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Abstract. We consider the interactions between edges and intensity dis-
tributions in semi-open image neighborhoods surrounding them. Locally
this amounts to a kind of figure-ground problem, and we analyze the case
of smooth figures occluding arbitrary backgrounds. Techniques from dif-
ferential topology permit a classification into what we call folds (the side
of an edge from a smooth object) and cuts (the arbitrary background).
Intuitively, cuts arise when an arbitrary scene is “cut” from view by an
occluder. The condition takes the form of transversality between an edge
tangent map and a shading flow field, and examples are included.

1 Introduction

On which side of an edge is figure; and on which ground? This classical Gestalt
question is thought to be locally undecidable, and ambiguous globally (Fig.
1(a) ). Even perfect line drawing interpretation is combinatorially difficult (NP-
complete for the simple blocks world) [14], and various heuristics, such as closure
or convexity, have been suggested [8]. Nevertheless, an examination of natural
images suggests that the intensity distribution in the neighborhood of edges does
contain relevant information, and our goal in this paper is to show one basic way
to exploit it.

The intuition is provided in Fig. 1(b). From a viewer’s perspective, edges
arise when the tangent plane to the object “folds” out of sight; this naturally
suggests a type of “figure”, which we show is both natural and commonplace. In
particular, it enjoys a stable pattern of shading (with respect to the edge). But
more importantly, the fold side of the edge “cuts” the background scene, which
implies that the background cannot exhibit this regularity in general; see Fig.
1(c).

Our main contribution in this paper is to develop the difference between folds
and cuts in a technical sense. We employ the techniques of differential topology
to capture qualitative aspects of shape, and propose a specific mechanism for
classifying folds and cuts based on the interaction between edges and the shading
flow field. The result is further applicable to formalizing an earlier classification
of shadow edges [1].
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(a) (b)

Fig. 1. (a) An ambiguous image. The edges lack the information present in (b), a Klein
bottle. The shading illustrates the difference between the “fold”, where the normal
varies smoothly to the edge until it is orthogonal to the viewer, and the “cut”. (¢) An
image with pronounced folds and cuts.

2 Folds and Cuts

Figure-ground relationships are determined by the positions of surfaces in the
image relative to the viewer, so we are specifically interested in edges resulting
from surface geometry and viewing.

Consider an image (I : Z C R* — IR™) of a smooth (C?) surface ¥ : X C
R? —» Y C IR?; here X is the surface parameter space and Y is ‘the world’.
For a given viewing direction V € $? (the unit sphere), the surface is projected
onto the image plane by Il : Y — Z C IR?. For simplicity, we assume that
1T is orthographic projection, although this particular choice is not crucial to
our reasoning. Thus the mapping from the surface domain to the image domain
takes IR? to IR”. See Fig. 2(a).
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Fig. 2. (a) The mappings referred to in the paper, from the coordinates of a surface (X),
to Euclidean space (Y'), to the image domain (Z) we will refer to. The map a is used
later to describe surface curves. We omit the intensity mapping as we are interested
in geometric discontinuities. (b) At an edge point, the edge defines two semi-open
neighborhoods, the characteristics of which can be used to determine figure-ground.

Points in the resulting image are either regular or singular, depending on
whether the Jacobian of the surface to image mapping, d(IIyv o X) is full rank
or not. An important result in differential topology is the Whitney Theorem for
mappings from IR? to IR? [6], which states that such mappings generically have
only two types of singularities, folds and cusps. (By generic we mean that the
singularities persist under perturbations of the mapping.)

Let T,[A] denote the tangent space of the manifold A at the point x.



Definition 1. The FOLD is the singularity locus of the surface to image map-
ping, Iy o X, where X is smooth. In the case of orthographic projection the fold
is the image of those points on the surface whose tangent plane contains the view
direction.

Yrod = {zp € Z| V € Ty, [X(X)], yp = X(p), 2p = IIv(yp)}
We denote the fold generator, i.e. the pre-image of v¢q4 on X, by
Tioa ={yp €Y|2p € X,V € Typ[E(X)]v Yp = X(zp)}

Since the singularities of IIyy o X lead to discontinuities if we take Z as the
domain, they naturally translate into edges in the image corresponding to the
occluding contour and its end points.

Note that due to occlusion and opacity, not all of the singularities present
in a given image mapping will give rise to edges in the image. The edge in an
image corresponding to a fold also corresponds to two curves on the surface: the
fold generator and another curve, the locus of points occluded by the fold. We
call this the fold shadow,

Ttotd—shadow = {Yp € Y| I € RY, y, =y, +tV, yy € Tora}

Now suppose X' is piecewise smooth, i.e. we permit discontinuities of all orders in
XY’. We now have two additional sources of discontinuity in the image mapping:
points where the surface itself is discontinuous,

Fboundary - {yp € Y| = € Sl) Ell_[)l’(l) E(xll +56) 7é E(xp)) Yp = E(mp)}
and points where the surface normal is discontinuous,
Fcrease = {yp € Y| 36 € S17 I%N(mp +66) 7é N(Z’p), Yp = E(mp)}

Fig. 3 summarizes the points we’ve defined.

Definition 2. The CUT is the set of points in the image where the image is
discontinuous due to occlusion, surface discontinuities, or surface normal dis-
continuities.

Yeut = {Zp € Z| Zp € H(Ffold—shadow U Fboundary ) Fcrease)}

Note that vfo1a C Yeut, While their respective pre-images are disjoint, except at
special points such as T-junctions.

If a surface has a pattern on it, such as shading, the geometry of folds gives
rise to a distinct pattern in the image. Identifying the fold structure is naturally
useful as a prerequisite for geometrical analysis [10][15]. It is the contrast of this
structure with that of cuts which is intriguing in the context of figure-ground.
Our contribution develops this as a basis for distinguishing between vy,q and

Yeut-



Fig. 3. Categories of points of a mapping from R? to IR?: (1) a regular point, (2) a
fold point, (3) a cusp, (4) a fold-shadow point, (5) a crease point, (6) a boundary point.
The viewpoint is taken to be at the upper left. From this position the fold (solid line)
and the fold shadow (dashed line) appear aligned.

2.1 Curves and Flows at Folds and Cuts

Consider a surface viewed such that its image has a fold, with a curve on the
surface which runs through the fold. In general, the curve in the image osculates
the fold (Fig. 4).
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Fig.4. A curve, X o o, passing through a point on the fold generator, I'fo1q. (a) The
tangent to the curve T[X o ], lies in the tangent plane to the surface, T, as does the
tangent to the fold generator, TI'fo14. (b) In the image, the tangent plane to the surface
at the fold projects to a line, and so the curve is tangent to the fold.

Let o be a smooth (C?) curve on X; a : U C R — X. If a passes through
point y, = X o a(up) on the surface then T, [¥ o a(U)] C T, [Y(X)]. An
immediate consequence of this for images is that, if we choose V such that
2p = IIv(yp) € Vyoud, then the image of a is tangent to the fold, i.e. T [IT o
Ta(U)] = ey [jota(Y))

There is one specific choice of V for which this does not hold: V € T}, [¥ o
a(U)]. At such a point IT o ¥ o (U) has a cusp and is transverse (non-tangent)
t0 Yfold-

Intuitively, it seems that the image of o should be tangent to yf,q “most of
the time”. Situations in which the image of a is not tangent to s, result from
the “accidental” alignment of the viewer with the curve. The notion of “generic
viewpoint” is often used in computer vision to discount such accidents. We use
the concept of general position, or transversality, from differential topology, to
distinguish between typical and atypical situations.



Definition 3. [7]: Let M be a manifold. Two submanifolds A,B C M are IN
GENERAL POSITION, or TRANSVERSAL, if Vp € AN B, T,[A] + T,[B] = Tp[M].

We call a situation typical if its configuration is transversal, atypical (acci-
dental) otherwise. See Fig. 5. Other attempts to characterize such differences are
probabilistic [5][17].

(a) (b) (©)

Fig. 5. Transversality. (a) A and B do not intersect. Thus they are transversal. (b) A
and B intersect transversally. A small motion of either curve leaves the intersection
intact. (c) A non-transverse intersection. A small motion of either curve transforms (c)
into (a) or (b).

We show that if we view an arbitrary smooth curve, on an arbitrary smooth
surface, from an arbitrary viewpoint, then typically at the point where the curve
crosses the fold in the image, the curve is tangent to the fold. We do so by showing
that in the space of variations, the set of configurations for which this holds is
transversal, while the non-tangent configurations are not transversal.

For the image of « to appear transverse to the fold, we need T}, [Yoa(U)] = V
at some point y, € I'torq. T[X 0 a(U)] traces a curve in $?, possibly with self
intersections. V however is a single point in $*. At T[Yoa(U)] = V we note that
Tv[T[E o a(U)]]U Ty[V] = Ty[T[¥ o a(U)]] U B # Tv[$?], thus this situation
is not transversal. If T[X o a(U)] # V then T[X o a(U)] NV = 0. See Fig. 2.1.
This is our first result:

Result 1 If, in an image of a surface with a curve lying on the surface, the
curve on the surface crosses the fold generator, then the curve in the image will
typically appear tangent to the fold at the corresponding point in the image.

For a family of curves on a surface, the situation is similar: along a fold, the
curves are typically tangent to the fold. However, along the fold the tangents to
the curves vary, and may at some point coincide with the view direction. The
typical situation is that the curves are tangent to the fold, except at isolated
points on the fold, where they are transverse.

Let A: (U,V) C IR*? - X define a family of curves on a surface. As before,
a curve appears transverse to the fold if its tangent is the same as the view
direction: T, [¥ o A(U,V)] = V, and V is a point in $*. Now Ty/[X o A(U, V)]
is a surface in $2. The singularities of such a field are generically folds and



Fig. 6. The tangent field of a, C = T[Zoa(U)], traces a curve in $°. When V intersects
C, the curve a is tangent to the fold in the image. This situation (V1) is not transversal,
and thus only occurs accidentally. The typical situation (V2) is a tangent to the fold
when it crosses.

cusps (again applying the Whitney Theorem), and so V does not intersect the
singular points transversally. However, V will intersect the regular portion of
Ty[X o A(U, V)], and such an intersection is transversal: Ty [Ty [X o A(U,V)]] =
Ty[$°]. The dimensionality of this intersection is zero: and so non-tangency
occurs at isolated points along yf,1¢- The number of such points depends on the
singular stucture of the vector field [16]. This gives us:

Result 2 In an image of a surface with a family of smooth curves on the surface,
the curves crossing the fold generator typically are everywhere tangent to the fold
in the image, except at isolated points.

Similar arguments can be made for more general projective mappings. Du-
four [4] has classified the possible diffeomorphic forms families of curves under
mappings from IR? to IR? can take.

For a discontinuity in the image not due to a fold, the situation is reversed:
for a curve to be tangent to the edge locus, it must have the exact same tangent
as the edge (Fig. 7).
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(a)

Fig. 7. The appearance of a curve intersecting a cut. (a) At a cut, the tangent plane
to the surface does not contain the view direction. As a result there is no degeneracy
in the projection, and so the curve will appear transverse to the cut in the image (b).



For ITy o ¥ o a to be tangent to Yeu, we need T, [IT o X o a(U)] = T%, [Yeut)
which only occurs when T}, [Yoa(U)] = Ty, [I out], or equivalently T, [alpha(U)] =
T,,[Z~oI,u). Consider the space R* x $'. ax T'[a] traces a curve in this space,
as does X! o I x T[X¥~! o I,;]. We would not expect these two curves to

intersect transversally in this space, and indeed: p € a x T[a] N X =1 o Iy X
T[EZ7' o Iy # Tp[IR? x §'].

Result 3 If, in an image of a surface with a curve lying on the surface, the
curve on the surface crosses the cut generator, then the curve in the image will
typically appear transverse to the cut at the corresponding point in the image.

For ITy o X' o A(U,V) to be tangent to Yeys, we need 1., [II o X o A(U, V)] =
T.,[Yeut], which only occurs when Ty [Z o A(U,V)] = Ty, [[t)- In R” x $*,
A x T[A] is a surface, and ="' o I,y x T[Y¥ 7' o I'] is a curve. The intersection
of these two objects is transverse: p € A x T[A]N X o Iy x T[X 7 o Ieyy] =
T,[R? x $']. See Fig. 8.

Result 4 In an image of a surface with a family of smooth curves on the surface,
the curves crossing the cut generator typically are everywhere transverse to the
cut in the image, except at isolated points.

c C [C] (A X T[A]

Fig. 8. A x T[A(U, V)], traces a surface in IR? x §', while, letting C = 7! 0 Iy,
C x T[C] traces a curve. When the two intersect, the curves of A are tangent to the
cut in the image. This situation is transversal, but has dimension zero.

Thus, in an image of a surface with a family of curves on the surface, there
are two situations: (FOLD) the curves are typically tangent to the fold, with
isolated exceptional points; (CUT) the curves are typically transverse to the cut,
with isolated exceptional points.

2.2 The Shading Flow Field at an Edge

Now consider a surface X' under illumination from a point source at infinity in
the direction L. If the surface is Lambertian then the shading at a point p is
s(p) = N - L where N is the normal to the surface at p; this is the standard



model assumed by most shape-from-shading algorithms. We define the shading
flow field to be the unit vector field tangent to the level sets of the shading field:
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The structure of the shading flow field can be used to distinguish between sev-
eral types of edges, e.g. cast shadows and albedo changes. Applying the results
of the previous section, the shading flow field can be used to categorize edge
neighborhoods as fold or cut.

Since X' is smooth (except possibly at I,y ), N varies smoothly, and as a result
so does s. Thus S is the tangent field to a family of smooth curves. Consider S
at an edge point p. If p is a fold point, then in the image S(p) = Tp[Vso1a]- If p
is a cut point, then S(p) # Tp[Veut]- (Fig. 9)
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Fig. 9. The shading flow field at an edge. Near a fold (a) the shading flow field becomes
tangent to the edge (b). At a cut (c), the flow is transverse (d).

Proposition 1. At an edge point p € v in an image we can define two semi-open
neighborhoods, N[DA and Nf, where the surface to image mapping is continuous
in each neighborhood (Fig. 2(b)). We can then classify p as follows:

1. FOLD-FOLD: The shading flow is tangent to v in N;‘ and in Nf, with ex-
ception at isolated points.

2. FOLD-CUT: The shading flow is tangent to v at p in NI’,4 and the shading
flow is transverse to I' at p in Nf, with exception at isolated points.

3. cuT-cUT: The shading flow is transverse to vy at p in N;‘ and in Nf, with

exception at isolated points.

Figs. 10,11, and 12 illustrate the applicability of our categorization.



These categorizations are computable locally, and are intimately related to
figure-ground discrimination. Furthermore, the advantage of introducing the dif-
ferential topological analysis for this problem is that it is readily generalized to
more realistic shading distributions. For example, shading that results from dif-
fuse lighting can be expressed in terms of an aperture function that smoothly
varies over the surface [12], meeting the conditions we described in Section 2,
thus enabling us to make the fold-cut distinction. The same analysis could be
applied to texture or range data. Examples of single curves on surfaces which
can be treated in the same way are occluding contours [13] and cast shadows [9].
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Fig. 10. The Klein bottle (a) and its shading flow field at a fold (b) and a cusp (c).
On the fold side of the edge, the shading flow field is tangent to edge, while on the cut
side it is transverse. In the vicinity of a cusp, the transition is evident as the shading
flow field swings around the cusp point and becomes discontinuous.
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Fig.11. A real scene with folds and cuts. We highlight the region where the rocket
obscures the hatch: the shading flow field clearly indicates the edge to be of the FOLD-
CUT type, suggesting that the rocket is the “figure” side of the edge.
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