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Differential Geometry from the
Frenet Point of View:
Boundary Detection, Stereo,
Texture and Color

Steven W. Zucker1

ABSTRACT Frenet frames are a central construction in modern differ-
ential geometry, in which structure is described with respect to an object
of interest rather than with respect to external coordinate systems. The
Cartan moving frame model specifies how these frames adapt when they
are transported along the object. We consider this as a model for inte-
grating local information with information in a neighborhood for curve
detection, stereo, texture, and color. These different objects results in a
series of geometric compatibility constructions useful within a number of
different optimization and probabilistic inference techniques.

1 Introduction

Many problems in computational vision that involve inferences over noisy,
local measurements have been formulated with a geometrical component.
Our goal in this Chapter is to organize a number of such problems accord-
ing to their geometric content, to isolate a common thread between them
that leads to differential geometry; and to introduce ideas from differential
geometry to show how they can structure new approaches to seemingly
unrelated computational vision problems. As described, the techniques can
be used with a variety of different inference techniques, including relax-
ation labeling [12], belief propagation, graph cuts [5], Markov random fields,
quadratic programming, and so on.

To prefigure the type of geometry we shall be concerned with, consider
the problem of boundary detection. Starting with local “edge” operators
that signal intensity differences in a small neighborhood around a point,
the question is whether this intensity event is part of a boundary, or not.
Since many objects have smooth boundaries, and since these boundaries
project into the image as smooth curves, determining whether a putative

1To appear in Mathematical Models of Computer Vision: The Handbook
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boundary point continues through an image neighborhood containing that
point is often key. Mathematically, since only a neighborhood is involved,
the analysis is local. Computationally, since such questions can be asked
around each point in the image, the local analysis must be applicable in a
neighborhood around each point; i.e., it is parallel. Differential geometry
is a mathematical abstraction of boundary completion that satisfies these
requirements. It will lead, as we show, to connections between the local
estimates that are specialized for each problem.

Expanding the above points, recall that the best linear approximation
in an infinitesimal neighborhood to a smooth (boundary) curve is its tan-
gent, and that this tangent approximation can be made around each point.
Therefore the question becomes whether nearby tangents are consistently
part of a single curve. To develop an intuition about what consistent might
mean, recall the classical Gestalt demonstration of perceptual good contin-

uation (Fig. 1). Observe how the “Figure 8” appears to continue across the
crossing point; that is, how orientation is continued along the tangent direc-
tion. Many such demonstrations were developed in the early 20th century
([16]).

Approximately a half century earlier a fundamental series of discoveries
began concerning the differential geometry of curves, and they continued
through the time period dominated by the Gestalt psychology movement.
Frenet (in 1847) and, independently Serret (in 1851), introduced the idea of
adapting a coordinate frame directly to a curve, rather than using extrinsic
coordinates. The remarkable discovery was that changes in (derivatives of)
this frame could be expressed directly in terms of the frame itself. The
result is a beautiful expression of the theory of curves that fits precisely the
requirements for perceptual organization above. The Frenet-Serret theory
was extended by Darboux to surfaces a few decades later, and was then
elaborated to the powerful repère mobile–the moving frame–by Élie Cartan.
Moving frames are not slaves to any coordinate system; rather, they are
adapted to the object under study, be it a curve, a surface (notice the
texture flow in Fig. 1), a metric space or manifold. For computer vision
applications, we shall adapt them to curves (in 2-D and in 3-D), to texture,
and to color. Local approximations of how these frames move will provide
the geometry of connections that can be used with the different inference
techniques listed above.

There are many excellent texts describing this approach to differential
geometry. We recommend [19, 24], which we have followed closely in prepar-
ing this Chapter. For related discussions see also [15]. This research was
done in collaboration with Ohad Ben-Shahar, Lee Iverson, and Gang Li.
I thank Pavel Dimitrov for illustrations and AFOSR, DARPA, NIH, and
ONR for support.
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FIGURE 1. Perceptual organization is related to Gestalt notions of “good con-
tinuation.” Observe how the “Figure 8” appears as a single curve, with smooth
connections across the crossing point, and not as the non-generic arrangement
of the two shapes in the middle. Such notions of orientation good continuation
hold for textures as well; notice how this example appears to continue behind the
occluders.

2 Introduction to Frenet-Serret

From a Newtonian perspective a curve can be thought of as the posi-
tions α(t) = (α1(t), α2(t), α3(t)) in Euclidean 3-space swept out by a
moving point α at parameter (time) t. Provided the coordinate functions
(α1, α2, α3) are differentiable, a curve can be defined as a differentiable map
α : I → E

3, from the open interval I into E
3. For now we shall assume the

curve is simple, i.e., it does not cross itself, so the map is one-to-one and
is an immersion of I into E

3.
The derivative of α gives the velocity or tangent vector of α at t

α
′

(t) = (
dα1

dt
(t),

dα2

dt
(t),

dα3

dt
(t), )α(t)

A curve is regular provided these derivatives are not zero simultaneously.
A reparameterization s = s(t) yields the arc-length (unit speed) param-

eterization in which the length of each tangent vector is 1. We denote this
unit speed curve by β : I → E

3 with ||β
′

(s)|| = 1, s ∈ I.
For simplicity, we work with β for the remainder of this Section. We

are interested in direction and, for non-straight lines, the rate at which
the curve is bending. Intuition is helped by picturing the unit tangents as
vectors in E

3 attached to the points β(s) ∈ E
3, that is, as a vector field

along the curve. Euclidean coordinates for this vector field can again be
differentiated:

α
′′

(t) = (
d2α1

dt2
(t),

d2α2

dt2
(t),

d2α3

dt2
(t), )α(t)

to yield the acceleration, but geometrically the following construction will
be more useful. (i) Denoting the unit tangent T = β

′

, we obtain T
′

= β
′′

,
the curvature vector field. Observe T

′

is orthogonal to T by differentiating
T · T = 1. The direction of the curvature vector is normal to β, and its
length κ(s) = ||T

′

(s)||, s ∈ I is the curvature. (ii) The vector field N = T
′

/κ
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FIGURE 2. The Frenet frame attached to a point on a curve α(s) approximated
to third order.

defines the principal normal, and (iii) the vector field B = T × N is the
binormal vector field of β.

The Frenet frame field on β is the triple (T,N,B) such that T · T =
N ·N = B ·B = 1, all other dot products = 0, and the (i)–(iii) above hold
(Fig. 2).

The remarkable property of this construction is that the derivatives of
the frame can be expressed in terms of the frame itself. For κ > 0 and
introducing the torsion τ we have:





T ′

N ′

B′



 =





0 κ 0
−κ 0 τ
0 −τ 0









T
N
B



 . (1.1)

These are the famous Frenet-Serret formulas. The torsion τ measures how
rapidly the curve is twisting out of the (osculating) plane spanned by
(T,N). It is in this sense that the Frenet frame is adapted to the indi-
vidual curve in a way that captures its essential (differential) geometric
structure.

Basically all of information about the curve is contained in the Frenet-
Serret formulas. The following theorem is fundamental in differential ge-
ometry: Let κ, τ : I → R be continuous (κ(s) > 0, s ∈ I). Then there is a
curve β : I → E

3 with curvature function κ(s) and torsion τ(s). Any two
such curves differ only by a proper Euclidean motion.

Writing the Taylor approximation to the curve in the neighborhood of
β(0), and then substituting the Frenet formulas above and keeping only
the dominant terms, we obtain:

β(s) ≈ β(0) + sβ
′

(0) +
s2

2
β

′′

(0) +
s3

6
sβ

′′′

(0) (1.2)

≈ β(0) + sT0 + κ0
s2

2
N0 + κ0τ0

s3

6
B0. (1.3)
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FIGURE 3. Two ways to think about the local structure of a curve in the plane.
(left) The Frenet Frame is a (tangent, normal) coordinate frame that is adapted
to the local structure of each point along a curve; and (right) the osculating circle
is that circle with the largest contact with the curve among all circles tangent at
that point.

Thus the Frenet approximation shows how the tangent, curvature, and
torsion effect the curve at each point (Fig.2).

3 Co-Circularity in R
2 × S

1

We now focus on curves in the plane E
2. Observe that the first two terms

in the Frenet approximation give the line in which the tangent (or best
linear approximation) lies; the first three terms give the best quadratic
approximation (a parabola) which, expressed in the (x,y) plane, has the
shape y = κ0x

2/2 near β(0).
The quadratic approximation around a point is determined by the curva-

ture at that point, which can be defined in another way. Suppose the curve
is not straight, and choose any three points on β in the neighborhood of
β(0). Taking the limit as the three points approach β(0), the osculating

circle at that point is obtained. This is the unique circle tangent to the
curve at that point such that its center lies on the normal and its radius is
the inverse of the curvature (Fig.3).

The quadratic parabola is approximated by the osculating circle at that
point, an observation introduced for the geometry of co-circularity [20]2.
The basic idea is illustrated in Fig. 4, which shows how local measurements
of the tangent to a curve at an arbitrary point q and at a nearby point in
its neighborhood have different orientations. The geometry of consistency
is given by Frenet: if the frame in the neighborhood of q is transported

2Because of space limitations, references are very limited; we recommend that the
original publications are consulted for additional references.



6 Steven W. Zucker

y

x

curve
True image

The osculating circle approximates
a curve in the neighborhood of a point

Incompatible
tangent

Compatible
tangent

Local tangent

q

FIGURE 4. The geometry of co-circularity for curve detection in images. (left)
Measurements of orientation differ at points along a curve. To determine whether
they are consistent, nearby tangents are transported along the osculating circle
approximation to the curve. If the transported tangents agree they are consistent;
otherwise not. (right) To accomplish this transport operation in images, tangent
position, orientation, and curvature must be discretized. This shows those nearby
tangents that are consistent with a horizontal tangent at the center; that is,
those tangent which, if transported along a (discretized) approximation to the
osculating circle would support the central, horizontal tangent. (The width of
the curve for this example is taken to be 3 pixels.) In the language of relaxation
labeling, this is called an excitatory compatibility field. Note that the osculating
circle and parabola approximations agree to within a fraction of a pixel over this
neighborhood.

along the curve to q, it should match the frame at q. If it does not, it is
inconsistent.

However, the curve must be known before transport can be applied,
but this is what we seek. The solution to this chicken-and-egg problem is
to transport not along the actual curve, but along its approximation. We
earlier showed that curvature dictates this approximation, and it can either
be measured directly (which is what we think happens in neurobiology,
[9]) or estimated by other means ([2]). In any case, once the system is
discretized, the osculating circle and parabolic approximations agree to
within a fraction of a pixel over the neighborhoods involved (Fig. 4); cf. [13].
Such geometric compatibility fields can be used with a number of different
inference techniques, including relaxation labeling [12], belief propagation,
and Bayes [14]. They are related to the forms that arise in elastica [18, 10].
For a different attempt to minimize a functional in curvature, see [23].

3.1 Multiple Orientations and Product Spaces

Thus far in this Chapter we have been concentrating exclusively on simple,
regular curves. But the “figure 8” example in Fig. 1 is not simple, and
it provided the motivation for the geometric approach. Which way should
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the curve be continued at the crossing point? For such examples, although
β(s1) = β(s2) for s1 6= s2 at the crossing point, we have β

′

(s1) 6= β
′

(s2),
which provides a clue. Instead of assuming there is only one unique tangent
per pixel, which is commonplace in computer vision [7], we shall allow more
than one.

To allow multiple tangents at each position, it is natural to attach a
copy of the space of all possible tangents to each position (Fig. 3.1). Since
in principle tangent angle is distributed around the circle and position is
a real number, the resultant space is R

2 × S1. (Note differences from the
classical coordinate representation.) This space is an example of another
fundamental construct in modern differential geometry, the unit tangent

bundle associated with a surface in E
3. Intuitively one might think of a

surface as being covered by (i.e., as a union of) all possible curves on that
surface. More generally, the tangent bundle to a surface is the union of
tangent spaces at all points. If the surface is 2-D, the tangent bundle is
4-D. The geometric compatibility fields can be applied in parallel to all
tangents in this space. (We will be generalizing this construct in the next
few Sections, and will show examples then.)

[26] discusses the relevance of this product construction for the neurobi-
ology of vision.
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FIGURE 5. The need for higher-dimensional spaces than the image arises in
representing non-simple or piecewise-regular curves. Since a priori a curve could
be passing through any pixel at any orientation, it is natural to represent the
(discretized) circle (the space of all unit vectors) S1 at each (discretized) position
(left). When the non-simple “figure 8” is lifted into the resultant space, the lift
is a simple curve in R

2
× S1 (right). The (position, orientation) space, which is

abstract from the image, is sufficent to represent all possible curves in the image.
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FIGURE 6. (a) Cartoon of the stereo relaxation process. A pair of space tangents
associated with the Frenet approximation around the point with tangent ej . Each
of these tangents projects to a (left,right) image tangent pair; compatibility be-
tween the space tangents thus corresponds to compatibility over (left,right) image
tangent pairs. The projected tangents are shown as thick lines. One left image tan-
gent is redrawn in the right image (as a thin line) to illustrate positional disparity
(∆d)and orientation disparity (∆θ). The compatibility between the tangent pair
(i) and the pair (j) is denoted rij . Of course, for the full system the complete
Frenet 2-frames are used to infer the Frenet 3-frame attached to the space curve.
(b) Just as the osculating circle provided a local model for transport for image
curves, a section of a helix provides a local model for a space curve. The (T, N)
components of the Frenet 3-frame define the osculating plane, which rotates as
the frame is moved along the space curve.

4 Stereo: Inferring Frenet 3-Frames from 2-Frames

We now move to 3-space, and consider the problem of inferring the struc-
ture of space curves from projection into two images. Earlier we showed
that a curve in R

3 has a tangent, normal, and binormal Frenet frame asso-
ciated with every regular point along it. To sketch a geometric approach to
stereo compatibility, for simplicity consider only the tangent in this frame
and imagine it as an (infinitly) short line segment. This space tangent
projects into a planar tangent in the left image and a planar tangent in
the right image. Thus, space tangents project to pairs of image tangents.
Now, consider the next point along the space curve; it too has a tangent,
which projects to another pair of image tangents, one in the left image and
one in the right image. Thus, in general, transport of the Frenet 3-frame
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in R
3 from the second point back to the first has a correspondence in the

left-right image pairs of 2-frames. [17] have developed this transport idea
to find corresponding pairs of image tangents such that their image prop-
erties match, as closely as the geometry can be approximated, the actual
space tangents (Fig. 6). They show, in particular, that the stereo projection
operator can be inverted to give the Frenet 3-frame and the curvature, but
not the torsion. This builds on the related work of [8, 22, 21]

Two notions of disparity arise from the above transport model. First,
the standard notion of positional disparity corresponds, through the cam-
era model, to depth. Second, an orientation disparity is introduced if the
space tangent is not in the epipolar plane. In the computational vision lit-
erature, orientation disparity is largely unexplored, but it is widely studied
in visual psychophysics [11]. The geometric viewpoint shows how to use
position and orientation disparities together. Typical reconstructions from
this algorithm are shown in Fig. 7.

(a) (b) (c)

FIGURE 7. 3D reconstruction of a twig pair.(a) Left image (b) Right image;
note in the highlighted region that subtleties in using the ordering constraint
arise. Furthermore, occlusion of branches gives rise to discontinuities in orien-
tation. Representing such discontinuities as multiple tangents facilitates proper
matching. (c) Reconstruction. Depth scale is shown at right (units: meters).

5 Covariant Derivatives, Oriented Textures, and
Color

We now denote orientation in the plane as a unit length tangent vector Ê(~q)
attached to point ~q = (x, y) ∈ R

2. With such tangent vectors attached to
every point of an oriented texture results in a unit length vector field, which
creates a need to generalize the notion of transport: the frame can now be
moved in any direction in the texture, rather than just along the curve.

Assuming good continuation as in the Introduction, a small translation
~V from the point ~q should rotate the vector Ê(~q) a small amount. Following

the Frenet model, the frame {ÊT , ÊN} is placed at the point ~q and the basis

vector ÊT is identified with Ê(~q) – the tangent vector at ~q (Fig. 5). Note
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that ÊT is drawn at an angle θ – the local orientation measured relative
to the x-axis – such that (~q, θ) ∈ R

2 × S1. Nearby tangents are displaced
both in position and orientation according to the covariant derivatives, a
tensor object whose components are essentially the partial derivatives of
the underlying pattern. (Covariant derivatives generalize the earlier deriva-
tives which were taken only along the curve; i.e., with respect to the arc
length parameter s.) For vector fields the covariant derivative is taken in
a direction given by another vector field, and is a vector. Again following
Frenet, we observe that such covariant derivatives, ∇~V

ÊT and ∇~V
ÊN , are

naturally represented as vectors in the basis {ÊT , ÊN} itself:

(

∇~V
ÊT

∇~V
ÊN

)

=

[

w11(~V) w12(~V)

w21(~V) w22(~V)

](

ÊT

ÊN

)

. (1.4)

The coefficients wij(~V) are 1-forms, real-valued functions defined on tan-

gent vectors. They are functions of the displacement direction vector ~V,
and since the basis {ÊT , ÊN} is orthonormal, they are skew-symmetric

wij(~V) = −wji(~V). Thus w11(~V) = w22(~V) = 0 and the system reduces
to:

(

∇~V
ÊT

∇~V
ÊN

)

=

[

0 w12(~V)

−w12(~V) 0

](

ÊT

ÊN

)

. (1.5)

This begins to resemble the Frenet-Serret formulas but is more general; it is
Cartan’s connection equation; w12(~V) is called the connection form. Since

w12(~V) is linear in ~V, it can be represented in terms of {ÊT , ÊN}:

w12(~V) = w12(a ÊT + b ÊN ) = a w12(ÊT ) + b w12(ÊN ) .

The relationship between nearby tangents is thus governed by two scalars
at each point.

κT
4
= w12(ÊT )

κN
4
= w12(ÊN )

(1.6)

We interpret them as tangential (κT ) and normal (κN ) curvatures, since
they represent a directional rate of change of orientation in the tangential
and normal directions, respectively.

The connection equation describes the local behavior of orientation for
the general two dimensional case, but is can be specialized to the one-
dimensional case of curves developed earlier by considering only ∇

ÊT
:

(

∇
ÊT

ÊT

∇
ÊT

ÊN

)

=

[

0 w12(ÊT )

−w12(ÊT ) 0

](

ÊT

ÊN

)

. (1.7)

which, in our earlier notion, becomes:
(

T ′

N ′

)

=

[

0 κ
−κ 0

](

T
N

)

. (1.8)
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FIGURE 8. Displacement (transport) of a Frenet frame within a vector field or an
oriented texture amounts to rotation, but differs for different displacements. The
covariant derivative specifies the frame’s initial rate of rotation for any direction
vector ~V. The four different cases in this figure illustrate how this rotation de-
pends on ~V both quantitatively (i.e,, different magnitudes of rotation) and quali-
tatively (i.e., clockwise, counter-clockwise, or zero rotation). A pure displacement
in the tangential direction (ÊT ) specifies one rotation component (the tangential
curvature) and a pure displacement in the normal direction (ÊN ) specifies the
other (normal curvature) component.

We refer to κT as the tangential curvature and κN as the normal cur-

vature - they represent the rate of change of the dominant orientation of
the texture flow in the tangential and normal directions, respectively. In
the language of frame fields, κT and κN are just the coordinate functions

of ∇θ with respect to {ET , EN}.
In the case of curves, the theory of frames is coupled to ordinary dif-

ferential equations. For vector fields and texture flows, partial differential
equations arise. In particular, since ET and EN are rigidly coupled, and we
have

κT = ∇× ET

κN = ∇ · ET .
(1.9)

If κT and κN were known functions of position q = (x, y), a PDE could
be solved for the rotation angle θ(q). Thus κT and κN are not completely
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independent, and integrability conditions arise. In particular, unless κT

and κN are both equal to zero, they cannot be constant simultaneously
in a neighborhood around q, however small, or else the induced flow is
nonintegrable. [3] show that, given any texture flow {ET , EN}, its curvature
functions κT and κN must satisfy the relationship

∇κT · EN −∇κN · ET = κ2
T + κ2

N

A B C

FIGURE 9. Texture compatability fields are discretizations of a helicoid approx-
imation to a flow lifted into R

2
× S1. Three examples are shown: (A) both

curvatures are zero; this is the analog to a straight line for curves; (B) tangential
curvature is zero and normal curvature is positive; this shows a local portion of a
texture flow in which the integral curves converge to a (singular) point, as lines
converge to a point in the distance; and (C) both the tangential and the nor-
mal curvatures are positive. This is the general case: notice how singular points
(where all orientations are possible) arise. These are indicated as multiple line
segments displayed at the same position.

With osculating circles the natural local model for the geometry of reg-
ular planar curves, and helices the natural model for regular space curves,
[3] show that the natural local model for textures and flows is a helicoid in
R

2 ×S1. This follows intuitively because each streamline or intergral curve
through the flow can be locally approximated by a section of an osculating
circle; this lifts to a section of a helix. The helicoid is a ruled surface built
of these lifts. Local sections of the helicoid can be projected into the image
and discretized to provide connection or compatibility fields for textures
and flows (Fig. 9).

The result of applying this system to overlapping flows is shown in
Fig. 10. Notice in particular how woven textures can be thought of as
multiple threads, or curves, overlapping one another. This emerged from
our discussion of representing multiple orientations at each point. When
overlapping textures are lifted into R

2 × S1 their structure separates just
as the “figure 8” separated at the crossing point. But now, in a discrete
sense, such multiple values are very common.
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FIGURE 10. Examples of texture patterns rich in orientation. (A) A woven tex-
ture with two dominant orientations. This is an extension of (B) two overlapping
textures, which are naturally separated when lifted into R

2
× S1 in (C). The

bottom panels illustrate how a noisy pattern (D) is refined using the geometric
compatibilities in Fig. 9 to (E), thereby enforcing a Gestalt-like good contination
of the flows.

5.1 Hue Flows

While color is normally thought of as a point in (R,G,B)-space, it can also
be represented in the psychophysically motivated HSV color space. Here
a color image is a mapping C : R

2 → S1 × [0, 1]2 (see Fig.11). The hue
component across the image is a mapping H : R

2 → S1 and thus can be
represented as a unit length vector field over the image, which [3] called the
hue field. Displays of the hue field reveal that it may vary greatly, albeit
smoothly, even within perceptually coherent objects (see Fig 12.

Many color image enhancement algorithms are based on a form of anisotropic
diffusion [1, 6], using either a vectorial representation or a manifold repre-
sentation [25]. While diffusion in color space can work within very smooth
regions, it does have the tendency to blur inappropriately.

Hue compatibility fields can be defined analogously to texture compati-
bility fields–see[4]. As expected, concepts of hue curvatures naturally arise,
which express how the hue is flowing from one image position to those in
its neighborhood. Just as with texture flows, a tangential and a normal hue
curvature are required. Since the local behavior of the hue is characterized
(up to Euclidean transformation) by this pair of curvatures, it is natural
to conclude that nearby measurements of hue should relate to each other
based on these curvatures. Or, put differently, measuring a particular cur-
vature pair at a point should induce a field of coherent measurements, i.e.,
a hue function in its neighborhood. Coherence of hue to its spatial context
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FIGURE 11. The HSV color representation in S
1
× [0, 1]2 and the color wheel.

can then be determined by examining how well it fits with those around it.
Again, a helicoidal approximation in (position, hue) space arises.

Such flows are relevant to image denoising; for estimating mutual re-
flectance and color bleeding; for estimating smooth surface variations as
separate from lighting variations (for lightness algorithms); and for sepa-
rating cast shadow boundaries and highlights from other types of intensity
edges.

6 Discussion

In this Chapter we co-developed ideas from modern differential geometry
and problems in computer vision. The differential geometry was based on
Frenet and Serret’s ideas of attaching frames directly to curves, rather than
expressing curve structure in terms of extrinsic coordinate functions. Such
ideas were carried to a remarkable stage by Cartan, whose moving frame
concept is now central in mathematics. The covariant derivative emerges
for differential variation of frames in flows, as the normal derivative was
useful for transporting a frame along a curve.

The moving frame concept provides a natural abstraction for perceptual
organization problems, at least for those that can be defined over short
distances. We considered curve detection in 2D and stereo as the projec-
tion of 3D curves to illustrate the power of this geometric abstraction.
Techniques for integrating orientation disparity with positional disparity
emerged. But the real power was seen for flows, in which textures and hues
were considered.

Although the notion of tangent was introduced as the best linear approx-
imation to a curve, modern definitions abstract via a limiting operation
to an equivalence class of curves. Our discussion attempted to avoid any
unnecessary abstraction, so that all concepts had a direct counterpart in
computer vision terms.
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FIGURE 12. A flow perspective on color images is provided by their hue fields.
These are typically piecewise smooth. Most importantly, hue can vary smoothly
even within perceptually coherent objects. (top) A natural image of an apple
with varying hue. Notice that the everyday expression of “red apple” is limited.
The corresponding hue field changes smoothly across the image of the apple’s
surface. (bottom) A 3D representation of the hue filed, where hue is represented
as height. Identifying the top face with the bottom (since hue is a circle) leads
to the (position, hue) space.

Consideration of non-simple curves motivated an elaboration of the types
of representations normally considered in computer vision from image-
based ones to those that attach a space of possibilities at each point. It is
commonplace to assume boundaries have a well-defined orientation at each
point, but this holds for only a restricted class of curves. Local occlusion
clues involving “T” junctions provide an important example of non-smooth
curves, and our elaborated representation is capable of handling them as
well.

The space of possible frames also has an important representation in
differential geometry, and is related to fibre bundles. We just touched on
such concepts in this Chapter, but fully expect them to be playing a much
richer role in future applications of differential geometry to computational
vision.
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