IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-5, NO. 3, MAY 1983

267

~ On the Foundations of Relaxation Labeling
Processes |

ROBERT A. HUMMEL, MEMBER, IEEE, AND STEVEN W. ZUCKER, MEMBER, IEEE

Abstract—A large class of problems can be formulated in terms of the
assignment of labels to objects. Frequently, processes are needed which
reduce ambiguity and noise, and select the best label among several
possible choices. Relaxation labeling processes are just such a class of
algorithms. They are based on the parallel use of local constraints
between labels. This paper develops a theory to characterize the goal
of relaxation labeling. The theory is founded on a definition of con-
sistency in labelings, extending the notion of constraint satisfaction.
In certain restricted circumstances, an explicit functional exists that
can be maximized to guide the search for consistent labelings. This
functional is used to derive a new relaxation labeling operator. When
the restrictions are not satisfied, the theory relies on variational cal-
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culus. It is shown that the problem of finding consistent labelings is
equivalent to solving a variational inequality. A procedure nearly
identical to the relaxation operator derived under restricted circum-
stances serves in the more general setting. Further, a local convergence
result is established for this operator. The standard relaxation labeling
formulas are shown to approximate our new operator, which leads us
to conjecture that successful applications of the standard methods are
explainable by the theory developed here. Observations about con-
vergence and generalizations to higher order compatibility relations
are described.

Index Terms—Consistency, constraint satisfaction, cooperative pro-
cesses, labeling, probabilistic relaxation, relaxation labeling.

MOTIVATION

ELAXATION labeling processes are a class of mechanisms
that were originally developed to deal with ambiguity
and noise in vision systems. The general framework, however,
has far broader potential applications and implications. The
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structure of relaxation labeling is motivated by two basic
concerns: 1) the decomposition of a complex computation
into a network of simple “myopic,” or local, computations;
and 2) the requisite use of context in resolving ambiguities.
Given impetus by successes in constraint propagation, par-
ticularly in “blocks-world” vision [16], a broad class of algo-
rithms was introduced and subsequently explored under the
generic heading of relaxation labeling operations [12].

Although many technical details in the design and imple-
mentation of relaxation labeling algorithms have been subject
to ad hoc, or heuristic choices, the general structure has
attracted substantial interest. Our goal in this paper is to
provide a formal foundation. The algorithms are conceptually
parallel, allowing each process to make use of the context to
assist in a labeling decision. Further, there is an appealing
qualitative agreement between the parallel structure of relaxa-
tion algorithms and the distributed appearance of the neural
machinery in the early stages of the human visual system.
There has been a lot of hope and some evidence that relaxa-
tion labeling operations are robust—that the resulting processes
are relatively insensitive to large changes in design parameters.
The lure of relaxation labeling is largely based on a desire to
achieve a globally consistent interpretation by using a fixed
simple control structure together with some common sense
appraisals of local constraints. Since it can be applied to
any problem which can be posed as a labeling problem,
interest in the algorithms has inspired applications in domains
very different from computer vision [4].

When relaxation operations are used to solve systems of
linear equations, or equivalently, discretized partial differ-
ential equations, many of the parameters and choices about
the graph structure are dictated by the problem domain
and the underlying equations. However, sophisticated relaxa-
tion applications left a number of choices to the “computors,”
or project leaders [13]. For example, the use of overrelaxa-
tion and block relaxation methods are “labor-saving devices”
whose utility is demonstrated by practical experience.

Relaxation labeling is a natural extension of relaxation
operations to the class of problems whose solutions involve
symbols rather than functions. Constraints between neigh-
boring labels replace finite difference equations used to
represent the local behavior imposed by differential equations.
The relaxation of labels occurs by manipulating assignment
weights attached to separate labels, as opposed to adjusting
the estimated function value up or down. Indeed, the main
difference between relaxation labeling and relaxation is that
the labels do not necessarily have a natural ordering. One
might be literally comparing apples and oranges, and relaxa-
tion labeling might point to an adjustment from the label
~ of apples to the label of oranges. When using classical relaxa-
tion to find solution functions, the adjustments of the func-
tion values are always either up or down.

Most applications of relaxation labeling, however, have not
been guided by an-underlying differential equation or system
of linear equations. As a result, most of the parameters and
much of the control structure had to be justified by empirical
support. As long as applications are successful, researchers
generally feel little motivation to further justify the approach
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with an analysis of unge’rlying equations. When applications
are less than perfectly successful, it is impossible to ascribe
failure. Is the problem with the application of the algorithm,
or is the problem with the algorithm? Usually, one docu-
ments the pattern of failure, and understands the behavior
in light of the particular design parameters. Without a
reasonable, abstract characterization of what the algorithm is
doing, it is impossible to attribute the cause of failure to an
inadequate theory. In order to assist in the development of
relaxation labeling applications with a predictable domain of
success, a complete characterization of the computation
underlying the algorithm, independent of the application, is
necessary. This paper is intended as a contribution toward
such a characterization. Using this foundation, the design of
relaxation processes need no longer be based entirely on
ad hoc principles and heuristic choices.

In order to accomplish this characterization, the treatment
is necessarily abstract. We also need to cover a lot of material:
to relate discrete relaxation to a description of the usual re-
laxation labeling schemes, to develop a theory of consistency,
and to formalize its relationship to optimization. Several
mathematical results also follow from the formulation.

Other frameworks for the foundations of relaxation labeling
have been attempted. We briefly compare our approach to
some of these alternative viewpoints in Section II. Our frame-
work is derived from variational calculus, i.e., from a generali-
zation of standard optimization techniques, and central to this
framework is an explicit notion of consistency. It is this
notion of consistency that provides the link between discrete
and continuous relaxation labeling, and serves as a foundation
from which relaxation updating formulas can be derived. This .
central notion is developed in Section III. We begin by intro-
ducing the domain of problems to which relaxation labeling
is applicable.

I. INTRODUCTION TO LABELING PROBLEMS

In a labeling problem, one is given:

1) a set of objects;

2) aset of labels for each object;

3) a neighbor relation over the objects; and

4) a constraint relation over labels at pairs (or n-tuples) of
neighboring objects.

Generally speaking, a solution to a labeling problem is an
assignment of labels to each object in a manner which is con-
sistent with respect to the constraint relation 4) above. Notic-
ing that 1) and 3) above define a graph, the problem can
also be described as one of assigning labels to nodes in a
graph. With the graph structure in mind, we will sometimes
refer to objects as nodes.

To make these terms more precise, it is useful to consider
the historically important example of labeling edges in an ideal
image of polyhedral solids [16]. The objects in this example
represent the line segments of a line drawing of the polyhedra.
Each object is a single line segment, and arises from an edge
or portion of an edge of a polyhedron. Two objects, or nodes,
are considered neighbors, and therefore joined by an arc in
the graph structure, if the two line segments represented by
the objects meet at a junction or vertex. The labels indicate
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the interpretation of the physical configuration giving rise
to the edge: edges can be formed by the convex joining of
two surfaces, concave joining, or as an occlusion boundary
with the object to the right or left of the directed edge.
Constraints are provided by lists of physically realizable
edge vertices. For example, three lines representing convex
edges can meet, but three occlusion edges cannot meet at a
single junction. The goal of the labeling process is to asso-
ciate with each node a label that describes the actual correct
interpretation of each corresponding edge. In cases when the
line drawing is ambiguous and could conceivably be used to
represent two or more different polyhedral solids, each node
should be labeled with the set of all labels which can arise
from a correct interpretation.

The determination of which physically realizable scenes are
described by a given line drawing can be viewed as a combina-
torial search. However, by requiring that labels be consistent
locally, i.e., by demanding that the edges form legitimate
vertices, it is usually possible to prune the space that must
be searched. Discrete relaxation labeling is a process which
performs this pruning in a parallel, local, fashion [6] .

To abstract and formalize the situation, consider a graph
with a set of labels attached to each node. We shall denote
the nodes by the variable i, which can take on integer values
between 1 and n (the number of nodes), the set of labels
attached to node i by A;, and the individual label (elements
of A;) by the variable X.! For simplicity, we will assume that
the number of labels at each node is m, independent of i, so
that the variable A takes on integer values from 1 to m. The
constraint A;; is the set of all pairs (A, N') such that label A
at object i is compatible with label A" at object j. Label pairs
in A; X A; which are not in Ay represent pairs of incom-
patible labels at the corresponding objects i and j. Constraints
are only defined over neighboring nodes.

Discrete relaxation is accomplished by means of the label
discarding rule: discard a label A at a node i if there exists a
neighbor j of i such that every label X’ currently assigned to j
is incompatible with A at i, i.e., (A, \') & A;; for all X" assigned
to j. The discrete relaxation labeling process is defined by the
iterative application of the label discarding rule, applied in
parallel at each node, until limiting label sets are obtained.
Note that the label discarding rule prescribes that a label is
retained if at every neighboring node there exists at least one
compatible label, and that this property will hold for all
labels in the limit sets.

A numerical formulation can be used to give an alternative
characterization of labels in the limit sets. Define variables
p;(\) that indicate whether label X is associated with node i,

according to
1 if Ais associated with object i
pi(N) = . . e
0 if Ais not associated with object 7.
Let the variables R;;(, \') represent the constraints by
, 1 if WA)EA,
Ri]'(>\s A ) = . '
0 if AWN)EA,.

1A glossary of symbols is included in Appendix B.
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We can count the numbet of neighbors of an object # which
has labels compatible to a given label A at i by the support
function
Si (M) = > max {R;(\,\)p;(\)}.
jneighboring i A €4
In the limit sets, a label A which is associated with a node i
has support from all neighbors, and thus

S; (V) =8;(\),  forall N EA;.

That is, labels that have been discarded have support which is
strictly less than S;(A), because at least one of the terms in
the sum obtained from a max over ' € A, is zero.

We can define the map which assigns sets of labels to each
object in a manner which is invarient with respect to the label
discarding rule (i.e., a limit set) to be a consistent labeling
with respect to the constraints. We see that if support is
suitably defined, labels in a consistent labeling have maximal
support at each object. This is the notion which serves as the
basis for our subsequent studies of continuous relaxation
labeling processes.

II. CONTINUOUS RELAXATION LABELING PROCESSES

The constraints used in the labeling problem described in
the previous section do not allow for labels to express a pref-
erence or relative dislike for other labels at neighboring nodes.
Instead, pairs of labels are either compatible or completely
incompatible. Continuous relaxation labeling attempts to
allow greater flexibility in the constraints by replacing these
logical assertions about compatibilities with weighted values
representing relative preferences. That is, the constraints are
generalized to real-valued compatibility functions r;;(, )
signifying the relative support for label X at object i that
arises from label A" at object j. This support can be either
positive or negative. (Some formulations require that the
compatibility values satisfy -1 <r;(A\,A')<1, but we will
make no such restriction.) Generally, positive values indi-
cate that labels form a locally consistent pair, whereas a
negative value indicates an implied inconsistency. The mag-
nitude of ry(X, \') is proportional to the strength of the
constraint. When there is no interaction between labels, or

* when i and j are not neighbors, the compatibility r;;(A, \)

is zero.

Having given the compatibilities weights, continuous
relaxation also uses weights for label assignments. We denote
the weight with which label A is assigned to node i by p;(}),
and will require that

osp;(M)<1, all i,A
and

m

Zp,-()\)=1, all i=1,"--,n.

A=1

As an example of these ideas, consider the problem of de-
tecting and labeling lines in digital imagery [17], [18]. Initial
assertions about the presence of lines can be established at.
every pixel location on the basis of the response of a local line
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detector.  However, the responses are usually ambiguous to
some degree: there may be gaps, weak responses, and multiple
responses in different orientations at some pixels. In a relaxa-
tion labeling approach, each pixel would represent a distinct
object, and the label sets are formed from assertions about the
existence of a line at that pixel in a given orientation, or the
nonexistence of a line at that pixel. Initial assignments of the
values p;(\) are accomplished by inspecting the local line
detector responses. Constraints can be obtained from a local
model for good continuation of line elements. Thus, a hori-
zontal line label supports a horizontal line label positioned
(horizontally) next to it. The relaxation process iteratively
updates the weighted label assignments to be more consistent
with neighboring labels, ideally so that the weights designate
a unique label at each node.

A conceptual difficulty remains in attempting to abstract
this situation to the general problem of formulating a con-
sistent labeling. We have not defined the precise meaning of
consistency to replace the notion used for discrete relaxation
labeling. Generally speaking, a consistent labeling is one in
which the constraints are satisfied. But since we have replaced
logical constraints by weighted assertions, a new foundation is
required to describe the structural framework and the precise
meaning of the goal of consistency.

Many such structural frameworks have been attempted.
Some have defined consistency as the stopping points of a
standard relaxation labeling algorithm. This approach is
circular, however, and gives no clue as to the weaknesses in
the standard algorithm.

Many researchers have regarded the label weights as proba-
bilities, and attempted to describe the relaxation labeling
process in terms of a Bayesian analysis [11]. The constraints
are generally interpreted as statistical quantities, related to
conditional probabilities or correlations between, e.g., pairs
of labels. From our perspective, analysis of relaxation labeling
operations within the probabilistic framework has been unsuc-
cessful. Various independence assumptions are required, and
the analysis at best leads to an approximate understanding of
one and only one iteration of the process. Our approach is
very different, and at no time do we interpret the p;(A)’s
as probabilities.

An alternate development, based on optimization theory,
has used as a definition of consistency the norm of the dif-
ference between a vector composed of the current label
weights and an evidence vector obtained from a computation
involving each label’s neighborhood weights [2], [5]. This
measure can be minimized by standard methods (see also [1],
[14]). We believe that this approach is fundamentally the
more appropriate one, although the goal of finding the best
functional to minimize is limiting. In this paper we extend
the optimization viewpoint to treat relaxation from founda-
tions that are more basic than the presupposition of such
functionals.

A related approach develops relaxation labeling entirely
within the constructs of linear programming [7]. In this
theory, the constraints are obtained from arithmetical equiva-
lents to logical constraints, and preferences can be incorpo-
rated only by adding new labels. Consistent labelings form a
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convex subset of assignment space. This viewpoint is different
from our theory, but interesting and not incompatible with
our development.

Each of these different structural frameworks for explaining
the goal of relaxation labeling leads to a variant algorithm. In
the next section, we begin with a formulation of continuous
labelings and compatibilities, and then define consistency.
These notions eventually yield (Section VIII) yet another
relaxation labeling algorithm. However, all of these variants
share similarities with the original algorithm defined in [12]
(see Section XI), which was justified purely by heuristic
arguments. This prototype algorithm is an iterative, parallel
procedure analogous to the label discarding rule used in
discrete relaxation. Specifically, for each object and each
label, one computes

aM=3"3 ) p0N)
j=1A'=1

using the current assignment values p;(A\). Then new assign-
ment values are defined to replace the current values according
to the ad hoc formula

POV + @]
S* ) [1 +4;0)]
I=1

pi(M) =

In light of the foundations developed here, new formulas will
be offered that have important advantages over these original
ones.

ITI. CONSISTENCY

The principal contribution of this paper is a new definition
of a consistent labeling. Rather than defining consistency in
terms of a set of logical constraints, we will require a system
of inequalities. In a sense, then, we are permitting the logical
constraints to be ordered, or weighted, with respect to their
relative importance. This leads to much more flexibility in
defining and analyzing consistent labelings than earlier treat-
ments. Furthermore, our approach allows an analytic, rather
than logical or symbolic, study. For example, in Section IX,
we use techniques from the theory of ordinary differential
equations to prove a local convergence theorem.

Qur definition of consistency is considerably different from
more familiar treatments of consistency in labeling problems
[6]. However, we will attempt to show that our formulation
is a natural one, embodying an intuitive notion of consistency,
and leading to a rich mathematical theory. The term will be
defined for both unambiguous labelings and for weighted
labeling assignments. We begin by giving a formal definition
of these two spaces of labelings.

An unambiguous labeling assignment is a mapping from the
set of objects into the set of all labels, so that each object is
associated with exactly one label. The mapping can be repre-
sented (inefficiently) by a collection of binary digits, p; (),
indicating whether label A is assigned to object i. We set

1 if object i maps to label A

pi(M) ={

0  if object i does not map to A.
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Note that for each object i,
m
> pi(M)=1.
A=1

The variables p;(1),--+,p;(m) can be viewed as com-
posing an m-vector p;, and the concatenation of the vectors
Pi. P2, ,Pn can be viewed as forming an assignment vector
p € IR™. The space of unambiguous labelings is defined by

]K*={;3€1R’"’": p=(Pi, " ,Pn)
pi=(pi(1), -, pi(M)ER™;
pi(AM)=0orl, all i,\

for i=1,"',n}.

Given a vector p in K¥, the corresponding unambiguous
assignment is determined exactly. That is, the set of vectors
in IK* is in one-to-one correspondence with the set of map-
pings from objects to labels.

The extension to weighted labeling assignments can be done
by replacing the condition p;(A\)=0 or 1 by the condition
0<p;(N\)<1 for all i and \. This extension yields the space
of weighted labeling assignments

K':{p_EIan: p—:(p—l".'5ijn);
ﬁl=(pi(1)a..':pi(m))€]Rm;
0<p;(N<1 forall i}

m
Zpi()\)=l for i=1,-'-',n}.

3 piN=1
A=1

We claim that K is simply the convex hull of K*. To see
this, let &, denote the standard unit m-vector with a 1 in the
kth component. Then any labeling assignment p in K can be
expressed by

D = i i i p1() p2(l2) "+ - Pn(ln)
l1=11=1 1n=1

“(81,, €1, "5 €1,

Since each nm-vector (&;,, ", €y,) is in K*, the above sum
can be interpreted as a convex combmatlon of the elements of
K*. Note that the sum over all of the coefficients is 1.

The notion of consistency depends upon constraints between
label assignments. These will be represented by a matrix of
real numbers—the compatibility matrix—the elements of which
can indicate both positive and negative constraints. Compati-
bility between pairs, for example, is denoted by ry(R, ),
representing how label A’ at object j influences label A at
object i. If object j having label N’ lends high support to
object i having label A, then ry;(A, \') should be large and
positive. If the constraint is such that object j having label \'
means that label A at object 7 is highly unlikely, then r;; (A, \)
should be negative. No restrictions are placed on the magni-
tudes of the constraints. If there is no interaction between
(i, ) and (j, \'), then r;;(A\, 1) =0.
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In Section I, we defined the support S;(A) of label at node i
by T max, {ry(\,\)p;(\')}. A maximum operation was
used because more than one label with assignment value
p,()\ )=1 could occur at each node j. Since our labeling
spaces now require 2, p;(A) =1, we replace the max operator
with a sum.

Definition 3.1: Let a matrix of compatibilities and a labeling
assignment (unambiguous or not) be given. We define the
support for label A at object i by the assignment p by

s = H=3 3 ) B ). 0
j=1A'=1

Note that the support value is a linear function of the com-
ponents of the labeling . In this case, the support values
depend on the coefficients {r;;(A, \')} comprising the matrix
of compatibilities, which we assume given along with the
objects and labels as part of the problem definition. In fact,
the support for label X at object i is a weighted average of
the compatibilities of currently assigned labels at neighboring
objects with the label A at node i.

The exact functional dependence of the support values on
the assignment p is in fact unimportant to the theory which
follows. It only matters that support values s;(X; p) depend-
ing on p are given. For example, it is possible to define the
support function in terms of higher order combinations of
object labels. Suppose that r;x(A, X', \") represents the com-
patibility of object i having label \ with the configuration of
label ' at object j and label A" at object k. Then, given the
multidimensional matrix of compatibilities {r;x(R, N AL
we can define the support at object i for label A by the assign-
ment p € K as

s:N=X > r(WN N2 (V) PN
AN KN

More generally, the support values s;(A\) combine to give a
support vector § that is a function of the total § =§(p). The
form of the vector valued function serves as a representation
for the (a priori) knowledge of the relative compatibility of
all configurations of labelings. In the following, s;()\) are the
componénts of any one of these support functions, calculated
for the specified assignment 5. Whenever a formula for s;())
is needed, we find it convenient to use the linear dependence
defined in Definition 3.1. Historically, and because of its
simplicity, the case when § is linear is of special interest, but
the entire theory presented in this paper can be extended to
general nonlinear support functions.

We can now define consistency for unambiguous labelings.

Definition 3.2: Let pE€K* be an unambiguous labeling.
Suppose that Ay, - -*, A, are the labels which are assigned to

objects 1, ,n, respectively, by the labeling p. That is,
p=(\, 8\ " s€6,)- The unambiguous labeling p is
consistent (in K*) providing

s;(A)=s5;(A),  allA, for i=1,---,n. a

It is important to realize that consistency in K* corresponds
to satisfying a system of inequalities:

si(A; Pz (D), 1<A<m
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55(A2; D) =5, (N p), 1<
$n(An; P) Zs,(N; D), 1<

The consistency condition is a reasonable one. At a con-
sistent. unambiguous labeling, the support, at each object, for
the assigned label is the maximum support at that object.
However, also note that consistency is not a pure maximiza-
tion problem (although see Section V for a partial retraction).
If we change the assignment of labels, it may happen that
some or all of the maximum supports at individual objects
may increase. Such a labeling is not judged to be better;
indeed, if the maximum support is no longer attained by
the instantiated -label at one or more of the nodes, then
consistency is spoiled.

Given a set of objects, labels, and support functions, there
may be many consistent labelings. Our notion of consistency
does not place an objective ranking on labelings. The system
of inequalities is simply a criterion for determining whether a
given unambiguous labeling (one of the n'™ elements in IK*)
is consistent. There is an analogy with mathematical pro-
graming, in that a consistent labeling is a feasible point in
K*. However, there is no objective function, IK* is discrete,
and the constraints are nonlinear. We can view consistency
as a “locking-in” property. That is, since the support for a
given label at a given node depends upon the assigned labels
at all other nodes, these assigned labels dictate, through the
compatibilities and support functions, values for the support
which are consistent with the current assignment. Further,
this agreement between the assigned label and the ordering
of the support values among the label set must hold at every
object. ‘ ‘

The condition for consistency in K* can be restated as
follows:

A<m
ASm

i=1,---,n,

m nm
2 i) si(Ap)Y= 30 vi(N) si(\; B),
A=1 A=1
for all unambiguous labelings & € K*.
Note that the condition consists of # inequalities which must
hold simultaneously for every competing labeling & € IK*. We
emphasize that in this formulation, and in the next definition,
the supports are calculated for the given assignment 5, and do
not change as the vector ¥ varies. Accordingly, if p assigns
label A; to object 7, then the left side of this inequality evalu-
ates-to s;(7;), whereas the right-hand side is simply s;(\) for
some A, depending on which label 0 designates to label object i.
Consistency for weighted labeling assignments is defined
analogously.
Definirion 3.3: Let p € K be a weighted labeling assignment.
Then p is consistent (in K) providing
i=1,"",n,

m m

2 i si(A )= 3 vi(N)si(hs p),
A=1 A=1
for all labelings 7 € K.

Once again, consistency in K is hot a maximization prob-
lem, since n quantities, each depending on p, simultaneously
satisfy maxima problems: ;- §; = max #; - §;, fori=1,-- -, n.
Changing p might increase some of the n quantities on the
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left-hand side, but it might decrease some of the others.
One could maximize the sum or product of the n quantities,
but this does not (generally) guarantee that each quantity
is individually maximized.

In Section IX, we will find it useful to consider labelings
which are strictly consistent.

Definition 3.4: Let pE€ K. Then p is strictly consistent
providing

i pi(N)si(\; p) > i v; (N s; (N B), i=1,--+,n,
A=1 A=1

for all labeling assignments € K, 7 #p. O

In Section IX we will see that a strictly consistent labeling
D is necessarily unambiguous, i.e., p € K*. .

The intuitive meaning of consistency is easier to consider
at a strictly consistent labeling. Suppose one were to discard
knowledge of the label assigned to a given object, but retain
such knowledge at all neighboring objects. Then by com-
puting the support values, the original labeling at the object
could be deduced by maxima selection among the support
values. We see that the support values and the labeling are in
complete agreement. This is a very special property, since the
instantiated label contributes to the calculation of the support
values of neighboring object-labels, which must independently
satisfy the same agreement principle.

Note that an unambiguous assignment that is consistent in
K will also be consistent in K*, since K* C K. The converse
is also true.

Proposition 3.5: An unambiguous labeling which is con-
sistent in IK* is also consistent in K.

Proof: This follows because any weighted assignment
U € K can be written as
m
0= vi(l)é
I=1
where ¢, is the standard unit m-vector with a 1 in the kth
coordinate. Since

S B0s)> 35 e s,
A=1

A=1

the same inequality holds true for any convex combination:

m

S P s> S v PITTGETLY
A=l =1

=1

v,-()\)s,-()\), i=1,""*,n

1

Ms

>
]

which proves that p is consistent in K. 0
However, there may be consistent assignments in K which
are ambiguous, and thus not consistent in K*,

IV. OVERVIEW OF RESULTS

Having established the notion of consistency, we wish to
develop algorithms for converting a given labeling into a con-
sistent one. We will pursue two approaches, one based on
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f—VBefn. of Support (3.1) AJ
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[7 pDefn. of Consistency (3.3{4F____.[4§ariational Inequality (Sec. 4)4J

|

l

Solving the variational
inequality

Finding consistent
labelings
Theorem
4.1
Symmetric
compatibilities

Arbitrary
compatibilities

Maximize Average

local consistency

(optimization approach)
(Sec. 5)

Geometrical considerations
(variational calculus approach)
(Sec. 6, 8)

- Gradient ascent
procedure (alg. 7.4)

New relaxation
procedure (alg. 8.2)

L1

TTT

| Projection algorithm (appendix A)

Convergence result (Sec. 9ﬂ

IExtension to arbitrary-order compatibilities (Sec. lO)J

IApproximate equivalence to standard updating (Sec. llﬂ

Fig. 1. Organization of the paper.

optimization theory, and the other founded in finite varia-
tional calculus. Surprisingly, the two methods will lead to the
same algorithm, although the optimization approach applies
only to a restricted class of compatibility matrices.

Fundamental to the analytic study of consistency is Theorem
4.1, which shows that achieving consistency is equivalent to
solving a variational inequality. This inequality is important
because it suggests an algorithm for finding solutions. More-
over, it will be shown that, in some cases, all local maxima
of a certain functional on K solve the variational inequality.
Thus one can find solutions, and hence consistent labelings,
by finding local maxima.

In the following, we assume that consistency is defined
(Definition 3.3) in terms of the linear support function §
(Definition 3.1).

Theorem 4.1: A labeling p € K is consistent if and only if

PEK: X , ri(A N pi(N) () - (V)] <O

B2, 05N
forall ? € K.
Proof: 1f p is consistent, then

> (N si(N) =2 vi(A) si(N)
I\ Y

for any 5€ K. But 5;(\) =Z;x ry(AX) p;(X'). Substi-
tutirig, and summing over i, one obtains the above variational
inequality.

Conversely, if the variational inequality is solved by p, then,
forany b € K, fix k, 1 <k <n, and set

5I=(ﬁ19”.:5k:.”sp_n)'

Then & € K, and so

> ' riL N () [0 - pi(V)]

LA A

=3 5;(0) [0V - pi(V)]
LA
=3 sV (D) - (V] <O.
A

Since k is arbitrary, the above expression implies that p is
consistent. O

Later, in Section VIII, we will derive another equivalent
formulation of consistency. This final formulation is in terms
of the stopping criteria for algorithms that solve the varia-
tional inequality in Theorem 4.1.

The study of consistency, and the derivation of algorithms
for achieving it, will be pursued along two paths. These paths,
as well as the organizaﬁon of the rest of the paper, are illus-
trated in Fig. 1. One path involves showing how the variational
inequality can be solved by an iterative procedure, as indicated
by the right path in the diagram. Since thisisa rather formal
procedure, we shall postpone it to consider the case of sym-
metric compatibility matrices first (the left path through
Fig. 1). This assumption allows us to structure the derivation
more intuitively, in that it allows us to prove that maximizing
a natural measure of the consistency of a labeling also yields
solutions to the variational inequality. This maximization,
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which is posed as a gradient ascent algorithm, leads to a form
of relaxation labeling with a modified updating formula (see
Section XI for a comparison of this new iterative procedure
with the more standard ones). Finally, in Section X, we show
how higher (and lower) order support functions modify the
theory.

V. AVERAGE LocAL CONSISTENCY

The notion of consistency defined in Section III suggests a
measure useful for guiding the updating of a nearly consistent
labeling into a consistent one. Specifically, the n values
{Za p:(N) 5;(N)} should each be large. Thus,

AD)=3 5 BV
i=1 A

should also be large. We will refer to A(p) as the average local
consistency, because each of the terms in the sum represents
the local consistency of p from the viewpoint of an object/
label, weighted by the labeling weight. In the case when s;())
is given by a linear sum of assignment values as in Definition
3.1, we note that

AB) =2 2 ry(LN)pi(V) pi(\).
LA N
In this case, A(P) is proportional to the average of the local
consistency of the labeling p based on the pair of object
labels (i, A) and (7, \'), averaged over all such pairs.

Since the average local consistency A(p) should be large,
it would seem natural to attempt to maximize it. Two prob-
lems deserve immediate comment. First, maximizing a sum
does not necessarily maximize each of the individual terms.
Secondly, the individual components s;(A) depend on p
(which varies during the maximization process), whereas
consistency occurs when 2 v;(A)s;(\; p) is maximized by
v =p. That is, the s;(X) should be fixed during the maxi-
mization. In summary, maximizing A(p) is the same as
maximizing
2 piVsi(x;p)

A

i
which is not the same as maximizing the n quantities

>N si(p),  i=1,0c,n.
A

In fact, since the n quantities are not independent, there is no
such thing as the problem of finding a single p which maxi-
mizes these n values simultaneously. However, finding con-
sistent labelings p is a real problem, corresponding to the
statement that each of the n values

S ou(N)si(\p), i=1,000 0

x

are independently maximized among v € KK when v = p.

Despite these caveats, we still find it interesting to study
average local consistency. This is because of the independent
interest of average local consistency, and because of the fol-
lowing theorem.
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Theorem 5.1: Suppose that the matrix of compatibilities
{r;j(\, \')} is symmetric, i.e.,

rg(WX) =N, N forall 4,7, N
If A(p) attains a local (relative) maximum at p €K, then p
is a consistent labeling.

Proof: Let v €K. Since K is convex, ti+(1 - )pEK
for 0<<t<1. Since A(p) does not increase as one moves
away from p

d
-— Ao +(1 - 1) p)<0.
al,. A -5

Thus grad A(p) - (v - p) <0, by the chain rule. Using

AD) =X Y ry(AM N )2V p;(\), |
a calculation which is given later in this section shows that the

(i, X) component, g;{1), of grad A(P) is given by

q:(N) = Z [riy (A X') + 7N, N pj(N).
i

‘Since the r;;(X, \')’s are symmetric,

q: (M) =2 Z ri(A N pi(N).
FEN

Thus grad A(p) - (v - p) <0 implies that
233 (AW X)) pi(N) (0:() - pi(N) < 0.

LA jA
This holds true for all v € K, so p satisfies the variational
inequality of Theorem 4.1. According to Theorem 4.1, p is
therefore a consistent labeling. O

Theorem 5.1 is surprising in light of all of the caveats about
maximizing average local consistency, and its apparent dis-
similarity with finding consistent labelings. Even so, in the
special case when the compatibility matrix is symmetric,
maximizing 4(p) leads to consistent labeling assignments!

In the general case when the compatibility matrix is not
symmetric, local maxima of A(p) still exist, and may be of
limited interest, but will not be consistent labeling assign-
ments in the sense of Definition 3.3. In Section VIII, we
present an algorithm which generally leads to consistent
labelings regardless of whether the compatibilities are sym-
metric or not. However, if the compatibilities happen to be
symmetric, the algorithm in Section VIII is equivalent to
finding local maxima of average local consistency, which,
according to our previous theorem, are consistent labelings.

The proof of Theorem 5.1 makes clear the need for the
symmetry condition. In general, local maxima of A(p) will
satisfy a variational inequality (as in Theorem 4.1) in which
the r; (A, \') terms are replaced by symmetrical terms
ri(\N) + (N, V)

S (AN ) (N ) (V) - (0:(N) - pi(V)) <O

RUAN
for all s €IK. That is, a local maximum of A(p) will be a
consistent labeling with respect to a symmetrized matrix of
compatibilities. If one begins with a nonsymmetric matrix of
compatibilities, and then locally maximizes A(p), the result
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is the same as if the original matrix had been symmetrized.
Indeed,

A(P) = (NN pi(M) p;(\)
= 3 1@ O0N) +r(N, ) pi (V) B (V).

Clearly, the calculation of A(p) discards any information con-
tained in the nonsymmetry of the compatibility matrix. We
emphasize, however, that in Section VIII we present a tech-
nique for finding consistent labelings that preserves the infor-
mation in the nonsymmetric (skew) part of the compatibility
matrix.

A classical approach to finding local maxima of a smooth
functional A(p) is by means of gradient ascent [9]. The
method prescribes that we should successively move the
current position p by a small step to a new position P, so
that the functional A(p) is increased as much as possible.
The amount of increase in A(p) is related to the directional
derivative of A in the direction of the step, which in turn is
related to the gradient of A at 5. As promised in the proof
of Theorem 5.1, we now compute grad A(p). Sincep € K&
IR™ | the gradient, which we will denote by §, contains nm
components. The (7, A) component is given by

(N = —a—[Z 2 raﬁ(l’l')pa(l)pﬂ(l,)]

op:(N) ol Bl
= [ragls ") 8iadaipp(l’) + 1ap(l,1") Po(l) 8igBar']
a,l Bl

= Z’ riﬁ()\,l')pg(l')*' Z rai(l’ )\)pa(l)
8,1 ) a,l

=3 (M) p;(N) + X (N ) pi(\)
BN N

= ZA ry O N + (N, ) 2 (V).
7s

As noted before, when the compatibilities are symmetric,
this expression simplifies to

q:(N) =2 2 r(L ) (N,

The right-hand side of this formula is a familiar expression.
Comparing with Definition 3.1, we see that g;(A)=2s;()).
Also, the g;(\) components are essentially the same values
that were used as an intermediate updating “direction” in
the earlier treatments of relaxation labeling [12].

Our goal is now to find a consistent labeling nearby a given
initial weighted labeling assignment. By Theorem 5.1, when
the compatibilities are symmetric, this can be accomplished
by locally maximizing A(p). Ordinarily, gradient ascent pro-
ceeds by moving a small step in the direction of the gradient.
In the case of the problem at hand, the labeling assignment
7 must be constrained to lie in K, whereas grad A(p) may
“point out of the surface.” Instead, the assignment p should
be updated by moving a small step in the direction which
maximizes the directional derivative. In Section VII, we
consider the problem of maximizing the directional deriva-
tive, and describe the complete gradient ascent algorithm.
Despite its restricted applicability to the case of symmetric
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P, (A)

1

P (As)

Fig. 2. The space of possible weighted labeling assignments for a single
object with three labels.

compatibilities, the algorithm leads naturally to the more
general case considered in Section VIII. Before presenting
the gradient ascent algorithm, however, we address in Sec-
tion VI the geometric configuration and terminology to be
used when describing updating assignment labelings in K.

VI. GEOMETRIC STRUCTURE OF ASSIGNMENT SPACE

To discuss gradient ascent on K, and to visualize the more
general updating algorithms, it is useful to consider the geo-
metric structure of the weighted labeling space. The labeling
space K was introduced in Section III as the convex hull of
of the unambiguous labeling assignment space IKK*. In order
to visualize the picture of the space K, let us consider a simple
example. Suppose that there are two objects, with three
possible labels for each object. A labeling assignment then
consists of six nonnegative numbers:

P = (P1,P2) = (p1(1),21(2), p1(3), P2 (1), 2(2), P2 (3))
satisfying

3
> p(N=1, i=1,2.
A=1

If we plot the locus of possible subvectors p; in IR3, the
result is shown in Fig. 2. It consists of the portion of an
affine subspace in the positive quadrant, has the shape of a
simplex (a 2-simplex), and might be called “a probability
space.” We hasten to add, however, that the latter associa-
tion with probabilities is particularly unhelpful. In any case,
the vector p =(p,,D,) can be regarded as two points, each
lying in a copy of the space shown in Fig. 2. Thus K, for the
particular example under consideration, can be identified with
the set of all pairs of points in two copies of the triangular
space in Fig. 2.

In more general situations, say with n objects each with m
labels, K is more complicated. Now, the space consists of n
copies of an (m - 1)-simplex each formed from the positive
quadrant portion of a flat (m - 1)-dimensional affine sub-
space lying in R™. Then K can be identified as the set of all
n-tuples of points, each point lying in a copy of the (m - 1)-
dimensional surface. A weighted labeling assignment is a point
in the assignment space K, and K is in turn the convex hull
of the set of unambiguous labeling assignments K*. An un-
ambiguous labeling also lies in K, and can be thought of as



Fig. 3. Astangent vector d at a point j € K.

’

one of the “corners,” or extreme points, of the set. As an
n-tuple of points, each lying in an (m - 1)-simplex, an un-
ambiguous assignment is composed of points which lie at
vertices of their respective surfaces. Of course, any combina-
tion of n vertices gives rise to an unambiguous labeling—it is
not necessary that each point represent the same vertex.
In fact, each simplex has m corners, corresponding to the
m possible labels for that particular object.

In differential geometry, the tangent space to a point of a
multidimensional surface has a well defined meaning in terms
of the set of all directions, in a limiting sense, along which a
curve can move away from the given point. The tangent
space is a surface, which when placed at the given point,
lies “tangent” to the entire surface. For the assignment space
K, the initial surface K and tangent space at any interior
point are flat, and so coincide when the tangent space is
placed at its base point. The tangent space to a point in the
interior of a surface is in fact a vector space. However, at a
point of the boundary of a surface, the set of possible direc-
tions is restricted by the boundary, and one is forced to speak
of the tangent set, which is simply a convex subset of a vector
space.

More precisely, suppose that p is a labeling assignment
in K, and that ¥ is any other assignment in K. The differ-
ence vector d = - p, when placed at p, points toward ¥ (see
Fig. 3). Thus d indicates a direction at p which points toward
. Moreover, d and all positive scalar multiples of d are tan-
gent vectors to K at p. As & roams around K, the set of all
possible tangent directions at p is swept out. The set of all
tangent vectors at p is therefore given by

Ts={d: d=a@ - p), i €K, a>0}.

Note that any tangent vector is composed of n subvectors
d;,so thatd =(d,,- - - ,d,),and

éf G = 55 aw () - p(V)

A=t
=a-(1-1)=0.

When p is a point in the interior of K (i.e., no components
are zero), the vector § may be chosen from a neighborhood
that completely surrounds p in the n copies of the affine
subspace. The result is that the set of tangent vectors at
the interior point p consists of an entire subspace, which is
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Fig. 4. The set of tangent directions at a point § € K that lies on a
boundary.

given by

o _ _ m
Tﬁ':{d:(dh""dn): diEIRm’ Z d"(k)=0}
A=1

(7 interior to K).

Observe that T and K are parallel flat surfaces.

When p lies on a boundary of K, the tangent set is a proper
subset of the above space T , for any interior point p,. That
is, when the assignment p has some zero components, the set
of vectors of the form « - (0 - p) is restricted to

L _ B m

Tp={d=(d,,---,dn): d;ER™, 3 d:(N)=0,
A=t

and d4;(\)=0 if Pi(’\)"‘o}-

Fig. 4 shows a set of tangent directions that can arise from a
boundary point in a single object, three label, assignment
space. The tangent set T changes as p moves from one
boundary edge to another. However, the tangent space T is
always the same when p is an interior point.

VII. MAXIMIZING AVERAGE LocAL CONSISTENCY

Now we can return to the problem of finding relative maxima
of average local consistency using gradient ascent. We reiterate
that maximizing A(p) corresponds to finding a consistent
labeling when the constraints are symmetric (see Section V).
A different analysis must be applied when the constraints are
not symmetric, but leads to essentially the same algorithm
(Section VHI).

The increase in A(7) due to a small step of length « in the
direction & is approximately the directional derivative:

A(p +tai) = grad A(D) " il

. . d
A(p +ait) - A(p) =~ o
t=0

where Hu” = 1. In general, the greatest increase in A(p) can be
expected if a step is taken in the tangent direction & which
maximizes the directional derivative. However, if the direc-
tional derivative is negative or zero for all nonzero tangent
directions, then A(p) is a local maximum and no step should
be taken.

Accordingly, to find a direction of steepest ascent, grad
A(p)-i@ should be maximized among the set of tangent
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T50B,0) N

Fig. 5. Convex combinations of two distinct solutions # and @' lie on
the straight line joining them.

vectors. However, it suffices to consider only those tangent
vectors with Euclidean norm [|iz|| =1 together with & =0.
If unrestricted vectors are included in the maximization, then
the problem has no solution since the vector dot product
grad A(p) @ is scaled by |[@#]|. The problem is equivalent
to maximizing § - among tangent vectors with ||&|| <1,
where g = 4 grad A(p).” Thus the direction of steepest ascent
can be found by solving the following.
Problem 7.1: Find @ € T5 N B,(0) such that

a-g=v-q forall 9€T5NB(0).
Here B,(0) = {s € R™™: ||5||<1}. 0

A solution to Problem 7.1 always exists because the problem
requires one to maximize a continuous functional over a com-
pact set. In many cases, the solution will be unique.

Observation 7.2: If @i solves Problem 7.1, and if &g >0,
then & is the unique solution.

Proof- First, note thata # 0, since & - § # 0. Thus Hu” =1,
since otherwise W =ii/||i|| is a vector in T N B4(0) satisfying
@ -G <Ww - g, incontradiction to & being a solution. Suppose i’
is any other solution. Then#' - g =i -§#0, andso ||i'|| =1
for the same reason that ||u|| = 1. We will show that i =a.

Suppose that & and &' are two distinct solutions. Then
d-g=a -qg=@u+(Q-1)a')-q for all £, 0<t<1 (see
Fig. 5). Since T5 N B,(0) is convex, all the vectors on the
straight line from & to @ are solutions. But by the same argu-
ment given in the previous paragraph, all such solutions must
lie on the surface of the unit ball B,(0). Since ||iz]| =||@'|| =1,
and B,(0) is strictly convex, the line between # and &' must lie
in the interior of the ball, and so cannot contain any solutions.
This contradicts the existence of two distinct solutions. O

The zero vector is always in T N B1(0), so the maximum of
g is nonnegative. When the maximum & - § is positive, then
is the unique solution. When the maximum & - § =0, the
zero vector is among possibly many solutions. In this case, we
will agree that & =0 is the best solution for Problem 7.1. In
the solution method presented in Appendix A, the zero vector
is always the solution returned by the algorithm when more
than one solution is possible.

Conceptually, our method for finding relative maxima of
average local consistency is very simple. Starting at an initial
labeling p, we compute § = %grad A(P), and solve Problem
7.1. If the resulting & is nonzero, we take a small step in the
direction #, and repeat the process. The algorithm terminates
when @ =0. This is the algorithm given below (Algorithm 7.4).
Clearly, however, we need a way to solve Problem 7.1 given a
pEKandage R™.

A simple, finite algorithm for solving Problem 7.1 is pre-
sented in Appendix A. When p is in the interior of the assign-

7
u
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ment space KK, solving Problem 7.1 is a triviality, corresponding
to projecting ¢ onto the tangent space T, and then normal-
izing. Lemma 7.3, which follows, proves that this procedure
works. When p is on a boundary of K, the situation is con-
siderably more complicated. Fortunately, the algorithm given
in Appendix A handles all cases.

Lemma 7.3: If p lies in the interior of K, then the following
algorithm solves Problem 7.1:

1 m

1) setc;= — > qi(), i=1,"-,n.
m =

2) set w;(A)=q;(M)-¢;,  all LA

3) set u;(\) =w;(N)/||w]|, all i,

Here
1
)= [ wiow?] ™

Proof: First observe that ﬁET,; N B,(0), since ||a||=1
and

ﬁ =3 @O~ ||
=1 A=1

=[£ Qi(l)“mC,-]/”WH=O, forall i.
A=1

Since p is in the interior of K, membership in T requires no
further conditions. .

Next observe that w is the projection of § onto T, i.e.,
(G- w)- =0 forall b € T. To see this, we simply calculate

S5 @) - wi()) u(N) =3¢ 3 vi(M)=0
x i A

i
(since 0 €T5). Thusv - g=0v-w forall 9 € Tp. Sinceu €T,
w
@ g=a-w=-—mw=w]|>]w] ]|
i *
for any 5 € T; N B(0) (note that ||5|| < 1). By the Cauchy-
Schwarz inequality, o - W < [[5]| |||, so we have

i-g=v-w=0-q forall 9&€T;NB,(0).
That is, & solves Problem 7.1. _ O
The algorithm in Lemma 7.3 may fail when p is a boundary
point of K, since there is no guarantee that w;(A) >0 when
p;(\) =0. It works out that Problem 7.1 is still solved by per-
forming a projection of § followed by length normalization,
but when p is a boundary point the projection onto T} is a
projection onto a convex set, and not onto a subspace (see
the discussion of tangent sets in Section VI). The algorithm
in Appendix A gives a method for computing this projection.
However, the theory which shows that this method solves
Problem 7.1, even when p is a boundary point, is rather
involved, and is the topic of a companion paper [10].
Combining these results, we obtain the following algorithm
for finding local maxima of A(p).
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Algorithm 7.4:

Initialize:
1) Start with an initial labeling assignment p° € K.
Set £ = 0.

Loop until a stop is executed:

2) Compute §* = % grad A(p%).

3) Use the algorithm in Appendix A, with p =pk gG= g,
to find the solution #* to Problem 7.1.

4) 1f a* =0, stop.

5) Set p**' =p* + hit® | where 0 <h <oy is determined
so that p¥*! € K. The maximum step size oy is some
predetermined small value, and may decrease as k in-
creases to facilitate convergence.

6) Replace kby k +1.

End loop. O

-

In summary, successive iterates are obtained by moving a
small step in the direction of the projection of the gradient ¢
onto the convex set of tangent directions T5. The algorithm
stops when this projection is zero. Note also that the gradient,
calculated in Step 2, yields the formula

aFN) =;>; ri(LN)PF(N)

according to the calculation in Section V (assuming sym-
metric compatibilities).

Proposition 7.5: Suppose P is a stopping point of Algorithm
7.4. Then if the matrix of compatibilities is symmetric, p is
consistent.

Proof: At a stopping point, # =0 solves Problem 7.1.
Thus & - § <O for all tangent vectors v € T5. If we choose any
7€ K, then 7 - p is a tangent vector, and so (v - p) - ¢ <0.
Using the formula for g,

> > AW )pi(N) - @i(N) - pi(M) <O

LA LN

forall vE€K.

Thus, p satisfies the variational inequality of Section IV, and
so by Theorem 4.1, p is consistent in K. O

We now have a method for finding consistent labelings,
given an initial labeling assignment. Whether the resulting
consistent labeling is an improvement over the initial assign-
ment depends upon the extent to which it makes sense to
increase average local consistency.

The property that j yields a local maximum of the average
local consistency is actually stronger than is required by the
definition of consistency. In particular, while all local maxima
of A(p) are at consistent labelings (Theorem 5.1), the gradient
ascent algorithm 7.4 may stop at one of a number of patho-
logical points. This behavior can occur because, for symmetric
compatibilities, consistency is a property that depends on the
first derivatives of A(p), whereas a local maximum must in-
clude second derivatives in its characterization. The patholo-
gies can include local minima, saddle points, and boundary
points with local minima or saddles [see Fig. 6(b) and ©)].
Note that if a relative maximum occurs at a boundary point,
the gradient does not necessarily vanish [Fig. 6(d)].

In practice, the gradient ascent algorithm will generally
find a local maximum of A(p). The algorithm will stop at
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(a)

(b)

©

(d

Iig. 6. Examples of stopping points: (a) local max, (b) local min, (c)
saddle point, (d) local max at the boundary. Note that the gradient
is nonzero at the stopping point in (d).

one of the pathological points only if one of the iterates
happens to land exactly on such a point. However, all of
these points, according to Proposition 7.5, are consistent.

VII. THE RELAXATION LABELING ALGORITHM

Algorithm 7.4 gives us a method of finding consistent
labelings when the matrix of compatibilities is symmetric.
Our entire analysis of average local consistency relies on the
assumption of symmetric compatibilities. The assumption
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is unreasonable. In general, we believe that compatibility
coefficients need not be symmetric.

Consider, for example, the constraints between letters com-
prising words in the English language. The occurrence of a
“g” in a word lends strong support to the labeling of the
following letter as a ‘“‘u,” whereas the occurrence of a “u”
only weakly supports the proposition that the previous letter
isa “q.”

Fortunately, our theory of consistency does not rely on
symmetric compatibilities. = The characterization of con-
sistent labelings in Theorem 4.1 is completely general, valid
whether or not the compatibilities are symmetric. The pur-
pose of this section is to present an algorithm that finds
consistent labelings based on the variational inequality in
Theorem 4.1. Although the point of view is now much iore
general, the resulting algorithm is nearly identical to Algorithm
7.4! Further, both algorithms share some similarities with the
ad hoc methods [12], as we discuss in Section XI. The algo-
rithm presented in this section is based on a theory of con-
sistency, and allows one to interpret what the relaxation
labeling process accomplishes.

We begin by recalling the variational inequality for con-
sistency:

Z Z rij()\, X)p,()\’)(v,(l)-p,(}\))<0 forall €K
LA LN
or, more generally,

> s D) (M) -pi(M) <O forall FEK.

A
In Section VII, we defined g = 1 grad A(p), so that for sym-
metric compatibilities, we had

N =3 rg(W X)) pi(N) =s:(\; B).
IRy

Hereafter, we define g4 by

N =Y ry(LN)p(N)
IR
whether or not the compatibilities are symmetric. That is,
we have set ¢ =§(p). It is important to realize, however, that
g is not in general the gradient of any functional on IK.
Observation 8.1: With G defined as above, the variational
inequality is equivalent to the statement

g-t<0 foral fE€Tj.

That is, a'labeling p is consistent if and only if § points away
from all tangent directions.

Proof: We have § = §, and any tangent vector f at p can be
written as a positive scalar multiple of v - p, where v € K.
The observation follows immediately. O

Observation 8.1 suggests a way of finding a consistent label-
ing. If, at a labeling p, the associated vector § points in the
same direction as some tangent vector, then p is not consistent.
So p should be moved in the direction of that tangent vector.
This process may be repeated until g evaluated at the current
assignment points away from all tangent directions. Then p
will be a consistent labeling.

279

Note that ¢ varies as p moves, but that generally g will
change smoothly and gradually. Thus if § points away from
the surface K at a vertex (and is therefore an unambiguous
consistent labeling, then g will point generally toward the
vertex at nearby assignments in K. Accordingly, if p is near
the unambiguous consistent labeling, moving p in a tangent
direction # that points in the same direction as §, should
cause P to converge to the vertex (see Theorem 9.1). To
present these ideas more formally, we begin by defining the
algorithm.

If §-7>0 for some tangent direction ¢, then the current
assignment p is not consistent, and should be updated. In
which direction should we move p? In analogy with the
gradient ascent algorithm it makes sense to move p in the
direction # that maximizes g *#. This is exactly the vector
@ returned by the algorithm of Appendix A as the solution
to Problem 7.1. This method of updating p is identical to
the gradient ascent method (Algorithm 7.4), applicable for
symmetric compatibilities, except that § has a new conceptual
meaning. Instead of setting § = % grad A(P) in Step 2, we set
g =5§(p). If the gradient ascent method is applied only when
the compatibilities are symmetric, and providing 5( ) is linear,
the formulas are identical.

Accordingly, the relaxation labeling algorithm is given by
the following.

Algorithm 8.2: Replace Step 2 in Algorithm 7.4 with:
2") Compute § =5(p). That is,

g;(N) =3 (NN ) ().
. 5

All other steps remain the same. v O

Compare the following result with Proposition 7.5.

Proposition 8.3: Suppose p is a stopping point of Algorithm
8.2. Then p is consistent. '

Proof: A point p is a stopping point of Algorithm 8.2 if
and only if Z=0 solves Problem 7.1. If #=0, then 7-§ <
0 -G =0 for all tangent vectors & € T5. On the other hand, if
£-4<0 for all f€ T, then & =0 maximizes it - g for it €
T5 N B(0). According to Observation 8.1, 7-4 <0 for all
t€T; is equivalent to the variational inequality, which is in
turn equivalent to p being consistent (Theorem 4.1). (]

At this point, we have introduced a definition of consistency
and presented the relaxation labeling algorithm in such a way
that the stopping points of the algorithm are consistent
labelings. A number of questions remain to be answered.
First, are there any consistent labelings for the relaxation
labeling algorithm to find? Second, assuming that such points
exist, will the algorithm find them? And finally, even if a
relaxation labeling process converges to a consistent labeling,
is the final labeling better than the initial assignment?

The first question is answered affirmatively by Proposition
8.4 below. The second question is far more subtle, and is
substantially answered by a local convergence result in Section
IX. The third question, concerning the significance of the
final result, is not really well defined. If the compatibilities
are symmetric, then the functional A(p) provides a quantita-
tive measure of how much the consistent labeling improves the
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initial, inconsistent one. In the very special case that A(P)is
convex, then the final labeling will be a global maximum.
But if the compatibilities are not symmetric, then no such
functional exists. The only statement that can be made-is that
the labeling is now consistent with respect to the compatibility
relations; it may be substantially different from the initial
labeling.

In general; the space of consistent labelings will be quite
rich. Consider, once again, the labeling of letters comprising
words in the English language. If we are given five letters,
then every five letter word constitutes a consistent labeling.
Thus, if an initial estimate is derived from realistic measure-
ments, there will normally be a consistent labeling nearby
to which the process will converge.

Proposition 8.4: The variational inequality of Theorem 4.1
always has at least one solution. Thus consistent labelings
always exist, for arbitrary compatibility matrices.

Proof: We invoke a version of the Brouwer fixed point
theorem, due to Stampacchia [8]. The result states that if
K C IRY is a compact convex set, and if F(%) is a continuous
function from K into IRY, then there exists an X € K such
that F(%)- (7 - £)<O0 for all 7 €K. For the variational in-
equality of Theorem 4.1, we set

F@N N =-3 ryyf(N) pi(X).

I
Note that F is a continuous (linear, in fact), and that K is a
compact and convex subset of R"™. Thus Stampacchia’s
result applies, and the proof is complete. O

Usually, more than one solution will exist, however, which
is desirable for most relaxation labeling applications. It is only
in highly specialized situations, such as when the matrix of
compatibilities is negative definite, that the solution is unique.

IX. A LocalL CONVERGENCE RESULT

As the step size of the relaxation labeling algorithm 7.4
or 8.2 becomes infinitesimal, these discrete algorithms ap-
proximate dynamical systems [3]. The iterates p* become
a parameterized curve p(f), t € IR, lying in K. The tangent to
the curve at every point is the updating direction &, where & is
the solution to Problem 7.1 at that point. Note that & is the
normalized projection of ¢, which in turn is computed from
the matrix of compatibilities and the current labeling assign-
ment p. Thus the dynamical system obeys a differential
equation

< 5= 4G 0).

Inside the interior of K, @#(p) is a linear function of p. As p
moves from the interior to a boundary point of K, &#(p) may
be discontinuous. For this reason, the dynamical system may
be very complex.

The main mathematical result about relaxation labeling in
this paper concerns the convergehcé of the above dynamical
system. We already know that the dynamical system has a
stopping point at g if and only if p is a consistent labeling
G.e., #(p)=0). Thus, if the dynamical system, which is
approximated by the relaxation labeling algorithm, converges
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to a stopping point, then we have found a consistent labeling.
However, in general, a dynamical system need not converge.
Even though p(¢) always lies in the compact assignment space
K, the process might approach an infinite cycle (an orbit), or,
it might approach an Q-limit set that forms a toroidal shape
or higher dimensional set. We cannot guarantee that orbits
or other examples of nonconvergence will never happen.
However, we claim that by using the proper updating rule
(Appendix A) and reasonable compatibility values, such
behavior is extremely unlikely. Theorem 9.1 argues in justi-
fication of this claim.
Recall that a labeling is strictly consistent if

S piN) s> v si(A),  i=100 e
X x

whenever & # P, 0 € K. As a result, the variational inequality
can be replaced by the statement

> (A, 7\')17,'(7\') w: (V) - pi(N) <O
LGN

forall vEK, 0 #p

for a strictly consistent labeling. In particular, g - # <0 for all
nonzero tangent directions # at a strictly consistent labeling p.
We claim that p € K* (i.e., that p is an unambiguous labeling).
Suppose, for contradiction, that 0O <pi,(A)<1 for some
(i, A,). Then for some other N, 0 <p;,(Np)<1. We con-
sider two tangent directions,

0 i#i,
u,(@,N)=

(0,...,0’1,..}’,1,...’0)

i=i,,
and @, =-u,.
That is, @; has a 1 in the (i,, A,) position and a -1 in the
(i, N) position, and i, is the other way around. These are
valid tangent directions according to the formulation of T
in Section VI. However,§ - it; = -q " i3, S0 they cannot both
be negative. Hence, we have shown that a strictly consistent
labeling 5 must be unambiguous.
Our main result is the following. :
Theorem 9.1: Suppose € € K* is strictly consistent. Then
there exists a neighborhood of & such that if p(t) enters the
neighborhood, then lim; — w p(t)=e. )
In fact, once p(¢) enters the neighborhood, p(r)=é after a
finite length of time.
Proof: We will make use of the Euclidean norm

1/2
Jol=[ £ @oor]
i\
for vectors in R™. Our first tas‘k is to show that if p€ K,

D # &, then there is an assignment p' € K such that

ose D%
|2~ ell

We begin by setting a = ||13 - e'“, and define

» ( 1)_ 1
p=\l-—-)Je+—p.
a o
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If a2
convexity of K in a crucial way!) If a <
ment is needed. Clearly,

> piA)=1, i=1,""",n
A

1, then ' € K since K is convex. (Here we use the
1, a separate argu-

It remains to be shown that 0 <pj(A)<1 when a<1, in
order to conclude that o’ € K. Suppose that e;(A) =0. Then
since a = || - || = |p:(N) - &;(M)| =p; (), we have p;(N)/a <
1. But pi(A) =p;(N)/a, so 0 <p;(A) < 1. Next suppose that
e;(A\)=1. Thena>1- p;(7), and so

p;(x) = (1_ 1/0[) +pl()\)/a = E_:.laLl(x).

satisfies p;(\) = >0. Further, since p;(A) < 1, therefore - 1+
pi(N)<a, and so p,(?\) <1. The conclus1on is that p' € K,
and satisfies the required equation.

Next, according to the variationa] inequality,

IDINTCR SN )(p (M- e(A)<0

LA N
for any pE€ K, p #é. In particular, the left-hand side has a
negative maximum on any compact subset of K not including
€. Thus there exists a § <0 such that

g@)-(p'- &)<p<0,
for all p’ € K such that ||p’ - €| =1.
Here g(p) = q, where
(N =2 ry(AL X)) p(\).
LN

Now suppose that p € K, p # ¢, and p’ is the corresponding
assignment in K satisfying

_/ ~ ﬁ—é
p-é=——mr.
[12-e|
Note that ||p' - €| = 1, so that
i@ (p-2)

<p<0.

gl

Since g(p) is a continuous function, we have ||G(5) - §(¢)|| <
Iﬂ[/2 forpina nelghborhood of &, and thus

D gy 920
for p € K in the neighborhood of €.

If 5 is in the interior of K, then @(p) = w/||w|| where w is
the projection of ¢ onto Tjs. By the projection theorem,
(@-w)-1=0 for any tangent vector f €T. Thus §-(p -
€)=w - (p- €), and so for p in the interior of K sufficiently
neare,p # €,

(p-e _ 1 ,-_,(ﬁ*é)< 8
=l Tl P ool 2wl

u(p)-

Further, since 1 is the projection of g, ||w|| < ||g(5)||. Set

- v= max ||g(p)|
pEIK '
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whence ||w|| <. Since  is negative,

(P-e) . ﬁ
lo-el =

We will next show that the same inequality holds if g is on a
boundary of K, but sufficiently near é.

According to Appendix A, the vector i# at p is obtained
by normalizing a vector w, which in turn is obtained from
G =q(p) by setting some of the components to zero, and
subtracting constants from the other components: w;(A) =
q;(\) - ¢;. The indexes (i, \) of the components which are
set to zero are a subset of the set for which p;(A) = 0. Denote
this subset of indexes by S. Since p is near &, the components
of & are close to the components of p, so we must have ¢;(\) =
0 whenever p;(3)=0. Hence p;(A)- ¢;(A) =0 for (i, ) ES.
Thus,

a(p) - <o.

we(p-8)= Y w2V - (V)
GNES

= 3 @) (i) - &)
GNES

= Z}\ iV - (pi(N) - e;(N))

n
-3¢
i=1
=g (p-&)+0.
Having shown that ¢ (p- €)=w-(f - &) even when p is a
boundary point of K (provided p is near €), the proof of the
inequality

(B-e _ B - _‘
”p~e]| Dneare

proceeds exactly as in the above case when p is interior to K.
We recognize the left hand side of this inequality as the
derivative of Hﬁ(t) - &|| with respect to z. So

3" (20 - e(N)
A=1

u(p)-

IIP() gl|< —~<0
providing p(¢) is sufficiently near &, but not equal to &. Once
p(¢) enters this neighborhood of e, the distance ”p(t) e”
must decrease to zero within a period of time equal to 2y/|B].
When the distance drops to zero, we have p(¢) = ¢, which is a
stopping point of the dynamical system, since € is consistent.
This completes the proof. O
In Theorem 9.1, we used the assumption that € is strictly
consistent in order to prove that it is a local attractor of the
relaxation labeling dynamical system. As a bonus, conver-
gence to € occurs in finite time. One might object that the
rapid convergence is an artifact of the normalization process
in the projection operator. That is, since either # =0 or
“a(ﬁ)“ =1, the dynamical system must always move with
unit speed before convergence. In fact, however, with the
assumption of strict consistency, Theorem 9.1 would still
hold true if the length normalization step were omitted from
the projection algorithm. ' ‘
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If / is consistent, but not strictly consistent, then 7 may
be a local attractor of the dynamical system, or it may be a
saddle point, or even an unstable stopping point. We will
not pursue these topics here.

We consider a local convergence result like Theorem 9.1
to be preferable to a universal convergence result, because
the resulting consistent labeling is related to the initial labeling
assignment. In Theorem 9.1, the hypothesis that a labeling is
close to the consistent assignment requires that the labeling
assignment at every object is close to the designated assign-
ment. It would be desirable to extend Theorem 9.1 to the
case when the initial labeling assignment is completely incor-
rect in a few “noncritical” object labelings.

X. GENERALIZATIONS TO HIGHER ORDER
COMPATIBILITIES
In Section III, we stated that consistency could be deﬁned
in terms of support functions which depend on arbitrary
orders of compatibilities. For example, for third-order com-
patibilities, we need a matrix of values {r;;x(, X', A")}, from
which the support values s; () are calculated:

sV =X 2 rpW N ) pi(N) pe(X).

IR

In general, compatibilities of order & can be used to define the
support components

si(N) = Z Z o Z Tiyigiz, =5 ik Ag, w0, Ag).
i,A2 i3,A3 PR
“Piy(\2)* Pi(Ak)-

Of special note is the case of first order compatibilities. In this
case, the compatibilities are given by a vector {r;(0\)} and the
support s;(\) is independent of p, and given by

si(N) =ri(V).

The analog to the variational inequality, which serves as a
characterization of consistent labelings for higher order com-
patibilities, is given by p€ K such that Z;  s;(N) (v;:(A) -
pi(N))<0 for all s €K. Of course, s;(\) depends on p
according to the appropriate formula.

For second order compatibilities, we showed that a sym-
metry condition leads to the existence of a potential A(7),
satisfying § =@ = 1/2 grad A(p). For compatibilities of first
order, such a function always exists, namely,

A(P)=2_ i) p:(N).

i\

In the general case of kth order, the appropriate function
A(p) will satisfy the condition § =1/k grad A(p) when a
certain symmetry condition is satisfied. In this case the
average local consistency is given by

AD)= Y X > i

i1, A1 @2, A2 i N

“Pi (A1) P ().

'ik()\h T, )\k)
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The symmetry condition, in its most general form, states that

2 Tigay oy vigy Po@) " » Nok))
OECk

ik ()\l,' v s)\k)

for all sets of indexes {(iy, A1), "
group of cyclic permutations on k objects.
order 3 the symmetry condition is

r,-jk(?\, }\', )\") + rki,-()\", A, )\I) + rik,-()\', 7\”, X)
= 3ri]'k(7\’ )\,’ )\”)

forall i, A, j,\", k, and A",

The same algorithms serve to find consistent labelings. For
the general nonsymmetric case, Algorithm 8.2 yields con-
sistent labelings by finding solutions to the analog of the
variational inequality, except that in Step 2', we set q;(\) =
s;(\). Here s;(X) is calculated using 7 and the appropriate
formula for the kth order compatibilities.

As mentioned in Section III, more general support func-
tions are possible by combining supports of different orders.
In full generality, the support vector § is a function 5(p),
where s;(\) is computed from a nonlinear function of cur-
rent assignment values in p. Presumably, s;(A) depends on
the components of p; for objects j near object 7, and is rela-
tively independent of the values of p; for objects distant
from i. The extent to which a particular problem yields
local dependence of the support value is outside the scope
of the abstract analysis given here. Once functions have been
formulated from problem-specific considerations, the formal
theory could allow one to determine whether a lower order
approximation, perhaps in terms of a Taylor series expansion,
is approximately sufficient.

When the compatibilities are first-order and the supports
s;(\) are constant and equal to the given coefficients r;(A),
a consistent labeling can be found immediately, i.e., without
an iterative procedure. A simple argument shows that the
unambiguous labeling € € K* defined by

1 if () >r(N), forall X',
ei(D) ={

0 otherwise

=k'r,-1,..

(ix» M)}, where Cy, is the
For example, for

is always consistent in K. If at some object i, there is no
single label X\ that maximizes r;(}), then e;(A) may be set to
1 for exactly one of them, and the result is a consistent
labeling. In short, finding consistent labelings for first order
compatibilities amounts to local maxima selection (cf. [19]).

It is interesting to note that Ullman’s scheme for motion
correspondence [15] is a problem of just this (unary) form,
but for which the compatibilities are variable as a function of
the underlying data. This more general situation requires an
algorithm, such as gradient ascent, to obtain (local) maxima.

For compatibilities higher than second order, or nonpoly-
nomial compatibilities, the difficulty becomes one of a com-
binatorial growth in the number of required computations.
At this date, most implementations of conceptually similar
relaxation labeling processes have limited the computations
to second-order compatibilities.
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XI. COMPARISONS WITH STANDARD RELAXATION
LABELING UPDATING SCHEMES

Algorithm 8.2 updates weighted labeling assignments by
computing an intermediate vector g, where

(V=22 ry(ALN) pi(N)
j N

and then updating p in the direction defined by the projection
of ¢ onto T5. As we shall show, the original updating formula
introduced in [12] is an approximation to this new one. The
intermediate vector ¢ is identical in the two algorithms. The
principal difference lies in the manner in which g is projected
onto a tangent vector. In Algorithm 8.2, the tangent direc-
tion was obtained by maximizing # - § among it € T5 N B,(0).
Other formulas have been proposed and used for relaxation
labeling. We will concentrate on two standard formulas. The
first was suggested by Rosenfeld ef al. [12], and is given by

pi(N) = Zi()\) [1+q;(N)]

£ nyn ra)]

(It is assumed, when using this formula, that the r;(A, ")
values are sufficiently small that one can be sure that !q,-()\)l <
1.) To consider the behavior of this standard formula, first
assume that p is near the center of the assignment space, so
that very approximately p;(A) = 1/m for all i, A\. The updating
can then be regarded as consisting of two steps. First, the
vector p is changed into an intermediate p, where

(V) =p:(N) [1 +q:(N)]
~pi(N)+q;(N)/m.

Next, p is normalized using a scalar constant for each object
p;. When p is near the center of K, this rescaling process
shifts p in a direction essentially perpendicular to K. That
is, p is reset to approximately the projection of p onto K.
Denoting the orthogonal projection operator by Og, we have

p=p" =~ Ox(p)~ Ox(p +q/m)

by virtue of the continuity of O. Further, assuming that p is
in the interior of K, and 4 is sufficiently small, then

Ok(7 +aIm) =5+ --0r(@)

where O is the orthogonal projection onto the linear sub-
space T;. However, by Lemma 7.3, the solution & to Problem
7.1 is obtained by normalizing O7(G). Combining, we have
that

p=p'~p+ai

for some scalar a. Thus, g is reset to a vector which is approxi-
mately the updated vector that one would obtain by Algorithm
8.2. However, we have assumed that p is near the center of
the assignment space.

When p is close to an edge or corner, the situation is some-
what more complicated. The first step in standard updating
can be viewed as an initial operation changing g, since the
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components of ¢ corresponding to small components of 7 have
minimal effect. That is, the operation p;(A)+p;(N\)gq;(N)
differs from adding g to p (or a small multiple of g to p) in
that the motions in directions perpendicular to the nearby
edges are scaled down. Furthermore, the normalization step
is no longer equivalent to a simple projection. Rather,. it can
be seen that the rescaling is equivalent to modifying the
updating direction back toward the center of the assignment
space.  This further constricts motions perpendicular to
nearby edges, when that motion is outward. Qualitatively,
this behavior of the standard updating formula near the edges
is reminiscent of the projection operator on the same edges.
However, because the formula results in attenuation of motion
perpendicular to an edge, even when that motion is directed
back toward the surface, the standard updating formula will
tend to round corners more smoothly and more slowly.
Further, a zero component can never become nonzero, even
if the evidence supports increasing the value. In summary,
there is strong agreement between the projection operator
and standard updating in the interior of K, but some dif-
ferences are possible near the edges. One of the probable
effects of these differences is to show convergence when the
older updating formula is used.

An alternative updating formula is now common, based on
its relationship to a Bayesian analysis of a single iteration of
relaxation labeling [11]. In this formulation, the compati-
bility coefficients are nonnegative, and the updating formula
is given by

pi()\)'(ﬁ 2”5 rij(\, X)Pj(?\'))

j=1XN'=1

> pill) H(z rg (LN ) By (N )) '
! j A

pi(M) =

Once again, the denominator is a normalization term. The
numerator can be rewritten as

2 [] [1 + Aﬁ W) - 1)p,-(x')]
j=1 '=1

=p:(N) [1 + 33 (LX) - Dpi(N)
i N

+ quadratic terms of p

+ higher order terms] .

We can view this terms as p;(N) [1 +¢;(A)], where g;(\) is a
complicated nonlinear function of the assignment vector p.
When viewed in this fashion, we see that the “product of
sums” updating formula is identical to the earlier updating
formula, except that the formulation of the updating direc-
tion g is more complicated, and disguised. In this sense, the
same comments as before apply to the relationship between
Algorithm 8.2, which uses the projection operator, and more
classical relaxation labeling procedures using other updating
formulas.
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XII. SUMMARY AND CONCLUSIONS

Relaxation labeling processes were introduced and studied as
mechanisms for employing context and constraints in labeling
problems. Over the past few years, a number of researchers
have applied relaxation labeling processes to a variety of dif-
ferent tasks. Some of these applications were more successful
than others. In all cases, there was an intuition that the
compatibility coefficients ought to be doing something useful
to the labeling assignment (at least for the first few iterations),
but there has never been a succinct and reasonable statement
of what useful properties were being enhanced. Lacking a
proper model characterizing the process and its stopping
points, the choice of the coefficient values and the updating
formula are subject only to empirical justification.

In this paper, we have attempted to develop the foundations
of a theory explaining what relaxation labeling accomplishes.
This theory is based on an explicit new definition of con-
sistency, and leads to a relaxation algorithm with an updating
formula which uses a projection operator. It is our hope that
these results will help explain why some applications of
relaxation labeling have been successful and others have been
less impressive, and will assist in a more proper and systematic
design of relaxation labeling processes in the future.

In discrete relaxation, a label is discarded if it is not sup-
ported by the local context of assigned labels. In the limiting
assignment of labels, every retained label is unsupported,
whereas every label that has been discarded is unsupported.
Of course, in discrete relaxation, support is an all-or-nothing
proposition, and is based on a system of logical conditions on
neighboring assignments.

In extending this idea to weighted label assignments, support
values become ordered real numbers, and are expressed by
potentially complicated functions of local weighted assignment
values. An unambiguous labeling is consistent, according to
our definition, if the support for the instantiated label at each
object is greater than or equal to the support for all other
labels at that object. A generalization of this idea leads to a
definition of consistency for weighted labeling assignments.

We showed that the relaxation labeling process defined by
Algorithm 8.2 together with the projection operator specified
in Appendix A stops at consistent labelings.
showed that if one begins sufficiently near a consistent
labeling, the dynamic process will then converge to that
labeling. The sense in which a consistent labeling constitutes
an improvement over an initial labeling assignment relates to
the proximity of the two labelings and the precise meaning
of the terms in the definition of consistency. We also showed
that our relaxation algorithm is approximated by some of
the more standard formulas used for labeling, but offer our
algorithm as an alternative formulation that is based on a
much more mathematically well-founded theory.

When the support values are given by specific polynomial
formulas, and provided certain symmetry properties hold
among the coefficients, the relaxation labeling algorithm given
here is equivalent to gradient ascent using a functional which
we have called average local consistency. We used this optimi-
zation viewpoint to introduce the algorithm, and were in part

We further .
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motivated to study the more general case by earlier work of
others using optimization to assist in labeling problems.
However, the symmetry assumption is restrictive, and, as we
showed by giving up the optimization functional, unnecessary.

Relaxation labeling processes were originally conceived in
terms of cooperation, as a system of local, simple, and sparsely
interacting processes. Its current form is still structured in this
fashion. Now, however, we can interpret the meaning of the
compatibility matrices in terms of the permissible local con-
figurations of consistent labelings.

Much work remains to be done to analyze, extend, and
apply the theory presented in this paper. Practical considera-
tions, such as efficient implementations of the projection
operator, choice of the step size, and normalization methods
need to be addressed. More consideration should be placed
on design criteria for particular relaxation applications, as
well as on the formal relationships between relaxation labeling
and other families of algorithms for solving similar tasks.
The incorporation of logical constraints, and the relative
merits of using more complicated support functions are
intriguing topics for further study. We hope that the answers
to some of these questions are facilitated by the foundations
presented here.

APPENDIX A
UPDATING DIRECTION ALGORITHM

In Algorithm 7.4 and the relaxation labeling Algorithm 8.2,
a solution to Problem 7.1 is required. Problem 7.1, as stated
in the text, amounts to maximizing the vector dot product
q - i among all tangent vectors i € T5 of length less than or
equal to one. Both p and § are given. Thus, we have the
following.

Problem: Find & € T5 N B,(0) such that

#a-G=0v-q forall §€T5NB,0).

If % =0 is a possible solution, then & =0 is the solution that
should be returned.
We recall that

v;(\)>0  whenever p;(A) = 0}

and B,(0) = 6 € R™: ||3]| <1}

The algorithm given below is intended to replace the up-
dating formulas in common use in relaxation labeling pro-
cesses. The projection operator, as given below, has the
advantage of being based on a theory of consistency, and
permits the analytic proof of convergence results.

A complete discussion of the algorithm, as well as a proof
of its correctness, is given in an accompanying paper, “A
Feasible Direction Operator for Relaxation Methods,” which
appears in this issue [10]. Here, we merely give a formal
specification of the algorithm. We state the procedure
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PROCEDURE Projection_Operator(p,q,n,m)

This procedure returns the vector u used to update the weighted
labeling assignment p in a relaxation labeling process.

is an element in the assignment space IK, formed as a vector
of vectors. That is, p = [pl,p2,..,pn], each pi [pil,..,pim],
each pik is a nonnegative real, the sum over k of pik is 1.

is the direction vector, obtained from the support values at the
current labeling assignment p, represented as an n-vector of

P

m-vectors (in the same form
n is the number of objects.
m 1is the number of labels.

u :=

< MmUY nnn vy

In SETL, n and m are not needed in the parameter list.
case, the procedure would begin with the following statements:

as p).

The updating direction u is returned through the procedure name,
and is an n-vector of m-vectors.
Projection_Operator(p,q,n,m)

A typical call will appear as

In that

m :=

#p (1)

$ Defines u as a vector

0. };

$ Indefinite loop terminates when QUIT is executed.

| k NOTIN S] / (m-ns);

e., t is the sum of (i) (k) over k not in S, divided by m—#S

n := #p ;
Begin algorithm:
. u o= [ 1;
LOOP for i in [l{.n] DO
D := { k in [l..m] [ p(i) (k)
S = {};
LOOP DO
ns := %S
t = +/[ q(i) (k) : k in [1l..m]
$ i.
S :={kinbD | q(i)(k) <t }
IF #5 = ns THEN QUIT;

END LOOP DO;

u(i) := [ (IF k in S then 0.

$ ice., u(i) (k) =

END LOOP for i;

S Normaliize the vector u

END IF;

: k in {1..m] ];

0 if k IN 8, = ¢g(i)(k)-t otherwise.

ELSE g(i) (k) - t )

Horm := SQRT( +/[uik**2 : ui = u(i), uik = ui(k)] };
u = (IF Norm = 0. then u :
ELSE [ [uik/Norm : uik = ui(k)] : ui = u{i}] );:

RETURH u;

END PROCEDURE Projection_Operator;

Iig. 7.

in the computer language SETL, a very high level programming
language which has dynamic allocation and includes set and
tuples in its set of primitives [20]. The operators in the SETL
language closely resemble standard mathematical sentences
(see Fig. 7). A more typical mathematical description of the
algorithm is given in the accompanying paper.

The returned vector « will be a solution to the projection
problem. It can also be shown that the potentially infinite
loop (Loor Do in the SETL code) will execute at most m +
1 times for each value of i in [I,---,n]. That is, the pro-
jection operator is a finite iterative algorithm. Although
the SETL specification given above is executable code, in
practical applications the projection algorithm will be imple-
mented in Fortran, assembler, or perhaps even special purpose
hardware.

We have also included the normalization ||i|| =1 (or @ =0)
as part of the algorithm, as required by the statement of the
problem. When 7 is large, however, the calculation of the

norm of the unnormalized vector # may be costly. As men-
tioned after Theorem 9.1, the local convergence result does
not actually require that & be normalized. In fact, the theorem
holds true if any norm measure is used, as long as small steps
are taken (with respect to that norm) in the direction @.
However, as specified by Step 6 of Algorithms 7.4 and 8.2,
the step size must be dynamically adjusted to make sure that
step never forces any component of the current assignment
labeling to become negative. Both the normalization process
and the dynamic step size adjustment are greatly simplified
if applied to individual subvectors i; and p; separately. In this
case, ||@]| =1 for i=1,-,n, and the step length a; is ad-
justed for each i so that o; <h, o; maximized, and p; + oy;
has nonnegative components. However, this changes the
relaxation labeling process, since the direction of updating
may not be parallel to @. Nonetheless, one can still prove
that stopping points are consistent labelings and strictly
consistent labelings are local attractors.
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APPENDIX B
GLOSSARY OF SYMBOLS

Average local consistency of a labeling (intro-
duced in Section V).

The ball of vectors of radius 1 centered at 0
(Section VII).

Kronecker delta, 8;, =0 if i #a, and = 1 if
i = o (Section V).

An unambiguous labeling vector (Section IX).
An m-vector of the form €&, =1[0,--,]1,
-+ ,0], where the 1 appears in the kth com-
ponent (Section HI).

Gradient of 4 evaluated at  (Section V).
Variables to indicate nodes in the labeling
graph, or indexes through sets of nodes. j
typically indicates a neighbor of i (Section
D).

The space of unambiguous labelings (Section
I11).

Convex space of weighted labeling assign-
ments (Section HI).

Variable to either denote a label or to serve
as an index through a set of labels (Section
D). ,

Set of labels attached to node i (Section I).
Constraint relation listing all pairs (A, X")
such that X at 7 is consistent with X’ at j.
Number of labels in A; (Section I).

Number of nodes in G (Section I).

Projection operator, indicating the projec-
tion of a vector ¥ onto a space W (Section
XI).

Weight indicating the strength with which
label N is associated with node i (Section III).
The labeling vector associated with node i:
p—i = [pt(l)a pl(2)7 T 5pt(m)] (Section IH)
The complete labeling assignment vector (or,
for short, labeling) # = [P, P2," "> Pnl
(Section III).

Compatibility matrix over pairs of labels on
pairs of nodes (Section III).

Compatibility matrix over triples of labels on
triples of nodes (Section III).

Indicator function for the numerical repre-
sentation of A (Section I).

m-dimensional Euclidean space (Section III).
Support given by an (unambiguous or ambig-
uous) labeling to label X on node i (Section
).

Support for label X on i from a discrete label-
ing (Section I).

Tangent space at p € K (Section VI).

The tangent direction in which updating
takes place (the projection of ¢) (Section
VII).

An arbitrary weighted labeling assignment in
K (Section III).

#S
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The number of elements in the set S (Ap-
pendix A).

a:=b The value of b replaces the current value of «

(1]
(2]

(3]

[4]

(5]

(6]

[7]
{8]

191
[10]
[11]
{12]

{13]
[14]

{15}
[16]

{17]

(18]

[19]

[20]

(Section 1I).

‘0 Vector dot product of & and & (Section V).

Euclidean norm of @ (Section VII).
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