at each trace 
point, a coarse estimate of the local behavior of curves. 
Since each tangent-field entry corresponds not to a single 
curve in the world, but rather represents the equivalence 
class of possible curves that would project onto this 
tangent-field entry, we represent this (local) equivalence 
class of possibilities by the (Gaussian-weighted) Wiener 
measure over them. The Wiener measure (a Gaussian 
distribution) arises because the class of continuous (but 
not necessarily differentiable) functions is equivalent 
to the sample functions of a Brownian motion, and the 
Gaussian weighting along it is an approximation to the 
diffusion of this measure in time [Doob 1984]. The 
result, then, is a two-dimensional Gaussian distribution; 
and, since each entry in the tangent field is considered 
independently, the total potential distribution is the 
pointwise summation of them. 

More formally, the set of generators of the potential 
field is the set of 2D-Gaussians {Gi : i = 1 . . . . .  n} .  

For each trace point i, G i is obtained by the multiplica- 
tion of two 1D-Gaussians--one in the direction of the 
quantized tangent at this point, and another (with 
smaller deviation) in the perpendicular direction. Thus, 
at a trace point i = (x,, Yi), with tangent 0, 

Gl(x, y) = - ( gEe-(f~(x'y)- xt)V°E )( gBe-(g~(x'y)- Y')2/°B ) 

= -- KEKBe- ((fz(x'Y) -xz)2/a[)e- ((gt(x,y) -yt)2/a~ ) 

(1) 

where the functions J~(x, y) and gi(x ,  y ) ,  which rotate 
the x and y axes to the axes indicated by the 0, and 
01 + r/2 directions respectively, are given by 

f ( x ,  y) = x i -Jr- ( x  - x i )  c o s  0 i q-  (y - Y i )  sin O, 

gl(x, y) = Yl - (x - xi) sin Oi + (y  - y~) cos O~ 

The parameter aE, which is the standard deviation of 
the 1D-Gaussian in the Oi-direction, controls how far the 
local information given by the tangent 0l is extended 
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from the trace point (x,, y,). The parameter aB, which 
is the standard deviation of the 1D-Gaussian in the (Oi 
+ a-/2)-direction, controls the width over which the ex- 
tended information is valid. For these reasons, we shall 
refer to the parameters aE and OB as the extension 
parameter and the blurring parameter, respectively, and 
K E and KB are (positive) weights associated with each 
of the 1D-Gaussians. Figure 3 presents a plot of the 
resulting 2D-Gaussian. 

The (tangent-field) potential distribution, UZF, is 
then the pointwise summation of the Gi: 

-2 U~F(X, y) -- Gi(x, y) 
i=1 

It should be noted that each generator G,, as defined, 
is a function of the tangent estimate alone, with the cur- 
vature estimate negligible. The curvature could be used 
if curved, 2D Gaussians Gi' were defined for each 
tangent-field entry i. G/would  then be a Gaussian 
along a curved axis of curvature Ki in the Oi direction, 
multiplied by another Gaussian perpendicular to the 
curved axis. However, the potential distribution U~'F 
obtained by pointwise summation of these Gi', which is 

U~F(X, y) = 2 Gi'(x' Y) 
i=1 

would be very similar to Ure for the following reasons. 
First, the curvature is only retrieved in a very coarsely 
quantized form by the first stage of the curve-detection 
process, so the generators G/would  be only weakly 

tuned to curvature. Second, extending and summing the 
tangent information implicitly gives curvature, which 
is a relation between neighboring tangents. Thus, theo- 
retically there appears to be no need to use curved 
Gaussians, and experimentally, potential distributions 
computed with straight Gaussians yielded smooth curved 
valleys. Figure 4 shows examples of potential distribu- 
tions and of these valleys, where one can see that the 
result is a smooth "landscape," in which the jaggies 
due to sampling, noise, and quantization have been 
removed.1 

Recall from the introduction that the key feature of 
the potential distribution is the location of the valleys, 
since it is to the valleys that the covering elements 
migrate. Thus we can now state the claims behind this 
article: (i) the valleys in the potential distribution cor- 
respond to smooth curves, and (ii) the set of quantized 
tangents of these smooth curves is precisely the tangent 
field used to construct the distribution. Moreover, over 
all the possible sets of curves that would project onto 
this tangent field, the valleys of the potential distribu- 
tion give the most probable ones, in the sense of Wiener 
measure. 

The rest of this section is devoted to an analysis of 
the potential distribution characteristics, in order to 
prove the above claims. This analysis results in a design 
criterion for the blurring parameter, which insures that 
separate curves remain separate. 

The analysis is conducted for C 1 (i.e., continuous 
with continuous first derivatives) and nonintersecting 
curves, however some of the tangent fields used in the 
experiments contain intersecting curves and comers (in 

\ 

(d) 

Fig. 3. 3D plot of G,(x, y). Note that the resulting Gaussian is elongated (in the 0,-direction) since o- E ~> o- B. 
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Fig, 4. Examples of potential distributions. The image is the fingerprint image shown in figure 1. It is displayed in reverse contrast, with 
the tangent field shown in white. Three potential distributions are shown, computed from first a few, then more, and finally all the tangem 
field entries. 

particular, see figure 8). Other research is currently 
in progress to deal with intersecting curves and tangent 
discontinuities by extending the potential distribution 
to a branched potential distribution; this research will 
be reported elsewhere, z 

migrate. To begin, given a direction v, making an angle 
with the positive x-axis, we define a 4~-va//~ of the 

potential distribution U~F(x, y) to be a connected com- 
ponent of the set 

{(x, y) : V,+,/2UrF(x, y) = O, 

3.2 Valleys in the Potential Distribution 

We now introduce the concept of a valley, the locus of 
points toward which the elements of our covering 

Wg+~/2Ure(x, y) > O} 

where Vof(x, y) and V~f(x, y) denote respectively 
the first and second directional derivative of f i n  the 
direction given by the angle O. More generally, a valley 
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of the potential distribution UrF(X, y) is a connected 
subset of the set 

{(x, y) : V4~+Tr/2UTF(X , y) = 0, 

2 0} ~ 4~+~r/2UTF( x ,  Y) > 

where ¢ = 4~(x, y), that is, the angle ~b can vary with 
the coordinates x and y. A ~valley is then a "straight" 
valley in the direction ~b. 

The idea behind the concept of valleys is that of direc- 
tional minima. While local minima are points of a 
valley, points of a valley are not (necessarily) local 
minima of the potential distribution. The condition for 
a point (x, y) to be a local minimum of Ure is that 
VoUT'F(X, y) = 0 and V~UTv(x, y) > O for all direc- 
tions O. The definition of a valley is thus weaker than 
the definition of a local minimum, and points in the 
valleys are minima with regard to a single direction, 
namely the direction given at each point by the angle 
4~(x, y). 

3. 3 Analysis o f  Potential Distributions 

The analysis of the two simplest potential distributions, 
namely a single Gaussian, or perfectly aligned Gaus- 
sians, is simple and shows that the valleys are ~b-valleys 
(where ~b is the direction of the Gaussian) correspond- 
ing to the most probable smooth curve indicated by the 
tangent field. The formal treatment of those cases can 
be found in [David and Zucker 1989]. 

In order to achieve this result for a more general 
potential distribution, we consider the case of two paral- 
lel Gaussians (this also leads to a criterion on the blur- 
ring parameter of the Gaussian weighting functions 
which insures curve separation). 

Observe that, when the potential distribution is gener- 
ated by several Gaussians that are in general position, 
we require the potential distribution to be such that: 
(1) nearby tangent-field entries that lie along the trace 
of a unique curve must form a unique valley, corre- 
sponding to the most probable position of the curve, 
and (2) nearby tangent-field entries belonging to two 
nearby curves must not be blurred together, and must 
give rise to two separate valleys. 

These two requirements are sufficient to insure curve 
separation, since the curves are found by a migration 
of covering elements, born at tangent-field entry posi- 
tions, over the potential distribution (see section 2.2). 
Then, in the case of tangent-field entries belonging to 

different curves, the migration will stop as soon as the 
covering elements each drop into their surrounding 
valley. Hence, possible additional valleys between the 
two positions will never be found if two valleys exist 
sufficiently close to each one of the original positions. 

We now concentrate on the second observation above, 
namely that nearby curves give rise to distinct valleys. 
This leads to our design criterion for %.  Again con- 
sider only two interacting Gaussians, but from a tangent 
field consisting of two parallel and vertical (i.e., 01 = 
02 = r/2) tangents, with identical y-coordinates. Then, 
UTF = G I ( X ,  y) + G2(x, y), and using 01 = 02 = 7r/2, 
Yl = Y2 in equation 1, we get 

Gl(X, y) = -- KEKBe-((Y-Y~)2/ff~) e-((x- x')2/ff~) 

Gz(x, y) = --KEKBe-((Y-Y')2/~)e-((x-x2)2/°B) (2) 

(see figure 5). 
We now look for the (Tr/2)-valleys of UVF in this par- 

ticular case. From now on, and without loss of general- 
ity, we assume xl < x2. The critical points (for the 
(a-/2)-valleys) are those where V ~UTF = 0, or equiva- 
lently, those where (O/Ox)UrF(X, y) = 0. Computing 
the partial derivative, we obtain 

2KEKBe-(y yl)Va~ [ (X - -  x l )e  -(x-xO2hr~ 

+ (x - xz)e -(x-~2)2/°~] = 0 

or, since first term of the product is always strictly 
positive, 

(x - xl)e -(~-~')~/°~ + (x - x2)e -(~-~2)2/~ = 0 (3) 

Then, by positivity of the exponential function, any 
solution x of equation (3) is in the open interval (x~, x2). 
Also, equation (3) depends only on Ax = x2 - Xl and 
%. Without loss of generality, setx~ = 0; thenx2 = z~c 
and F(xl, x2, %) becomes 

xe -~2/°~ + (x - 2tx)e -(x-~x)2/°~ (4) 

which depends only on &r and %, and which we 
denote F(x) for short. 

Observe that the points (x, y) belonging to the (Tr/2)- 
valleys of UrF are entirely characterized by the function 
F(x)? More precisely, it can be shown that (Xo, Y0) 
belongs to a (Tr/2)-valley of Urvif  and only if F(xo) = 0 
and (O/Ox)F(xo) > O. 

A condition to separate cases (b) and (c) of figure 5 
relates the distance z~c between the two Gaussian oper- 
ators and the blurring parameter %.  More precisely, 
it can be deduced from the last result [David and Zucker 
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Fig. 5. (a) T h e  t a n g e n t  f ie ld ,  c o n s i s t i n g  o f  two  en t r i e s  w i th  01 = 02 = 7r/2 a n d  Yl = Y2- (b) A po ten t i a l  d i s t r i bu t i on  o b t a i n e d  f r o m  (a) c h o o s i n g  

~r E = 2.75,  a B = erE/4 = 0.6875, K E = K B = 1. Th i s  G a u s s i a n  sepa ra t e s  t he  t angen t s  in to  t w o  d i f fe ren t  val leys .  (c) A po ten t i a l  d i s t r i bu t i on  

o b t a i n e d  f r o m  (a)  c h o o s i n g  % = 2.75, a B = aE/1.5 ~ 1.83, K E = K a = 1. Th i s  G a u s s i a n  b l u r s  the  t angen t s  in to  the  s a m e  valley.  

1989] that the vertical straight line x = At/2 is a 0r/2)- 
valley of UTF if and only if Ax 2 < 2 (r~. 

To summarize, the key structural properties of the 
potential distribution are: 

i. When Ar z < 2 o~, the valley atx = At/2 is unique. 
ii. When Ax z > 2(r~ so that x = Ax/2 becomes a 

maximum, two valleys are created, one at x = x~ 
xl, and one at x = x2 ~ x2. Also, the valley 

at x = z~c/2 is lost. The slight variation in position 
from Xa and x2 arises because of a weak interaction 
between nearby Gaussians; see David and Zucker 
[1989]. 

iii. When Ax becomes large, the distances (x~ - xl) 
and (xz - x~*) become small. 

iv. When % becomes small, the distances (x~ - xl) 
and (xz - x'z) become small. 

The preceding analysis indicates that the valleys in 
the potential distribution have precisely the properties 
required for synthesizing global curves from the tangent 
field. Before proceeding to the study of dynamic curves 
for locating these valleys, we extend one aspect of the 
preceding analysis into a constraint on the parameters 
controlling the Gaussian generators. 

3.4 Design Criterion: Blurring Parameter 

Continuing the particular case of the preceding section, 
we know that two (vertical and parallel) tangent-field 
entries give rise to a unique valley when Ax z < 2a~, 
and to two separate valleys when Ax 2 > 2a~. Recall 

from the introduction that image curves are represented 
in the tangent field as connected sets of tangent-field 
entries. Thus, when two (parallel and vertical) tangent- 
field entries each occupy overlapping (3 x3) neighbor- 
hoods, they belong to the same curve, and when they 
are separated by at least one empty pixel, they belong 
to different curves? Then, any value of the blurring 
parameter such that 

1 
12 < 2 ~  < 2 z or - -  < % < ~ (5) 

4~ 

insures that the two tangent-field entries give rise to 
separate valleys if and only if they belong to (locally) 
separate curves. 

More generally, it is clear that many other relations 
(in position and orientation), apart from the particular 
cases just studied, are possible, and lead to similar in- 
equalities. For example, consider two parallel tangent- 
field entries with 0 = (7r/4). These entries are then 
located at diagonal pixels and this case is just a rotation 
of the preceding one. But now, the distance between 
two neighboring tangent-field entries is the distance 
across the diagonal, that is, ~J2. Thus, any value of % 
such that 

.~/]2 < 2o~ < (2~J2) 2 or 1 < % < 2 (6) 

insures separation of (locally) disconnected sets of 
tangent-field entries, and only of those sets. We submit 
that these two cases are typical of the general one, and 
summarize the analysis by saying that when 



228 David and Zucker 

i. the analysis is restricted to nonintersecting curves; 
ii. curves of the image are represented as connected 

sets of tangent-field entries; 
iii. the choice of OB is made according to equations (5) 

and (6); 

we find that 

1. each connected component of the tangent field will 
give rise to a unique valley, built from the interac- 
tion of all the tangent-field entries of the component; 
thus, the valley indicates the position of the most 
natural curve that projects onto the connected com- 
ponent of tangent-field entries; 

2. different connected components of the tangent field 
will be separated into distinct valleys. These valleys 
are not completely independent since there is a weak 
attraction between nearby valleys [David and Zucker 
1989]. But this attraction is non-negligible only for 
very close curves (a few pixels). 

Experimentally, it will be shown in section 6 that any 
reasonable value of aB relative to equations (5) and (6) 
(say between 0.75 and 1.5) ensures that the two above 
claims are verified. 

4 Valley Detection 

From the tangent field, we derived a potential distribu- 
tion in which the valleys indicate the position of the 
curves in the image. We are now ready to identify these 
valleys to obtain a precise description of the curves. 
Since the valleys are, by definition, connected loci of 
points that are not all minima of the potential distribu- 
tion, standard minimization techniques are not adequate. 
Rather, we use short segments of curves to capture these 
loci, and we define a process by which the curves 
migrate into the valley. Together these segments will 
define the global covering. Figuratively, the process 
works as follows. Suppose that we are given a rough 
approximation of where a valley lies in the potential 
distribution. Now, if a curve is placed at this approxi- 
mate position, within a potential well and parallel to 
the valley, and let slide as if it were governed by a kind 
of gravity, then it will slide toward the bottom of the 
well, that is, the valley. Moreover, if the curve is not 
completely rigid, it will deform itself to fit the exact 
shape of the valley. Then, at the end of the process, 
when "gravitational" stability is attained, a description 
of the valley is given by the associated curve. This is 
precisely what we shall do. 

Note that the above mechanism relies on having a 
good initial approximation, in position and orientation, 
of each valley. If we place a piece of curve randomly 
on the potential distribution and let it evolve under 
"gravity" the final position of the curve could be mean- 
ingless in terms of valley detection. More likely than 
not, the curve would span several valleys. Our initial 
approximation is given by the tangent field, and the 
wells by the Gaussian generators. It is analyzed more 
carefully in section 5. In this section, we develop the 
variational principles that govern the dynamics of each 
deformable curve individually; the global cover will 
then be computed by running all of these dynamic proc- 
esses in parallel. For now, we focus on one element 
of the cover, and suppose it exists at some (initial) posi- 
tion on the potential distribution. We then develop a 
mathematical model to govern the movement of the 
curve, basically following that adopted for snakes [Kass 
et al. 1988; Terzopoulos 1987a, 1987b], by applying 
classical mechanics to deformable curves. 

A deformable curve v is a differentiable map v : R 2 
R 2. We write v(s, t) = (x(s, t), y(s, t)) with s fi 0 

the space domain, and t E [to, tl] the time domain. We 
denote (O/Os)v(s, t) by vs(s, t), (02/as2)v(s, t) by vss(s, y) 
and (O/Ot)v(s, t) by v~(s, y). 

We now define the potential functional Ut(v) of a 
curve v, where the superscript indicates that the poten- 
tial functional is computed at each time t. This corre- 
sponds to the potential energy of the curve. It is related 
to the potential distribution, but also includes internal 
constraints on the curve (how the curve is allowed to 
extend and fold). These internal constraints, correspond- 
ing to the physical concepts of tension and rigidity, must 
be added in order to specify completely the movement 
of the curve. The potential functional of a curve v at 
each time t is 

1 L g'(v) = ~ f(Ivsl 2) + g(Ivssl 2) + gre(v)ds (7) 

where UTF(V) is the value of the potential distribution 
at the point (x(s, t), y(s, 0) ,  f(Ivsl 2) controls the ten- 
sion of the curve, and g(Ivs~l 2) controls the rigidity of 
the curve. Among all the possible functions f and g, 
we simply choose the natural ones 

f ( lvs(s,  t)l 2) -- o~a(s)lv~(s, t)] ~ 

f(Ivs~(s, t)l z) -- o~z(s)lv~(s, t)F 

where o~ and o~z are constants over time. A method 
for choosing the constants is described in section 5; 
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we will also see that these simple forms are sufficient 
to control the curve movement for our purposes. 

Now that the potential functional is completely de- 
fined, we can use the methods of classical mechanics 
(principle of least action, Lagrange-Euler equations of 
motion) and obtain a system of differential equations 
that describes the movement of the deformable curves. 
Then, with known initial positions, these equations can 
be solved numerically. All details can be found in 
[Terzopoulos 1987a, 1987b] and in the Appendix to this 
article. 

5 The Global Covering 

We now proceed to put all of the previous pieces to- 
gether. We infer the global curves from a tangent field 
by recovering a covering of these curves. Each element 
of the covering is a deformable curve that moves accord- 
ing to the model described in section 4, within the wells 
of the potential distribution described in section 3. Of 
course, we require good initial positions for the cover- 
ing elements, so that, at "gravitational" stability, the 
curves will all have moved into valleys; and we require 
that each valley be completely covered by curves. In 
this section, we precisely state what we mean by a cov- 
ering of the global curves, and then develop a particular 
covering to meet the above two requirements. 

5.1 Curves and Coverings 

As a mathematical object, a plane curve v is a mapping 
from an interval I C N to N 2, that is, 

v(s) = (x(s), y(s)) for s ~ I 

The set v(/) C R 2 is called the trace of the curve v. 
Since our overall goal is applications in vision, we 

seek to recover the trace of  each curve as precisely as 
possible. Once this trace is available, it provides a basis 
for inferring all the other curve properties that do not 
depend on the exact form of the mapping. This leads 
us to consider equivalence classes of curves obtained 
by factoring the set of curves by the equivalence relation 
given by the equality of trace. More formally, we pro- 
pose that two curves v : I v ~ R 2 and u : lu ~ R z are 
said to be equivalent if and only if their traces coincide, 
that is, V(Iv) = u(I.). But an image rarely consists of 
a unique curve, and we want to study general classes 

of images. We thus say that two sets of  curves U and V, 
where U consists of the curves u : I ,  ~ R 2 and V con- 
sists of the curves v : I v ~ R 2, are said to be equiva- 
lent if and only if 

U u(i.)= U v(i~) 
u~U vEV 

Given a set of curves, V, we denote the equivalence 
class formed by all sets of curves equivalent to V by 
E(V), and any member U of E(V) is called a covering 
of the set V, or is said to cover V. The elements of U 
(which are curves u : I u ~ R 2) are called covering 
elements. 

5.2 Construction of  the Global Covering 

We now develop a covering that enjoys natural represen- 
tational properties. Recall that reliable local estimates 
of the curve positions and orientations are given in the 
tangent field. Now, consider each tangent-field entry 
as a unit-length straight curve, and let these n curves 
deform themselves according to the model already 
described. We then get the set C of these n deformed 
curves, where each curve c E C originated from a 
tangent-field entry. In this section, we will show that 
the set C is a covering (according to the above defini- 
tion) of the global curves in an image. Or, equivalently, 
since the global curves are described by the valleys of 
the potential field we will show that each small curve 
c lies in a valley, and that each valley is completely cov- 
ered by curves of the set C. More formally, the global 
covering of the curves in an image is the set C of the 
n curves 

ci(x, h) = (x,(s, h),  Yi( S, t l ) )  i = 1, . . . ,  n 

where at initial time to, each ci(s, to) is a straight line 
identical to the ith entry of the tangent field, and at final 
time h, each c,(x, h) is a dynamic curve that has moved 
onto a valley of the potential distribution. Starting from 
now, the phrase "covering elements" will always refer 
to the elements of the global covering. We now complete 
their dynamics. 

5.2 Covering Element Movement 

Recall from the preceding section that for each covering 
element c(s, t) = (x(s, t), y(s, O, with s ( ~2, the poten- 
tial functional is 
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U'(c) = f e  o~llcsl 2 +  21cssl 2 + u~<c) ds 

= (_ UT c)ds ÷ f _   ,lcsl 2 +  21cssl 2 ds 
(8) 

where the first term controls the migration of the cover- 
ing elements toward the valleys, and the second term 
controls how the covering elements are allowed to 
deform themselves during the migration. We call this 
latter term the internalpotential, and set it so that each 
covering element increases its length to a prescribed 
length. The movement of the covering elements is thus 
a two-fold process, consisting of a migration and of a 
length increase (see figure 2). The details are as follows. 

The internal potential of a covering element c(s, t) = 
(x(s, t), y(s, t)), with s fi [2 is 

o,,Icsl 2 +  21essl = as (9) 

where o~ 1 and o~ 2 control tension and rigidity respec- 
tively. In fact, since the minimization of (9) participates 
in the covering elements' movement, we observe that 
the covering elements tend to decrease their length for 
positive values of Wl, increase their length for negative 
values of w~, become straight for positive values of o~2, 
and fold and curve themselves for negative values of 602. 

Given a prescribed mandatory length L e, we set ~01 
to be, at each time t, c01(c) = f(Lt(c) - Lp), where 
Lr(c) is the length of the covering element c(s, t) at 
time t, that is, 

L' c) : f ,  Ic.(s. t)l = j 4Xs(S. tv + ys(S, 0 2 ds 

The functionfis then simply a ramp function saturating 
when [Lt(c) - Lp[ becomes big. It is easy to see that 
this choice achieves the desired result: a covering ele- 
ment c will tend to extend when Lt(c) < Lp, and to 
shrink when Lt(c) > Lp. It should be noted that o~ is 
independent of the parameter s, which makes the ten- 
sion equally distributed over the entire covering ele- 
ment length. 

Although the presence of a ridigity term is essential 
to the process, its exact value is not a key point, and 
it suffices to set it empirically within an order of magni- 
tude to get good results. It was experimentally verified 
that changing the rigidity parameter by a reasonable 
amount does not change the results significantly (see 
[David and Zucker 1989]). But the rigidity parameter 
is essential to the algorithm, in order to prevent a cover- 
ing element from folding on itself while finding its 

optimal position, since the potential distribution and 
the tension parameter do not prevent those movements. 
We simply set the rigidity parameter w2 to a constant 
value, the same for each covering element, at all times, 
and over the whole covering element length. 

5.4 Properties o f  the Global Covering 

Now that our model is completely defined, we can state 
and justify the claims made about the global covering. 
The global covering C, formed by the n curves c~, 
which originated from the n tangent-field entries, and 
which evolve according to equation (8), is such that 

1. Each curve lies in a valley of the potential 
distribution. 

2. Each valley of the potential distribution is completely 
covered by curves of the set C. 

Claim 1 is met by construction, since the potential 
distribution was built from the tangent field, that is, 
from the curves' initial positions. Then, each curve is, 
at initial time, within the well surrounding its associated 
valley, and the dynamics drive the curve onto the valley. 

The truth of claim 2 is based upon three facts: global 
curves project into the tangent field as connected sets 
of tangent-field entries, the length of each covering ele- 
ment increases during the dynamics, and there is no 
movement of a covering element outside the well sur- 
rounding its valley. By the last statement, we assume 
that all valleys have a similar depth along their length, 
or equivalently, that the density of the tangent-field 
entries is about the same along the entire connected 
component. This is guaranteed by our restriction to 
smooth nonintersecting curves. 

Note that the diagonal length across a pixel (which 
is the maximal distance between two neighboring ele- 
ments of a connected set) is ~ units; therefore, to guar- 
antee that neighboring covering elements overlap to give 
the global curves, we just have to let each covering ele- 
ment extend in length to some value greater than ",/2, 
since each covering element stays around its initial posi- 
tion. Typically, a prescribed length of 3 is used, in order 
to guarantee the overlap. 

Since the valleys of the potential field describe the 
global curves of the image, we also find that the global 
covering is a covering of the curves in an image, that is, 

U t , ) =  U V(Iv) 
cEC vEV 

where V is the set of the global curves of the image. 
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6 Results 

We now illustrate the computation of the global covering, 
beginning with artificial images to check the validity 
of the algorithm against known examples, and finally 
with natural images to demonstrate its robustness. 

The first test shows that simple analytic curves are 
retrieved quite exactly from the tangent-field informa- 
tion, that is, that the "natural" curves indicated by the 
potential distribution correspond to the expected ones. 
The image consists of two nearby circles, with different 
radii, projected over a discrete sampling grid (figure 6a). 

We simulate the first stage of the process (see sec- 
tion 2.1), which extracts the trace and tangent of these 
curves in the following manner. Each square of the 
sampling grid traversed by one of the circles belongs 
to the trace of this circle, and the tangent at each trace 
point is computed assuming that the curve crosses the 
center of the square; afterwards, all the computed tan- 
gents are quantized into eight classes (figure 6b). We 
then run our algorithm on the simulated tangent field. 
This tangent field is the only information that the second 
stage of the process uses to retrieve the global curves, 
the initial circles being lost by the projection onto the 
sampling grid. The result is shown in figures 6c and d. 
The curves retrieved from the potential distribution cor- 
respond very accurately to the initial circles. Also, the 
value of oB, chosen according to the design criterion, 
allows a clear separation between the two nearby circles, 
separated by only two pixels on the sampling grid. 

Finally, we run our algorithm on three natural images, 
a fingerprint image, a radiograph of blood vessels in 
the brain, and a satellite image of logging roads. Since 
we are interested in precise extraction of the curves, 
without blurring of very close curves, we choose to 
experiment with small images so that details can be 
examined up close. Figure 7 presents the original 
images, and the resulting global curves. An exploded 
display of the first two tests is then presented in fig- 
ures 8 and 9. 

7 Summary and Conclusions 

In this article we developed an algorithm for finding 
a representation of the global curves in an image. The 
novel feature of this representation is that it is formu- 
lated in mathematical terms as a covering, so that, 
rather than computing global curves directly, short seg- 
ments of curve are computed independently from one 

another. The short segments thus become the elements 
of the cover, and global curves are given as their union. 
This enables us to define the algorithm in a parallel 
fashion, and to avoid the a priori specification of global 
parameters (e.g., the length of the curve). 

Since the global representation is built up from local 
representations, the algorithm for computing global 
curves via coverings requires reliable local information 
about the curve. Within our context, which is a large 
project on curve detection incorporating both mathe- 
matical and biological constraints, this local information 
is provided by a tangent field, or a list of (quantized 
trace) points through which the curve passes, together 
with coarse estimates of its tangent and curvature at 
those points. The key point to emphasize here is that 
these local properties need not be specified to high pre- 
cision; the interpolation properties implicit within the 
covering algorithm can deal successfully with coarse 
initial information. Thus the algorithm fits into a very 
natural information-processing hierarchy, with both 
degree-of-precision and local-to-global axes spanned. 

The local (tangent-field) information is used in two 
different ways. First, a global description, in the form 
of a potential distribution, is synthesized from it. By 
definition, valleys in this potential distribution corre- 
spond precisely to curve locations. These valleys are 
detected by a dynamical process in which the covering 
elements are driven by the potential to both migrate in 
position and elongate in length. The second use of the 
local (tangent-field) information is in specifying the ini- 
tial positions for each covering element. Convergence 
is thereby guaranteed by construction. Equivalence be- 
tween the curves in the image and the covering elements 
is demonstrated both theoretically and by example. 

Since the global curves are represented by a covering 
that evolves according to a dynamic process, we refer 
to them as dynamic global coverings. Although we con- 
centrated on smooth, nonintersecting curves in this arti- 
cle, additional research is in progress to guarantee the 
validity of the results in the general case. It works as 
follows. Since the tangent field indicates curve intersec- 
tions and discontinuities by multiple tangent field entries 
at the same grid coordinate, the potential distribution 
is split into several "layers," one per tangent-field entry, 
in the neighborhood of each of those coordinates. Take, 
for example, the case of two curves intersecting at a 
single point. The tangent-field entries of those curves 
will give rise to two independent layers in the potential 
distribution at this point, and the process described here 
can then be applied at each layer. (The advantage of 
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Fig. 6. (a) Two nearby circles of  different radii lie over a discrete sampling grid (25 × 25). Their projection onto the grid is given by those 
pixels traversed by one of the two circles. (b) The tangent field for the two circles, consisting of the discretized tangent at each trace point. 
Note that the tangents' positions also correspond to the covering elements initial positions. (c) From their initial positons shown in (b), the 

covering elements have migrated into the valleys of the potential distribution, where they attain stability. The parameters of this experiment 
are: o E = 2.75, o B = aE/3 = 0.85, Lp = 3.0; o~t is determined by R = 1.0, K = 1.0, and oJ2 = 1.0; /~ = 2.0, 3' = 2.0. (d) The final covering 
elements' posmons, superimposed over the initial curves. 
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Fig. 7. Global curves of natural images. Top: A fingerprint image. 
Middle: A radiograph of blood vessels in the brain. Bottom: A satellite 
image of logging roads. 

separating the tangent-field entries is, of course, to elim- 
inate inappropriate interactions between the separate 
curve segments.) 

The remaining step from a covering to a global rep- 
resentation is a specification of which covering elements 
belong to the same global curve. (It is usually the case, 
for example, that there are multiple curves within a 
single image.) We accomplish this by a straightforward 
exploitation of topological connectivity: graphically, the 
initial covering elements are all born with a different 
"color"; as two covering elements overlap dynamically, 
they become the same "color." In the end, "color" 
propagates along connected components, and the ele- 
ments belonging to the covering of the same curve are 
all the same color, while the covers corresponding to 
different curves are different colors. 

In conclusion, we believe that dynamic coverings 
have application to a variety of problems that must face 
the transition from local to global representations in 
a parallel, efficient way. For example, an extension to 
surface coverings could work as follows. We know that 
it is possible to extract, from 3D data, an intermediate 
structure that is the 3D equivalent of the tangent field 
(see Sander and Zucker [1990]). This structure mainly 
consists of an estimate of the tangent plane at each (3D) 
trace point. Starting from these planes, a generalization 

(a) (b) 
Fig. R Illustration of the first experiment on a fingerprint image. (a) The initial covering elements, at tangent field entries' positions. (b) Final 
positions of the covering elements; clearly the covering elements have migrated into the valleys, and have overlapped to form a covering. Also 
note that the bifurcation in the center of the image have been recovered correctly, without special treatment. 
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Fig. 9. The second test rs performed on a biomedical image, a cerebral anglogram. (a) The inttial positions of the covering elements, correspond- 
ing to the tangent-field entries. This image ts very noisy, and low contrast. The tangent field was computed under the assumption that all 
vessels were of comparable contrast. (b) The final posxtions of the covering elements. The region where nearby covering elements do not 
overlap completely corresponds to a region where the tangent field was not completely connected. 

of the model presented in this paper would evolve those 
local estimates to fit together into a (smooth) covering 
of the surface. The covering elements would thus be 
overlapping surface patches. 

Notes 

*Research supported by the Natural Sciences and Engineering 
Research Council of Canada and the Air Force Office of Scientific 
Research. 

tFellow, Canadian Institute for Advanced Research. 

~Further computational experiments in which curved (G ') gener- 
ators were used led to final results virtually indistinguishable from 
those shown in this paper. 

2Even if no specific treatment is performed at intersecting points 
and tangent discontinuities, the present algorithm does not necessarily 
behave badly at these locations. For example, the T-shape in the middle 
of the fingerprint image is correctly retrieved (see figure 8). But fur- 
ther analysis would have to be done in order to insure the validity 
of the results in the general case. 

3Note that this also means that the presence of the (w/2)-valleys 
does not depend on the y coordinate. 

4Or, they belong to different parts of the same global curve, i.e., 
there is a chain somewhere between the two tangents. But locally, 
they must be viewed as separated. 
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Appendix 

A.1 Dynamics  o f  the Deformable Curve 

Given the potential functional Ut(v), we can define the 
kinetic energy of the curve. Following classical mechan- 
ics, the kinetic energy functional at each time t is 

1 L Tt(v) = ~ ~lv, I 2 as 

where /~  is the (constant) mass desnity. 

According to the principle of  least action, the motion 
of the deformable curve during the time interval [to, tl] 
is described by the functions x(s, t), y(s, t) for which 
the integral 

f[o' Lt(v) dt 

of the Lagrangian Lt(v) = Tt(v) - Ut(v) is a mini- 
mum. It is also known that any extrema of 

fro' L'(v) dt 

must satisfy the Euler-Lagrange equations. Setting 

1 
f (v)  = ~ (tx[vtl 2 - w,lv, I 2 - co21Vssl 2 - UrAv)) 

the Euler-Lagrange equations are 

O O 02 
fx - Oss (fx,) - ~ (f~,) + ~ (fxs) 

02 02 
+ ~ (L )  + 3 - ~  ( L )  = o 

O O O z 
fy - ~ (L)  - 07 (f,)  + ~ ( fy )  

02 02 
+ ~ (fy.) + ~ (fy) = 0 (A1) 

where,  for example,  fXs, denotes (O/Oxst)f, the deriva-  

tive with respect  to the variable xst. 
Equations (A1) hold for a conservat ive  system. In 

order  to dissipate the kinetic energy produced during 

the motion,  an energy dissipation functional can be  in- 

t roduced,  such that the deformable curves reach stable 
equilibrium positions. Using the Raleigh dissipation 
functional Dr(v) = fa Y[v,[ 2 ds, where 3' is the (con- 
stant) damping density, (A1) becomes 

O O 0 2 0 2 
fx -- ~SS (fxs) -- ~ (fxt) + 0-~ (fXss) + -ff~ (dye) 

32 O 
+ N - N  ( L )  + ~ (ylv, I ~) = o 

3 O 32 02 
fy - ~s (fys) - ~ G )  + ~ Gs)  + ~ (fy,) 

02 3 
+ o-;Nt (fy) + ~ (vlv'l~) = 0 

Letting Fx(V) denote (3/Ox)UrF(V), we calculate 

1 I'x(v) f x -  2 

O 3 
as ( L )  - as (~OlXs) 

02 Oz 
as 2 (fxss) - Os 2 (colxss) 
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0 
0-~ ( f 0  = :,, 

0 2 0 2 

Using identical results forfy, (O/Os)(fy), (OZ/Os2)(fy~s), 

(O/Ot)(fy), (02/Ot2)(fy,,), and (OZ/Os Ot)(fy~), the La- 
grange equations of motion of the deformable curve are 

0 0 2 1 
I.l~Xtt -t- ~/.17f - ~ss (°JlXs) -1- ~ s  2 (('°2xss) = - 2 r x ( v )  

0 0 2 1 
#Ytt + YYt - -~s (¢°lYs) -}- ~ (W2Yss) = - ~ Fy(v) 

(A2) 

A . 2  N u m e r i c a l  So lu t ion  

The solution of system (A2) gives the positions, in space 
and in time, of the curve v during the motion. We now 
address the numerical approximation to system (A2), 
following Terzopoulos [1987b]. 

The space domain [2 is tessellated into N + 1 nodes 
{0, h, 2h, . . . ,  Nh} ,  h = 1/N. Then, the solutions to 
the system are the vectors x t = (x(ih, t))~=0 --- (X{.i)z=0,N 
yt = (y(ih,  t))N=0 t U = (Y,)i=0 at each time t. It is possi- 
ble to express (A2) as the linear system 

t A x  t = gt x A y  t = gy 

Assuming temporarily that the curve is closed, two ini- 
tial configurations (initial conditions) are needed. Solv- 
ing for x t, given a time step At, xt and xtt are approx- 
imated by 

X t -- X t-2At 

xt - 2At 

x t -  2At _ 2xt-  at + x t 

Xtt = At  E 

where backward differences are used, since we can only 
rely on curve positions at previous times. This results 
in the system of N + 1 equations 

1 F (x t-at  t-at  l~ t-at 
- 2 x~ i ' Y i  ) + 2 ~ x i 

~-z 2At 

i = 0, . . . ,  N (A3) 

where (O/Ox)UzF(V) is evaluated at time t - At. 

The right-hand sides of equations (A3) depend only 
on prior configurations, and can be evaluated at each 
time step t, as long as two initial configurations (x t°-at 
and x t°-2"t) are given at the initial time to. Setting 

I 1 ~ : t - A t  t - A t \  
gtx = - 2 l x [Xz  ' Yi  ) 

1 + 2 x i t ,=0 

and writing 

(A3) reduces to 

(cd + K)x t = gt x 

where the only unknown is the stiffness matrix K deter- 
mined by the relations between nodes at each time t. 
Again using finite differences to approximate the spatial 
derivatives (O/as)(oalXs) and (OVOs2)(oazxss) (see section 
A.4), we get 

O (~o,x~) + (oJ2xss) 
- as Us ~ = x,-2h 

[ -2 °~z ( i )  2wz(i - h) w,(i  - h) l 
q- xl_ h h 4 h 4 -h~ 

Vwz(l + h) 
+ x, L---az--- + ~ + - -  + _  

I -2O~z(i + h) 2o~z(i) w~(/) ] 
+ xt+ h h 4 h 4 h 2 ] 

V .,~<i +_ h) 1 
q" Xi+2h L h4 

in the case of close curves (i.e., xt_l 

XSV_I, XSV+ 1 = Xto ' XN+2t = Xtl ).  

Finally, setting 

~o2(i + h) 
a i --  h4 

~2(i - h) oal(i) ¢o1(i - h ) ]  
h 4 2h 2 h 2 J 

, ,_  = 
: XN, X 2 

bi  - 

2~o2(i) 2oo2(i + h) ~o1(i) 
h 4 h 4 h ~ 

~02(i - h) 4w2(i) ~02(i + h) 
c i - h4 + ~ + h 4 

601(i -- h) ~01(i) + + - -  
h 2 h 2 

for i = 1, . . . ,  N, the stiffness matrix K is the penta- 
diagonal symmetric matrix 
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Co bo ao aN-1 bN 
bo Cl bl al aN 
ao bl c2 bz a2 

al b2 c3 b3 a3 

aN-4 bN-3 CN-2 bN-2 aN-2 

aN-1 aN-3 bN-2 CN-1 tiN-1 
bN aN aN-2 bN-1 CN 

Then,  A = od + K is also pentadiagonal  symmetr ic  
and can be  solved very efficiently in O(N) t ime and 
space [Benson and Evans 1977], by factoring A into tri- 

angular  and diagonal  matr ixes .  

A.3 Inserting Position Discontinuities 

Up to now, the deformable  curve was assumed to be 

closed.  We now relax this assumpt ion  by insert ing a 
d iscont inui ty  between node  N + 1 and node  0. 

To insert  a posi t ion discont inui ty  at  s = (i - 1/2)h 
between nodes i - 1 and i, the stiffness matr ix  K h a s  to 

be changed to e l iminate  relat ions be tween nodes  i - 1 
and i. The  equat ions that  relate nodes  i - 1 and i are 
given by the matr ix  rows i - 2, i - 1, i and i + 1, 

and are the fol lowing 

ai-4xi-4 

+ 

a i- 3x~ -3 

+ 

a~- 2xz - 2  

at - 1 X i -  1 

+ bi_3xi_ 3 -}- ci_2xi_ 2 

b t - 2 x i - 1  + a i -2x i  = gi-2 

+ bi_2xi_2 + et_lXi_ 1 

b l - l X i  + al-lXt+l = g~-I 

+ b i -  l x i -  1 + cixi 

+ biXi+l + aixi+ 2 = g, 

+ bix i + Ci+lXi+l 

-1- bi+lXi+2 + ai+lX~+3 = gi+l (A4) 

F r o m  (A4),  we immedia te ly  get bi_ 1 = ai_ 2 = ai_ 1 
= 0, which impl ies  co2(i - 1) = o~2(i) = co1(i - 1) = 0. 
This dictates the 9 entries to change in the marix,  which 
are 

1. ai_ 2 = 0 

2. ai_ 1 = 0 

3. bl_ 2 -- 

4. bi_ 1 = 0 

5. b i - -  

2oj2(i -- 2h) o~1(i - 2h) 
h 4 h 2 

2w2(i + h) ¢o1(i ) 
h 4 h 2 

co2(i - 3h) o~2(i - 2h) 
6. ci_ 2 - -  h4 + h4 

w~(i - 3h) ~o~(i - 2h) + + 
h 2 h 2 

~o2(i - 2h) OJl(i - 2h) 
7. ci_ 1 - h4 + h2 

~o2(i + h) ~o~(i) 
8. c i - h4 + h---- 5-  

4w2(i + h) ~%(i + 2h) 
9. C~+l - h4 + h4 

~o1(i) ~o1(i + h) 
+ - - ~ -  + h 2 

In our  implementa t ion ,  this is used only once,  to 

relax the condi t ion that the curve must  be a closed one. 

A.4 Development of  the Spatial Derivatives 

We indicate here  how the numer ica l  approx imat ion  to 

spatial  der ivat ives  are obtained.  Centered ,  backward  
and forward differences are mixed in order  to obtain 
a symmetr ic  matr ix .  

0 O~l(i)xs(i) - ¢o1(i - h)xs(i - h) 
Os (wlxs) = h 

@ I Xi+h h i -  xi 

+ x i h 2 

F ¢o1(i) 
+ xi+h ! h2 I L 

0 2 
Os---- i (¢OzXss) -~ [oJ2(i + h)xs~(i + h) - 2w2(i)Xss(i ) 

+ ~o2(i - h)xss(i - h)] + h 2 

¢02(i + h) I xi+2h -- h 2 -}- Xi 1 

2¢02(i) Xi+h -- 2Xi + Xz-h 
h 2 h E 

+ ~2( ' h7  h) [xi  - 2Xi-h + Xi-2h l h 2  
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Thus, 

I o~2(i - h) 1 = Xl_2h 

I -2o~2(i) - 2 w2(i - h) ] 
+ Xi-  h -h- ~ 

Io~2(i+h)+4o~2(i)+o~2(i-h)] 
"-I- X i h4 

I -2oJ2(i + h) - 2o~2(i) ] 
+ Xt+h h 4 

+ Xi+2h h 4 

O 0 2 
Os (,~,x~) + - ~  (~x~) 

is numerically approximated by 

I -2~o2(i) 2~o2(i - h) 
"F Xt_ h h4 

w,(i - h) 1 h 4 h 2 

I 0~2(i + h) ~ w2(i - h) 
-I- x i ha + + h4 

~1(i) o~l(i - h) 
+~-h ~-+ h 2 

I --2602(i + h) 2oJ2(i) COl(/ - h) 1 
+ Xi+ h h 4 h 4 h 2 

I~2(i + h) 1 
-I- Xi+2h h4 


