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Stereo, Shading, and Surfaces:
Curvature Constraints Couple
Neural Computations
This paper discusses computational problems faced by the mammalian visual system,

articulates theoretical models of its solution methods, and outlines the implications for

computer vision applications.
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ABSTRACT | Vision problems are inherently ambiguous: Do

abrupt brightness changes correspond to object boundaries?

Are smooth intensity changes due to shading or material

properties? For stereo: Which point in the left image corre-

sponds to which point in the right one? What is the role of color

in visual information processing? To answer these (seemingly

different) questions we develop an analogy between the role of

orientation in organizing visual cortex and tangents in differ-

ential geometry. Machine learning experiments suggest using

geometry as a surrogate for high-order statistical interactions.

The cortical columnar architecture becomes a bundle structure

in geometry. Connection forms within these bundles suggest

answers to the above questions, and curvatures emerge in key

roles. More generally, our path through these questions

suggests an overall strategy for solving the inverse problems

of vision: decompose the global problems into networks of

smaller ones and then seek constraints from these coupled

problems to reduce ambiguity. Neural computations thus

amount to satisfying constraints rather than seeking uniform

approximations. Even when no global formulation exists one

may be able to find localized structures on which ambiguity is

minimal; these can then anchor an overall approximation.

KEYWORDS | Boundary detection; computational vision; con-

straint satisfaction; neural computation; shading analysis;

stereo

I . INTRODUCTION

Cortex consists of billions of neurons and trillions of

synapses, all in support of various neural computations.

Key to understanding these computations is building a

proper abstraction. While one routinely thinks of neurons

as decision-making units, it is most important to under-

stand which questions they are attempting to answer.

Knowing the answers could suggest insights from neuro-

science to guide engineering theories and applications; at
the same time, practical considerations can provide insight

into neural computations.

Our focus is on problems of early and intermediate-

level vision. These problems are difficult for applications

(and for brains) because they are inverse problems [94].

Computer graphics, by contrast, is a forward problem:

shading can be calculated directly given models of

surfaces, viewing geometry, and lighting [24]. Going the
other way there are (in general) many different surfaces

and lighting combinations that could account for a given

shading distribution. Structuring these inverse choices is

what makes vision an inference problem.

Big data and machine learning define, to some extent,

our intellectual environment. It is already the case that

solutions to certain classification problems, such as

reading zip codes, can be learned automatically [70]. But
how far can one go: is it possible to learn how to infer

surfaces from shading in an unconstrained, unsupervised

fashion? We maintain that there are deep insights into
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these problems that are geometric in nature and that could
provide novel constraint. And as we will show, the

geometry is also reflected in neurobiology. The lesson, in

short, is that geometry serves (at least) as a surrogate for

higher order statistical analysis. A concrete example in

edge statistics supports this claim, and a surprising result

about the role of color reinforces its usefulness.

A. From Neural Connections to Distributed Models
The selectivity of individual neurons to patterns of light

has strongly influenced ideas about neural computation in

the visual system (Fig. 1). Receptive fields, or the pattern of

light to which a neuron responds, can be related to the
statistics of natural images by independent component

analysis [7] and sparse coding [86]. At a larger scale there

are about 50 anatomically distinct visual areas [31], each of

which consists of elaborated networks of neurons. For

nearly every feedforward connection from neurons in one

area to the next, there is a feedback projection from the

higher area.

Since receptive fields can be built up from earlier
projections, they have been taken as a proxy for feedforward

connections between neurons in different areas. Repeated

across several ‘‘hidden layers’’ we obtain a model for cortical

architecture (Fig. 2, middle row, right). Such deep network

models began with the neocognitron [34]; modern exten-

sions [108] have different nonlinearities imposed between

the feedforward convolutions. Passing the output layer into a

classifier leads to recognition systems [30], [70]. Popular
algorithms exist for both supervised and unsupervised

learning of network parameters [41].

Fig. 1. Function of an individual neuron (a) in visual cortex is classically summarized by its receptive field (b). Shown is a Gabor filter tuned

to the vertical orientation. (c) Connections between such neurons define networks and (d) different abstractions of these networks lead

to different theoretical ideas. One focus of this paper is to understand an abstraction based on geometric principles.

Fig. 2. Levels of explanation are grounded in neurobiology

and include both the inference engine and the constraints on which it

operates. At the inference engine level we show (right) a deep

convolutional network, with many ‘‘hidden’’ layers that is, in effect,

equivalent to a specialized computation on (middle) directed acyclic

graphs; such graphs are a special case of general graphical models

(left). At the constraint level, which provides the ‘‘edges’’ in the

graphical models, are (left) statistics derived from the world and those

derived from models (right). We will concentrate on geometric models

in this paper.
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But there is much more to cortical anatomy. There are

several interconnected pathways in the ventral stream

implicated in object representation [61], and neurons

within each of the areas participate in elaborate networks

involving both short-range and long-range connections.
Fig. 2 (bottom) shows a cartoon elaboration of this intraarea

network, the output of which projects to the next area. The

recurrent backprojection is shown arriving in the superficial

(top) layers. Deep convolutional networks are essentially

directed acyclic graphs [Fig. 2 (middle)]; more realistic

functionality requires a graph with cycles [Fig. 2 (middle,

left)]. How might this more elaborate function be described

computationally? Again, there are many possibilities.
In some deep networks, the feedforward projections

specify activity, and the feedback modifies synaptic weights by

error signal backpropagation. Richer classes of graphical

models [60] have been suggested for computational reasons.

Hierarchical Bayesian networks [71] postulate inferences

supported by a combination of feedforward observations and

feedback priors. For a problem such as shape from shading, for

example, feedforward data about image intensity might be
interpreted with regard to feedback involving surface and light

source priors. (We discuss this further in Section III-B.) In

computer vision terms, such inverse problems are often formu-

lated as finding a (latent) parameter vector that best describes

given (e.g., image) data according to a model [122]. The model

is realized as an energy function, and the model parameters are

learned from training data. A practical consideration is that

there are fast algorithms to guide the search for interpretation

parameters, but only for certain graphs [16], [116].

Bayesian networks [14] and Markov random fields
(MRFs) are related realizations [1], [76], [115]. A popular

form resembles statistical mechanics [44] and motivates a

connection to regularization terms in MRFs [95]. Boltzman

machines [42] exploit the underlying probability distribu-

tion for sampling.

In a simple sense, neurons can be viewed as decision

makers, firing an action potential when they receive suffi-

cient support (ionic current) from other neurons projecting
to them. Considering the set of ‘‘neurons’’ as nodes in a graph,

we obtain a very simple form for such networks. Let the edges

specify which neurons are connected in the graph and, leaving

technical considerations aside, we obtain a natural quadratic

‘‘energy’’ form relevant to Hopfield networks and (symmetric)

relaxation labeling [50]. In symbols, if pi denotes the

probability that neuron i fires and ci;j denotes the synaptic

coupling from neuron j to i, then summing over all interacting
neighbors for each node in the graph yields

Energy ¼
X

i;j

pici;jpj: (1)

Fig. 3. From image statistics to constraints. Edges in natural images (a) can be represented as points in (position, orientation) space (b).

The joint probability of multiple edges co-occurring in a large corpus of image patches can be estimated (c). Since this probability

‘‘matrix’’ is positive semidefinite, its eigenvectors can provide an embedding (d) in which those edge triples likely to co-occur

appear as clusters [see (3)]. Mapping these clusters back to a position representation reveals the geometry of curves (e). Figure

after [69].
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Constrained gradient ascent provides an approach to

determine which neurons should be active to maximize

energy from an initial distribution pi. More generally,

when neurons are viewed as coupled decision makers, a
more subtle connection to polymatrix games arises [80],

[81]; in this case, the optimal payoff is given by the Nash

equilibrium, and the constraints no longer need to be

symmetric. For general MRFs, the constraints ci;j are

embedded in clique potentials. Constraints are thus the

‘‘guts’’ of the models: there are several different types of

machinesVinference enginesVwithin which to use them.

The question, then, is how to find these constraints.

B. From Image Statistics to Abstract Constraints
Statistical regularities underlie many models of

machine and biological learning. For example, objects in
our visual world are coherent, and this coherence is

reflected in the probabilities that edge elements (or image

intensities or other features) co-occur [111]. The famous

Hebb synapse [18] is often summarized by the phrase: cells
that fire together wire together. Since many cells respond to

edges, it is natural to start with those statistics (Fig. 3).

Let Ei denote an edge at position, orientation

ri ¼ ðxi; yi; �iÞ. Viewing this as a f0; 1g-valued random
variable E i, the joint distribution PðEi; E jÞ is well studied

[4], [27], [35], [62]. It is convenient to view this

distribution around a horizontal edge at the center of an

image patch (Fig. 4). Such ‘‘association field’’ [32] models

of continuation are prominent in psychophysical research

[26], [39]. While pairwise information is useful, higher

order structure could be even more useful. Thus far, such

higher order information has been developed through
models tied to applications [36], [54]. As we now show,

following [69], it is possible to infer higher order statistical

information directly.

The association field is a representation of pairwise

information: it displays roughly the probability that edge Ei

is present given a horizontal edge at the center. Now

consider triples of edges. These could derive from edge

pairs that are equally likely to occur but not likely to occur

together [Fig. 4(c) and (d)]; or from pairs that are likely to

occur together. Statistically, such third-order questions are

complex to answer (but see [119]).
Denote positive edge triple co-occurances by PðEi ¼ 1;

E j ¼ 1; Ek ¼ 1Þ ¼ Pði; j; kÞ. This matrix can be estimated

from natural image edge patches by finding a strong edge,

moving it to the center of the patch (20 � 20 pixels; ten

orientations/position) and then rotating so that it is

horizontal

Pði; jj0Þ ¼ PðEi ¼ 1; E j ¼ 1jE0 ¼ 1Þ (2)

where PðE0Þ ¼ 1 denotes a horizontal edge at the origin.

(Edges are isolated by enforcing local nonmaxima
suppression and inhibiting lateral spread.) Since Pði; jj0Þ
is positive semidefinite, edge triples can be visualized by

forming an embedding based on the eigenvectors that

diagonalize the matrix [38]

Pði; jj0Þ ¼
Xn

l¼1

�l�lðiÞ�lðjÞ

where the eigenvectors �l allow a spectral embedding

� : ri ¼
xi

yi

�i

0
@

1
A! Rn:

� maps edges to points in an embedded space where

squared distance is equal to relative probability

�ðriÞ ¼
ffiffiffiffiffi
�1

p
�1ðiÞ;

ffiffiffiffiffi
�2

p
�2ðiÞ; . . . ;

ffiffiffiffiffi
�n

p
�nðiÞ

n o
: (3)

Fig. 4. Association fields derive from pairwise co-occurrence statistics and illustrate the probability (likelihood) of a particular edge near a

horizontal edge at the center position. Two equally likely pairs of edge pairs are shown in (c) and (d); higher order co-occurrence probabilities are

necessary to determine which of these is more likely. (a) After [4]. (b) After [35]. (c) and (d) Data from [28].
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In this space, the Euclidean distance between embedded

points is given by (see also [21])

�ðriÞ � �ðrjÞ
�� ��2¼ �ðriÞ;�ðriÞh i � 2 �ðriÞ;�ðrjÞ

� �
þ �ðrjÞ;�ðrjÞ
� �

¼ E E2
ri
jEr0
¼ 1

h i
�2E Eri

Erj
jEr0
¼1

h i

þ E E2
rj
jEr0

h i
:

The first and last terms in this embedding are basically
the association field: the edges likely to occur with the
center, horizontal edge. The middle term measures the co-
occurrance of the other pairs; in other words, edges Ei and
Ej that both frequently co-occur with a horizontal edge at
the center (see Fig. 5). These include straight continua-
tions and curves with positive and negative curvatures. In

other words, high-order edge statistics reflect the natural
geometry of contours.

In summary, whether we are using hidden variables,
priors, or synaptic connections is determined by the
inference engine employed. In all cases, these variables
represent constraints: constraints between neurons at the
physiological level or constraints between tokens at the
scene level. Here we showed that there is significant
higher order statistical structure to edge elements, but we
had to develop a special technique to reveal it. This can be
viewed as a learning strategy. Most importantly, it revealed
an identification with geometrical ideas, which we take as
a surrogate to working with very high-order statistics.

C. Overview of the Paper
Lighting and material properties combine in the image

formation process: even simple photometric models

involve a product of lighting and surface albedo. Such

coupling between problems has been addressed in

Fig. 5. Display of third-order edge structure showing how oriented edges are related to their spectral embeddings. (Top) Spectral embeddings.

Since the spectrum of Pði; jj0Þ decays rapidly, edges (points in illustration) that are likely to co-occur with E0 can be visualized as clusters

(small diffusion distance). Embedded edges are plotted in ð�2; �4Þ coordinates and colored by the value of �2; �3; �4 as shown. (Bottom) Edge

distributions mapped back into ðx; yÞ and again colored by eigenfunctions. �2 shows linear organization and �4 shows a curvature organization.

Compare with Fig. 4 where red edges all have high probability of occurring with the center, but no information is known about their co-occurrence

probability. Figure after [69].
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computer vision as a series of coordinated intrinsic images
[6], [118], [124]. The intrinsic images model has its roots in

Land and McCann’s retinex theory, which was developed to

explain color constancy. Retinex is based on the idea that

sharp (high-frequency) variations denote material changes

and slow (low-frequency) variations denote cast shadows.

The modern version [118] keeps the idea that properties

(e.g., albedo) are scalar fields over the image and also

characterizes points of change (large image derivatives). As
we will show, there is significantly more to differential

structure than that involved in boundaries, and significantly

more to color variations than abrupt material versus gradual

shadow edges. This will elaborate the notion of geometrical

models introduced above, and will take the form of different

flowsVessentially vector fieldsVdefined along curves and

within shaded or colored regions.

Flows are related to differential equations. Shape from
shading typically involves a partial differential equation

(PDE) to be solved over a global surface from boundary

information [45] using smoothness constraints; similar

smoothness constraints have been postulated for stereo

(e.g., [20], [79], and [96]). We develop a different path:

biology suggests looking ‘‘locally,’’ and we show that some

parts of the shape-from-shading problem are inherently

less ambiguous than others. Hence, there could be a real
advantage to ‘‘locking down’’ certain parts of the solution

and then interpolating others. It is a little like doing a

puzzle: start with those pieces about which you are

certain and then use constraints to fit nearby pieces

together with them. Just as neurons are connected into

networks, problems such as these (and their decomposi-

tions) imply networks of local problems that can be fitted

together [78], [83], [103].

II . EARLY INFERENCE PROBLEMS

Early biological vision often connotes boundary detection

and segmentation to computer vision researchers, because

the first cortical visual area, V1, contains neurons selective

for (a sampling of) all orientations at every retinotopic

position [Fig. 6(a) and (b)]. It is thought that these are
local edge detectors. Taken together we have a columnar

model [48] that suggests an identification with the

geometry of fiber bundles. We start with such models to

set the stage, and then move to stereo and shading analysis.

A. Contour Geometry
Visual cortex in primates provides a rich substrate for

realizing networks of orientationally selective neurons that
could implement the high-order statistical constraints just

described (Fig. 2, bottom). Orientation selectivity begins

in layer 4 [82], [113]; there is a substantial projection to

the upper levels [19], [25] that is associated with boundary

processing [2]. Anatomical studies reveal that these

intrinsic connections are clustered [37] and orientation

dependent [15], leading many to believe that consistent

firing among neurons in such circuits specifies the
orientations along a putative contour [32], [52], [128].

Random fields and neural networks are all about using

context (e.g., along the contour) to remove noisy responses

that are inconsistent with their neighbors’ responses or to

reinforce weak or missing responses. How might con-

straints ci;j be designed for such a task? Do they resemble

third-order edge statistics?

We apply this machinery to contour detection in Fig. 6
following [9]. Fig. 6(b) shows how neurons form circuits

with long-range horizontal connections [3], [15], [100].

Activity in such circuits can be interpreted geometrically

[Fig. 6(c)]: viewing orientationally selective responses as

signaling local, linear approximations to a contour,

suggests interpreting them as signaling tangents to

contours. Mathematically, a tangent can be transported

along an approximation to the curve (indicated as the
osculating circle) to a nearby position. Compatible

tangents are those that agree with sufficient accuracy in

position and orientation following transport; this is the

cocircularity approximation [89]. In (position, orienta-

tion) space [Fig. 6(d)], a length of circle in the image lifts

to a length of helix in ðx; y; �Þ. Identifying this diagram

with the one above it shows that the transport operation

need not be carried out mathematically; it can be
embedded in the long-range connections. Projection into

the image plane of these connections indicates either

straight [Fig. 6(e)] or curved [Fig. 6(f)] patterns. In

biology, such connections are called projective fields [72].

Returning to (1), these are the c�i;j, for i denoting diagonal

in the center and j denoting another edge. The superscript

� indicates that these are a function of the curvature; cf.,

the clusters of third-order edge structure (Fig. 5).
Algorithmically, we can use these connections by

elaborating the index in (1) to include curvature:

i ¼ ðxi; yi; �i; �iÞ. The gradient ascent in energy is then as

follows.

Given: connections fci;jg and initial probability

estimates fp0
i g for each discretized position, orientation,

and curvature. Update: the probability estimates (until

convergance) by

pnþ1
i  pn

i þ �
@

@pi
½Energy� (4)

¼ pn
i þ �

Y X
ci;jp

n
j

h i
(5)

where � is a step size and
Q

is a projection operator onto

the probability simplex (necessary to keep 0 � pn
i � 1 and

appropriate
P

i pn
i ¼ 1). Consistency in firing according to

patterns would, of course, reduce noisy responses implying

an increase in firing sparsity [120].

In addition to the connections intrinsic to V1, there are

feedforward projections from layers 2/3 to higher visual
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areas [3], [88], [112]. V2, for example, has an elaborate

organization into subzones, including the thin, thick, and

pale stripe areas [102]. It is thought these participate in

stereo and color computations, to which we will turn
shortly. There are also feedback projections from higher

visual areas [3], [101]. Since receptive fields are larger in

higher areas, this could involve contour computations over

a larger scale [128].

Differential geometry specifies how orientations align
along a contour. Following [87], let � : I! E2 with

Fig. 6. Columnar organization of visual cortex. (a) A group of cells selective for different orientations at about the same location in the visual field.

(b) This column of cells is rearranged in (position, orientation) coordinates. (Long range horizontal) connections between cells relate an

orientation signal � at position ðx; yÞ to another orientation �0 at ðx0; y 0Þ. (c) If each cell signals a tangent to a contour, then transport along the

contour can reveal consistency among nearby tangents. (d) Using the osculating circle as a local approximation to the curve, transport over

short distances in ðx; y; �Þ is movement along a helix. By identification with (b), these helices are a model for the horizontal connections.

They are a function of curvature, either straight (e) or curved (f). Figures after [9].
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k�0ðsÞk ¼ 1; s 2 I denote the unit-speed curve defined by

the differentiable map from the interval I into Euclidean

2-space. The unit tangent is T ¼ �0, from which we get

T0 ¼ �00, the curvature vector field. Observe that T0 is

orthogonal to T (just differentiate T � T ¼ 1). The direction

of the curvature vector is normal to �, and its length
�ðsÞ ¼ kT0ðsÞk defines the curvature. The vector field

N ¼ T0=� defines the principal normal.

The Frenet frame field on � is the pair ðT;NÞ such that

T � T ¼ N � N ¼ 1, all other dot products ¼ 0, and the

above conditions hold. The elegance of cortical geometry

derives from the fact that derivatives of the frame can be

expressed in terms of the frame itself. For � > 0, we have

T0

N0

� �
¼ 0 �
�� 0

� 	
T
N

� �
: (6)

The lift from the image into cortical coordinates

[Fig. 6(b) and (d)] reveals a rich connection to Gestalt

principles [121]. Good continuation [125] for curvesVthat

slow changes in orientation should be preferred to

sudden, abrupt onesVhas a special realization in ðx; y; �Þ-
coordinates: at the crossing point of a figure ‘‘8’’ are two line

orientationsVtangentsVbut these are separated along the

columnVthe fiberVof orientations. Good continuation

means that there is no big jump along a fiber; the

connections to nearby tangents are ‘‘shorter’’ by passing

through the junction. The nonsimple curve in the plane

becomes a simple curve in ðx; y; �Þ. The contact geometry

for this has been worked out [106]; see also [126].
Discontinuities are a different story, however (Fig. 7).

Now multiple orientations at the same position signal what

often amounts to a monocular occlusion event [13], [128];

a contour ending can signal a cusp [68].

Before moving on, we draw a lesson from the columnar

organization. The column is a representational architecture

that contains each possible curve tangent at every position;

the bundle of columns contains every possible curve. This

architecture will be repeated for other problems.

B. Texture and DTI
Orientation-defined textures [11], [53], [98], [114] arise

when oriented elements are dense in two directions rather

than one, in effect weaving edges together into a tapestry.

Again the orientation column/fiber bundle structure works

ideally to represent such patterns, and again there is a high-

order curvature dependency. The mathematics are general-
ized, with the Frenet curvature replaced by a Cartan

connection form [87] (Fig. 8). The form at each location is

denoted ðET; ENÞ and transport is generalized from tangen-

tial motion along a streamline to the entire tangent plane.

This will lead to richer projective fields.

The transport equations are analogous to the curve

case, except now it is possible to move the frame in any

(tangent plane) direction rather than only along a contour.
This requires the use of covariant derivatives rather than

standard ones, and a one-form w for the curvature

rV ET

rV EN

� �
¼ 0 w12ðVÞ
�w12ðVÞ 0

� 	
ET

EN

� �
: (7)

The Cartan connection equations resemble the Frenet–Serret

formulas but involve the connection form w12ðVÞ. Such forms

‘‘take’’ a vector as ‘‘input’’ and ‘‘output’’ a scalar. Just as surface

curvature can be expressed in terms of principal curvatures,

for general oriented patterns there are two basic curvatures

tangential curvature: �T ¼ w12ðETÞ
normal curvature: �N ¼ w12ðENÞ: (8)

Psychophysically, we are sensitive to these curvatures

[8], [12], [52], [84]. Knowledge of ET; EN; �T; �N at a point

ðx0; y0Þ allows us to develop an osculating flow field

Fig. 7. Discontinuities in ðx; y; �Þ-space are represented by multiple orientations at the same location. (a) Image of a Klein bottle with

edges (b). Such edges signal monocular occlusion events. When lifted into ðx; y; �Þ-space there are multiple values at a position, shown (c) by tilting

ðx; y; �Þ-space so that the fibers are at an angle.
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analogous to the osculating circle in cocircularity, and the

right helicoid has several natural properties. Letting �ðx; yÞ
denote the field of orientations around ðx0; y0Þ

�ðx; yÞ ¼ tan�1 �Txþ �Ny

1þ �Nx� �Ty

� �
: (9)

The long-range horizontal connections could again imple-

ment them as projective fields [9]. [Compare Fig. 8(c)–(e)

with Fig. 6(e) and (f).] The importance of the ðx; y; �Þ
representation is further illustrated with nonsimple

patterns, such as crossing textures; see Fig. 9.

The helicoid can be generalized to an orientation field

in a volume from one in the plane, and has been used for

applications such as modeling hair patterns [92]. This

illustrates the serendipity that can be achieved with

mathematical models: although we began with cortical

connections in mind, generalizations have arisen to other
anatomical applications. Many of these are triggered by the

development of new imaging technologies such as

diffusion MRI or diffusion tensor imaging (DTI). This

technology is able to image the diffusion of water

molecules in biological tissues, such as white matter fibers

in the brain. Because many of these fiber tracks cross,

regularization must be conducted ‘‘along’’ the fibers and

not between them [73]. The geometry illustrated in Fig. 9

illustrates precisely this.

Another geometrically related application is to the
arrangement of myofibers in the heart wall [107]; see

Fig. 10. Individual myofibers have the form of helices and

shorten in length during contraction. The generalized

helicoid model extends from fibers to distributions of

fibers, in particular providing optimal volume change

without tangling.

Fig. 8. Cartan connections define the curvature structure and connection patterns in orientation-defined textures. The rotation can now be in any

direction in the tangent plane. (a) Displacement in the V-direction yields a rotation of the frame according to the covariant derivativerV .

(b) Displacement in another direction V. Note the rotation is different. (c) Excitatory connections between neurons for �T ¼ �N ¼ 0.

(d) �T ¼ 0:2, �N ¼ 0. (e) �T ¼ 0:2, �N ¼ 0:2. Figure after [11].

Fig. 9. Crossing textures separate in the ðx; y; �Þ representation.

These are analogous to crossing fiber tracks in brain imaging.

For motion analysis in computer vision these are called layered

representations [123].
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III . SURFACES AND
INTERMEDIATE-LEVEL VISION

Early (2-D) vision was based on the lift of image properties

into (position, orientation column) organizations. Such
organizations have natural ‘‘good continuation’’ properties,

with curvature relating nearby orientations. We now

consider surfaces and 3-D inferences. These naturally

involve products of earlier representations.

A. Orientation-Based Stereo Correspondence
Stereo infers depth by integrating the different images

striking our eyes. It begins in V1, where cells exist that are

selective to positional or phase shifts in Gabor-like

receptive fields [97]. This positional disparity is not all of

the story, however: it must be integrated over larger

distances to yield a consistent depth percept. Evidence of

recurrent computation is now appearing [104], [105], in

analogy with curve inferences. How might such recurrent
computations be structured?

Almost all disparity selective neurons in V1 are also

orientationally selective [93]. The second visual area, V2,

is also very rich in disparity processing with orientationally

selective cells [102]. Therefore, we ask how positional

differences and orientation could combine in stereo

correspondence.

To understand how Euclidean space and cortical
coordinates relate, consider the border of an object as a

space curve in 3-D. For image boundaries, we studied good

continuation in 2-D; now we will study good continuation

in the world. But this is not what is given; it is what is

sought. We start with a pair of images, one to the left eye

and one to the right which, in visual cortex (following the

previous abstraction), amounts to columnar representa-

tions of boundary tangents in the left and right images
(Fig. 11). The method for putting them together follows

[74]. We move beyond spatial disparity to determine which

tangent in the left image goes with which tangent in the

right image. This is the correspondence problem.

For 2-D boundaries tangents were transported along

cocircular appoximations to establish consistency. Orthog-

onal to the tangent was the normal vector. The situation in

3-D is conceptually the same (Fig. 11), except now the
tangent vector is a 3-D vector and the full geometry is

captured by transporting a (tangent, normal, binormal) or

(T, N, B) frame. Again ‘‘curvatures’’ connect frame com-

ponents. Torsion, a kind of curvature out of the osculating

(T, N) plane, is the second rotation [87].

We now develop tangent correspondence between the

left and right images by first considering the forward

problem. The (T, N, B) frame at a point along a space curve
in 3-D projects to a pair of 2-D (T, N) frames [Fig. 11(d)]. In

general, these 2-D frames are different. Their points of

attachment in image coordinates will be displaced; this is

the spatial disparity. But just as importantly, their angles will

be different; this is orientation disparity. All of this structure

derives only from the projection of a single frame.

Solving stereo correspondence is an inverse problem:

find those pairs of (left, right) tangents, such that the
resultant 3-D tangent can be inferred. This inverse

problem is inherently ambiguous in the same way that

the 2-D curve inference problem was ambiguous, so we

solve the 3-D problem in an analogous fashion. Good

continuation for 2-D curves came from transporting a

tangent via cocircularity and reinforcing those that agreed.

In 3-D, a single tangent projects into each of the two image

planes. Moving slightly along the 3-D space curve again
requires an approximation; in this case, a short piece of a

helix generalizes the 2-D osculating circle. Now, consid-

ering a second (3-D) tangent slightly further along the

space curve from the first one, it will project to another

pair of tangents [Fig. 11(e)]. Thus, the stereo problem is

solved by determining which tangent pairs, when

transported along a helix, match which other pairs. This

is how the results in Fig. 11(c) were obtained.
The machinery to implement this computation could be

formulated as a set of neural connections, perhaps realized in

the V1 ! V2 projection, within V2, or in higher areas. A

major constraint that derives from this model is that the

accuracy at which orientation is represented needs to be

sufficient to support orientation disparity estimates; perhaps

this explains why the stereo task is relegated to higher visual

areas. There exists evidence that such responses are
available by V4 [40] and psychophysics supports (at least)

colinear facilitation in depth [47]. Moreover, rivalry results

when nonmatching-oriented patterns are used [51].

As with 2-D curves, the good continuation approach to

solving stereo correspondence for space curves relies on

curvatures. Another leap is required when stereo for

surfaces is considered (Fig. 12). Now, instead of a tangent

Fig. 10. The left ventricle in the heart is surrounded by myofibers that

provide contractile strength. Each individual fiber follows a helical

geometry; the ensemble of fibers is arranged as a generalized helicoid.

The instantaneous ‘‘angle’’ of each fiber rotates smoothly as it wraps

around, and also varies smoothly across fibers moving from the

exterior to the interior of the ventricle wall. Figure adapted from [107].
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Fig. 11. The stereo correspondence problem for space curves. (a) and (b) A left–right image pair demonstrating that structure may appear

in a different ordering when projected into the left and right eyes (highlighted box). (c) Color-coded depth inferred along the tree branches.

Note how it varies smoothly along a branch but abruptly between branches. (d) Geometrical setup: the spiral curve in 3-D projects to

two image curves. Points along the space curve have (T, N, B) associated frames, while the 2-D curves have (T, N) frames. Notice how a tangent

to the space curve projects to a pair of (2-D) tangents, one in the left image and one in the right image. (e) Stereo correspondence between

pairs of (left–right) pairs of tangents. Figure after [74].
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to a surface, there is a tangent plane, and it rotates

depending on the direction in which it is transported. To

build intuition, consider slicing an apple: for every

direction in which the knife is pointed (the direction of

transport) a different cut (surface curve) is made. Each cut

defines a curvature, which specifies how the surface

normal varies as it is transported in different directions

(the shape operator). Details for how to solve the stereo
problem for surfaces can be found in [75]. Now, we turn to

another way to get surface information: shading analysis.

B. Orientation-Based Shape From Shading
Ernst Mach may have been the first to formulate a

shape-from-shading inference problem as a PDE [99], a

tradition taken up with enthusiasm in computer vision

[46]. Typically, one seeks a map from image intensities to
some representation of the surface (usually surface

normals) under a given shading model (usually Lamber-

tian). Various ways to formulate the PDEs [23], [77], [85]

or regularization conditions [96] have been proposed.

Ambiguity arises at several levels. Even with a simple

Lambertian model, many different surface normals could

account for a given image intensity given a light source;

and in general there are many possible light sources [67].
Perhaps the most common solution is to place a global

prior on the light source [33]; or an assumption on the

class of surfaces [72], [91]; or to try to estimate the source,

albedo, and shape simultaneously [5], [127]. At the base is

a global bas–relief ambiguity. In general, there is a deep

sense of frustration around this problem, exacerbated by

the fact that we ‘‘seem’’ to be able to do it so easily

(although this is in part an illusion [29], [58], [59]).
In seeking ways that our brains could infer shape from

shading, we begin not with the image but with how the

image would be represented in visual cortex (Fig. 13).

Ideally, cells tuned to low spatial frequencies will respond

maximally when, e.g., the excitatory receptive field

domain is aligned with brighter pixels; the inhibitory

domain of an oriented receptive field will then align with

the darker regions. These maximally responding cells
define the shading flow field in cortical space [17]; it is the

tangent map to the image isophotes [57].

Working with the shading flow removes some

ambiguityVit is invariant to arbitrary monotonic intensity

transformations [56]Vand it reduces image noise. But the

biologically motivated algorithms with which we have

been working suggest a more radical advantage: consider

the shading flow as a vector field, or section through the
bundle of possible shading flows, and apply the machinery

of differential geometry to it. This research program is

being carried out now [63]–[65], and we report current

progress in it.

Fig. 12. Stereo for surfaces. The surface normal NðpÞ varies smoothly

and generally differs from nearby normal NðqÞ. Each is orthogonal to

the tangent plane (e.g., Tp at that point. Moving an infinitesimal

distance along the curve connecting p and q induces a small rotation

in the normal (or, equivalently in the tangent plane); this rotation

is a type of surface curvature in that direction. Taking all possible

directions into account yields the shape operator, another curvature

form. Figure after [75].

Fig. 13. Representation of shading information in visual cortex. Cells with oriented receptive fields, tuned to low spatial frequencies, will respond

optimally when aligned along isophotes, or contours of constant brightness. Activity in ðx; y; �Þ space is thus the tangent map to these

isophotesVthe shading flow field. This is analogous to the lift of oriented textures. Figure after [66].
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Corresponding to the shading flow is an illuminated

surface and, generalizing from earlier ideas about trans-

port, the trick is to analyze what happens on the surface as

you move through the shading flow field (Fig. 14). Walking

in the direction of a tangent corresponds to walking along
an isophote on the surface. According to, e.g., Lambertain

reflectance, the tangent plane has to rotate precisely so the

brightness remains constant. Or, moving normal to the

shading flow says the brightness gradient must be changing

in another fashion. Together, these constraints on the flow

changes correspond to changes in the surface curvatures

and result in a system of differential equations that can be

solved in certain circumstances. Apart from bas–relief
ambiguity, they reveal a family of possible surface patch/

light source combinations for each patch of shading flow.

These patches include the classical bas–relief ‘‘cup’’ versus

‘‘bump’’ ambiguity, plus a number of twisted ones [64].

Putting the possible patches together suggests finding a

section through a more complex bundle than previously

reviewed (Fig. 15). Some boundary conditions are available

to select from among these, for example, the manner in
which surfaces curve as they approach a boundary [49],

[55], but, in general, this is not sufficient to reduce

ambiguity to bas–relief.

Having developed the differential equations that allow

calculation of surfaces from shading flows permits another

type of analysis: one can ask for which features is the

ambiguity minimal (Fig. 16). This turns out to be not just

around certain boundary conditions but also for ridges and
related structures. We conjecture that this is the reason

why shading analysis appears to work so wellVit is rather

nicely defined in certain circumstancesVand may clarify

why certain boundaries are important in viewing art and

drawings [22]. When ambiguity is extensive, almost all

reasonable prior assumptions will be questionable, so

perhaps shading analysis should not even be attempted.

Fig. 14. Geometry of motion through a shading flow field. Moving

along the curve �1ðtÞ, from P0 to P1 in the isophote direction~v, implies

that the flow field Vðx; yÞ changes byr~vV. Moving in direction~u along

�2ðsÞ, which is perpendicular (in the image) to the isophote causes

the flow field to change byr~uV. These changes can be formally related

to the surface curvatures and the light source direction.

Fig. 15. Inference of shape-from-shading information as a problem in perceptual organization. For each patch of the shading flow field there

is a family of possible surfaces; this family is a kind of column of possibilities analogous to the orientation column in early visual cortex.

Selecting from among these families according to boundary and interior conditions reveals a surface just as selecting orientations reveals a

contour. Figure after [66].
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Instead, a solution could be interpolated across the

ambiguous positions and anchored by minimal ones. This

interpolation could be accomplished by the manner in

which shape is represented in higher visual areas [90].

C. Orientation-Based Color Processing
While shading inferences were naturally expressed in

differential geometric terms, color would seem to be very

different. Typically, one thinks of the short–medium–long
wavelength retinal cones and the single opponent processing

in retinal gangion cells [Fig. 17(a)]. Such opponency is

readily characterized by efficient coding principles [111]. But

something rather different emerges when nonlinear dimen-

sionality reduction techniques are used [Fig. 17(c)]. Munsell

patches can be viewed as a collection of points in wavelength

space. When this is projected by diffusion maps [21] to three

coordinates, the intensity–hue–saturation representation
emerges [10]. Now, attaching a unit vector to each image

position defines a flow in hue. Such flows have arisen in

image denoising and in painting applications [117].

How might these hue flows be realized in primate

visual cortex? There is a rich representation of color

information in the form of oriented double-opponent cells

[109], shown in Fig. 17(b). Just as the receptive fields

shown in Fig. 1(b) provided an oriented contrast

measurement, one can also characterize oriented color-

contrast measurements. These would be Gabor-like filters

with (say) red–green subzones rather than dark–light

ones. Visual cortex goes one step further, however: double-
opponent-oriented receptive fields with red–green-oriented

opponency contrasted with green–red-oriented opponency.

There are also oriented blue–yellow double-opponent flows.

These oriented double-opponent flows relate to the infor-

mation processing questions that we considered in the

Introduction (Fig. 18).

The variation of pigment across the surface of a fruit

suggests another type of ambiguity in images even more
primitive than those considered in Section III-B: which

brightness variations correspond to shading variations and

which to material changes. Interpreting pigment variations

as shading variations would lead to huge shape errors.

Color and brightness variations are correlated on

surfaces, which suggests checking for this [110]. While it

can be done locally or at edge points [118], the flow

structure is even richer: it exists across surfaces. Following
the cue in shading analysis, we seek isohue flows. These

are naturally expressed in the red–green/blue–yellow-

oriented double-opponent basis [43]; see Fig. 19. Most

Fig. 16. Shape inferences are highly constrained in certain neighborhoods of a shape, and less at others. (a) A shaded surface is well constrained

at (b) highlight points and (c) along boundaries and ridges. (d) Zooming in on a ridge, the red line defines a normal plane. Taking a cross

section along this plane shows (e) how the second derivative of intensity along the line constrains possible cross sections. Note that the tangent

plane changes. (f) Various cross sections and associated light sources with the tangent plane fixed; the projected light source hardly changes.

These two types of transformations characterize the possible cross sections and illustrate how constrained they are. Figure after [65].
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importantly, when the isophote and the isohue flows are

parallel, it means they are covarying over a region; this is

highly unlikely to occur naturally unless they have a

common source such as pigment variation. On the other

hand, when the flows are transverse, it implies that

structure is developing differently over a region. In this
latter case, the brightness information can be interpreted

as shading.

A psychophysical demonstration illustrates how com-

pelling flow interaction can be (Fig. 20). Two colored

versions of a shaded image were created by adding

isoluminent color images: one with an isohue flow parallel
to the shading flow and the other transverse to the shading

flow. In the aligned, parallel case, the depth relief is

reduced, even though the brightness distribution remains

unchanged. It is as if this specific color pattern masks that

depth effect, thus providing a new role for color perception

different from shadow and boundary detection.

IV. CONCLUSION

Neural circuitry has inspired generations of biologically

motivated computer vision algorithms. Beginning with the
identification of receptive fields with edge operators, many

of the ingredients of computer vision classes are the same

as the ingredients of visual perception classes. While this

Fig. 17. Representation of color. (a) The retina and lateral geniculate

exhibit circular surround receptive fields that are single opponent in

brightness, red–green, and blue–yellow. (b) In visual cortex, cells

exhibit oriented, double-opponent receptive fields. (c) The

intensity–hue–saturation representation, in which hue lies on a circle.

Nonlinear embeddings of Munsell patches reveal this representation,

shown in (d) side and (e) top views. Natural objects (f) are rich in

color variation, as shown in the hue flow (g). Figure (b) after [109].

Figures (c)–(f) after [10].

Fig. 18. Color in cortex. (a) The model in Fig. 6 can be generalized to

postulate both red–green and blue–yellow double-opponent columns.

These provide a natural frame basis for isohue flows.

Fig. 19. Image of a mango showing the interaction of hue and

brightness. (a) The shading flow and (b) the isohue flow. When

compared in the highlighted region, it is clear that in some locations the

flows are parallel, indicating a material event, and in others, the flows

are transverse, indicating that the brightness variation can be

interpreted as shading. Figure after [43].

Fig. 20. Combining color and shading information. The gray-level

shaded figure has two different isoluminant color images added to it.

In the aligned case, the shading flow and the isohue flow are

parallel and the depth relief seems to disappear; in the unaligned

case, the color information appears ‘‘painted’’ onto the surface.

Figure after [43].
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shows an intuitive identification of vision algorithms with
visual processes, the intuition is difficult to realize with

productive systems.

We adopted a much more limited view in this review,

based on the centrality of orientation fields in both neural

modeling and differential geometry. The analogy was

established around the bottom–up boundary detection

problem, and developed into stereo, shading, and color.

The advantage for stereo was parallel realization of spatial
and orientation disparity in computing stereo correspon-

dence. The advantage for shading was the pullback of

transport operations on the shading flow to reveal curvature

forms on the surface. Finally, the advantage for color was

uncovering a role for isohue flows in a primitive discrim-

ination between surface and material changes.

These results are concrete and can be put into practice

for computer vision applications. Three general lessons
emerged. First, there exists useful high-order structure in

the world for which geometry can serve as a proxy. This

was illustrated with edge statistics. Second, understanding
constraints between problems can help to make them

better posed. This was illustrated by the color-shading

interaction. Third, the shading analysis suggests that

perhaps one should not seek a full, global solution to a

problem, especially when it is very ill-posed. Rather, there

may be islands of (almost) well-posed subproblems within

them that can serve as anchors for a more general, overall

solution. Nailing 3-D structure around boundaries and
ridges could be a case in point. Although our percepts seem

globally veridical, in fact much of what we perceive is an

hallucination. Perhaps this is all that our computational

vision algorithms should be asked to accomplish. h
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