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Abstract—We apply a range of data mining techniques to
analyze voting patterns in the United Nations. We begin with non-
linear dimensionality reduction, showing that diffusion geometry
reveals an historically relevant organization of countries based
on their UN voting patterns. Key historical events can be ‘“read
out” from these embeddings, such as de Gaulle’s influence on
France and the breakup of the Soviet Union. These events are
not apparent in other (e.g., PCA) embeddings. We then switch
to an organization of resolutions, revealing dominant themes
during different political epochs. Formally themes are introduced
as summaries (eigenfunctions) within a modified hierarcical
clustering algorithm.

I. INTRODUCTION

We seek to discover the implicit structures underlying the
relationship among social actors in social datasets. In this
work, we mainly focus on the network of countries in IR
(International Relation) datasets such as trade, IGO (Inter-
governmental Organization) membership and the UN (United
Nations) GA (General Assembly) voting records. Understand-
ing the structures of these networks may help shed light on
theoretical questions in IR such as (i) Do IGOs have any
influence on armed conflicts? (ii) What do votes in the UN
GA reveal? (iii) Does trade help reduce conflicts?

Our goal is twofold: (i) to motivate, develop, and illustrate a
diffusion-based approach [1] to embedding high-dimensional
UN voting data; and (ii) to cluster the resolutions “driving”
these embeddings to reveal thematic threads running across
time. In the end we show that there is enormous richness in
these data, sufficient to reveal major historical events directly.
That is to say, one could learn much about history using only
these data.

To start, we review diffusion geometry, a non-linear dimen-
sionality reduction technique based on the concept of diffusion
distance, which considers not only direct dyadic connections
between social actors, but also all indirect paths of diffusion
through intermediate neighbors. This is important in political
science because influence accumulates in a manner than may
not be revealed by linear techniques.

We apply this technique to socio-political databases, such
as IGO membership [2] and UN voting [3]. While these have
received significant attention from scholars of international
relations [4]-[8] we do not believe that they have previously
been analyzed by techniques such as ours.
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Secondly, we develop a hierachical clustering algorithm to
identify themes running through the voting patterns. This is, in
effect, the complement to the above, because it reveals struc-
ture among resolutions rather than countries. Taken together
both techniques reveal how much structure is implicit within
UN General Assembly voting patterns.

II. DIFFUSION DISTANCE

We approach the dimensionality reduction problem by
means of the social network model: Consider G(V, W) as a
network whose vertices 7 € V are the countries and kernel

function W;; represents the similarity between countries ¢
2

and j (e.g. Wy; = e~ 105 where r;; is geographical distance
between capital cities of countries ¢ and j).

Social phenomena and trade, unlike geography, follow a
different distance measure. Goods and social capital diffuse
from one place to another, perhaps through an intermediate
country. Thus nearby countries matter more than distant ones.
Since classical techniques preserve all pairwise Euclidean
distances between data points, we argue that not all distances
should be preserved uniformly. Instead, only short distances
shoud be maintained, perhaps even attenuated to preserve the
local structure, while long distances can be discounted. The
argument is illustrated in Fig. 1. In political terms, we see a
polarization in which two camps (B, C') closely communicate,
but (A, B) barely interact with each other except through
intermediary contacts located in the neck. An embedding that
highlights this polarization should tighten the clusters’ girth
(thus attenuating short distances) and stretch the neck’s length
(thus loosening long distances and separating the two clusters
from each other). Those are the characteristics of diffusion and
they differ from gravitational potentials [9].

Think of a substance (e.g. money, population, or political
influence) diffusing from a source point out to neighboring
points in amounts proportional to the neighbors’ similarity to
the source. The substance continues to diffuse to the neighbors
of those neighbors, etc. Assuming a fixed amount of substance
in the network, we can define p;(k|i) as the density of
substance, originating from source point ¢, at point k at time .
Thus p;(k|i) would be high if there are many paths of length
< t connecting 7 to k, and low otherwise. If we take point
i = B on the right of Fig. 1 as the source, after ¢ time steps,
most of the substance originated from B should end up at
points like £ = C on the right cluster, and only a small fraction
at points like k& = A on the left; there are significantly more

IEEE
computer
psoaety



0.5 1

Fig. 1: Two tight clusters separated by a narrow path. It is
obvious that there are many paths between any pair of nodes
from the same cluster (B and C), while there are significantly
fewer paths between any pair of nodes from different clusters
(A and B).

paths from B to C than to A. The intuitive diffusion distance
[1] between points ¢ and j is a weighted difference between
the two probability density functions:

D (i, 5) = |lpe(Kld) — pe(k[5)1I2

= Z(Pt(’fll) _pt(k?|j))2w(k) (D)
k

where w(e) is the weight function that normalizes the distance
according to the density estimate of each vertex.

International trade can also be viewed as a diffusion process
in which money diffuses from country to country. The polariza-
tion in Fig. 1 can be described in terms of trade during the Cold
War. Assuming the trade pattern stays constant, the money will
diffuse out to the two sources’ trading partners, like "bumps’ of
heat diffusing through a graph. Thus p;:(e|USA) will be high
in the West, and low in the East, while p;(e|USSR) behaves
in the opposite direction. The function p;(e|USA) provides a
notion of “trading sphere” of the USA. Therefore, the diffusion
distance between the USA and the USSR can be defined as
the difference between their corresponding spheres p;(e|USA)
and p;(e|USSR), as described by Eq. 1.

III. RANDOM WALK

To compute the diffusion distance D!(i,j), which takes
into account all paths (of length ) between ¢ and j, begin by
considering a random walk for a traveler in country network
G(V,W). The transition probability is M = D~1W, where
D is a diagonal matrix D;; = d; = Zj W;j, the degree
matrix. The matrix M = DY/2M D~Y/2 = D=1/2)y D=1/2 jg
symmetric and has the same spectrum as M. If p;(¢) denotes
the probability the traveler appears in country ¢ at time ¢, then

@

Let Ay > X\ > ... > ), be the eigenvalues of M and {v}
their corresponding orthonormal eigenvectors:

Pl =pi M =p{D'W

M = YAYT 3)
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where A is the diagonal matrix with {\;} on its diagonal,
and T is a matrix whose columns are the corresponding
eigenvectors {vy}. Therefore

M = D Y2MDY? = D=Y2YAYTDY2 = UADT  (4)

where ¢, = D2y, and v, = D=/, which implies that
{¢r} and {91} are the left and right eigenvectors of M cor-
responding to eigenvalues {\;}. Since {v)} are orthonormal
vectors, ¢; and t; are bi-orthonormal: ¢ v; = &;;. We can
also verify that

M’dl/z — D\ 2Wwp-1/2q1/2
=D YV2W1 =D Y2d =q'/? Q)

Therefore d'/? is an eigenvector of M with eigenvalue 1, and

hence VE |A\g| < 1[10]. Thus A\; = 1. In fact, if G is connected

(so that M represents an irreducible and aperiodic Markov
1/2

chain) then V& > 1 |\x| < 1 = A;. We also have v, = Hglﬁ\\’

which leads to ¢ = 7”df/2‘| and Y1 = 7”(111/2”. That means v,
is a constant vector, while ¢ (i) = di
vV Zk dk

Let p;(j|7) be the probability that the traveler starts walking
from country ¢ and appears in country j at time £. It follows
from Eq. 2:

pi(jli) = ef M = el UA'ST =3 " ()M dr(j)  (6)
k

where e; is a vector whose entry ¢;(k) = d;5. Therefore, if G
is connected, the following limit holds, regardless of the initial
starting point:

_ 4
o [|d 22

d;

limi— ot (§]7) = ¥1(i)91(4) 2ok i

)

The first eigenvector ¢ serves as the stationary distribution
of the random walk M. It can also be considered a density
estimate, which tells us of how frequently our walker passes
by a particular country. In social network terminology, it is the
centrality vector.

IV. DIFFUSION MAPS

For each country ¢, suppose the diffusion process starts
with an initial distribution py(j|i) = ;5. After ¢ steps, this
distribution diffuses out to the neighborhood of i with the
landscape described by p;(j|i). The walker is more likely
to end up in states close to ¢ than those far away. The
diffusion distance D2 (i,j) can be measured by Eq. 1, with
the weight function w(k) di that normalizes the distance
by the centrality measure of each node. D?(i, j) can be seen
as the weighted difference between the two distributions of
concentrations after ¢ steps of two random walks starting from
nodes ¢ and j.

Define the diffusion map W, between the original data
space onto the first « left eigenvectors of M:

U, (7/) = (A§¢1 (Z)v )‘épo (l)v R X;%(Z)) (3)



The diffusion distance in Eq.
distance in the diffusion map space:

1 is equal to Euclidean

2
o) 5

l

D} (i, j) = Z(ZA (¥ (4)
Z/\ (d)kl

k1,k2
= 30 () — )

zk: k ( k k\J )
W (7)1

002 (10 = 00,

= ”\Ijt(z) -
)

Practically, only the last (x — 1) coordinates are to be con-
sidered because v is constant. Importantly, since Vk |\;| < 1,
components A%t (i) in Eq 8 corresponding to smaller Values
of A\, vanish rapidly as ¢ increases, achieving nonlinear dimen-
sionality reduction [11].

V. EXPERIMENTAL RESULTS

We present several examples of diffusion maps applied to
geopolitical databases. Dynamic visualizations are available at
http://www.cs.yale.edu/homes/vision/zucker/embeddings.html.

For illustrative purposes, we define a distance-ratio function

DR(c,T) = ?11:1510(%) as the the distance between country ¢
and a group of countries T; DR(c,d,T) = fiiflglc(;)) as the

distance between countries ¢ and ¢/, both ratios are normalized
by the diameter of group 7.

A. Geographical map - A physical perspective: Fig. 2 pro-
vides an experiment with geographical embedeing of national

capitals [12], with the kernel W;; = 671(%.
embedding approximates global positions.

The resulting

B. Intergovernmental organization (IGO) membership pat-
tern: Fig. 3 reveals how various countries are positioned, given
their IGO memberships [2] in the year 2000. The diffusion
maps were derived using the correlation of joint membership
as the kernel function. The maps show that IGO membership
pattern tends to correlate with regional geographical positions.

C. UN vote pattern - de Gaulle’s France: Using the Pearson
product correlation kernel, we embed the UN member nations
in three dimensions, according to their votes in the UN General
Assembly for various years (Fig. 4). Fig. 5 plots the ratios
of embedding distance in the period 1965-2000. The plots of
different distance measures show how the diffusion method
amplifies the connections between highly connected actors,
while increasing separation between distant parties.

France’s self-isolation under de Gaulle’s presidency is ap-
parent from the diffusion maps. In 1957 (Fig. 4a), France (cyan
star, upper left corner) was close to the USA, UK, Belgium,
Luxembourg (blue markers). By 1959, France under de Gaulle
began to withdraw from the NATO military command and
completed that process in 1966. Viewing the diffusion maps
as time proceeds, we see France slowly moving to the edge of
the (blue) Western group in 1960 (Fig. 4b), gradually edging
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Fig. 2: Geographical embedding of national capitals in 3-
dimensional space, using the 2", 3 and 4™ vectors of
the dlfqul()I’l map. The edge weight function is defined as

Wi; = e 108 where 1;; is geographical distance between
captitals of nations i and j. Figure (a) provides a top down
view, while (b)-(i) show side views of the embedding from
different angles, turning from west to east (counterclockwise).
Several countries are marked with colored squares for easy
identification: B (USA, UK, FRN, BEL, ISR), B (USSR/RUS,
CHN, POL, HUN, BLR), W (EGY, SYR, LEB, SAU, KUW).

further away by 1963 (Fig. 4c), planting itself in a distant
position from that of the West in 1967 (Fig. 4e). The distance
ratio plot in Fig. 5a shows the blue line (FRN-EU) started at
around 0.8, the green line (FRN-UK) reaching its peak at 9
in 1967-1968, while the red line (UK-EU) lying low initially,
indicating France’s isolated position from that of the Western
countries (and UK) at the time. After de Gaulle left office in
1969, the blue line began to decline steeply, moving in tandem
with the red line, implying a reverse course in France’s foreign
policy, gradually edging closer to that of the rest of West.
Indeed, Fig. 4f shows France (cyan star, bottom left) moving
back toward integration in NATO, its position in 1972-1973
(Fig. 4g-4h) approaching UK (blue triangle, top left) (FRN
opened up from its self-isolation, allowing UK to join EC
in 1973). By 1975 (Fig. 4i) France again stood close to the
Western bloc. In the 80s until the end of the Cold War, the
distance ratios FRN-EU and UK-EU (blue & red lines, Fig. 5a)
ascended slightly, due to the absorption of new members into
the EU. The green line (FRNK-UK), however, remains low
throughout the 1980s, showing how close FRN and UK'’s
policies were to each other during that period.

The diffusion maps reveal the inherently low dimensional
structure among countries, in agreement with prior analysis
[13], [14]. PCA fails to reveal a pattern in the movements of
countries in the network, while diffusion distance uncovers the



(@ (©

(a) 1957 (c) 1963

(d) 1965 (f) 1970

(h)

() @

Fig. 3: Diffusion map of countries, given their IGO member-
ship in 2000, using the 2"¢, 3%, and 4™ vectors. (a) provides a
top-down perspective, while (b)-(i) show side views from dif-
ferent angles, in counterclockwise rotation. The countries are
manually colored according to their geographical locations,
which shows again that 1GO’s aligning influence is mostly
regional. Legend (with respect to (a)): Caribean (dark blue,
upper left); Central & South American (medium blue, lower
left); Western European (light blue, upper right); former Soviet
states & ISR (yellow, upper right); North African (light red,
middle far right); African (light orange, lower right); Middle
East (dark orange, middle right); USA & CAN (dark red,
middle).

same pattern as the global Hamming distance. The spectrum
given by PCA decays very slowly: it requires 20-30 dimensions
to describe all variances in the voting data. The diffusion
method, on the other hand, requires only 5-7 dimensions
to describe the voting patterns [14]. The diffusion method
performs better in amplifying significant events in its distance
plot (e.g. the period from 1957-1967 in which France isolated
itself). However, the diffusion distance in Fig. 5 is computed
from only 5 dimensions, whereas the Hamming distance is the
aggregated result of votes on all UN resolutions in a particular
year.

D. UN vote pattern - The collapse of the Soviet Union:
Fig. 6 shows diffusion embeddings of countries according
to their UN voting patterns during 1989-2005. Countries are
closer to each other if they voted similarly and apart if they did
not. Fig. 7 compares 3 distance metrics: (a) diffusion distance
by our method (which shall be defined in more detail later in
this article), (b) PCA embedded distance (Euclidean distance
between data points embedded by a Principal Component
Analysis projection), and (¢) Hamming distance (normalized
number of resolutions that countries voted differently from
one another.) Each subfigure plots the ratios of embedding
distances in the period 1965-2000.
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Fig. 4: De Gaulle’s France: Diffusion maps of UN voting
pattern 1957-1975. Several countries are marked for case
study identification: % (USA), A (UK), % (FRN), B (BEL,
LUX, GFR), % (USSR/RUS). These maps show France started
out close to the Allies in 1957. Then in 1960, France, under
de Gaulle’s presidency, distanced itself from the West. The 70s
saw France coming back toward the Western fold, once de
Gaulle had left.

(a) Diffusion distance (b) Distance of PCA em- (c) Hamming distance
bedding

Fig. 5: Embedding distance ratios DR(FRN,EUx),
DR(UK,EUx), DR(FRN, UK, EUx) in 1965-2000. Here
EU* is defined as the states of the European Community,
excluding FRN & UK. These plots show how relations
between France, UK and the rest of the Western European
states changed over time, with France standing far apart
during the 60s, and coming back to the fold afterward.

The 1989 diffusion map is polarized with the Western bloc
(blue) on the left and the Eastern bloc (red) on the right of
Fig. 6a. The distance ratio plots (Fig. 7a) show the green line
(POL-EU) trailing the red line (USSR/RUS-EU) prior to 1989,
indicating Poland’s policy completely dominated by that of
the Soviet Union. However, in 1990 (Fig. 6a), Poland and
Hungary (red squares) switched to the left, followed quickly by
Czecholovakia, Bulgaria, and then the three newly independent
Baltic republics. Fig. 7a clearly reveals a break between the
green line and the red line from 1989, showing different trends
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Fig. 6: The collapse of the Soviet Union: Diffusion maps of
UN voting pattern 1989-2005. Several countries are marked
for case study identification: % (USA), B (UK, FRN, BEL,
LUX), % (USSR/RUS), ¢ (YUG), » (UKR, BLR), B (POL,
HUN), o (CHN).

Lo

(a) Diffusion distance (b) Distance of PCA em- (c) Hamming distance
bedding

Fig. 7: Embedding distance ratios DR(USA,EU),
DR(USSR/RUS,EU), DR(POL,EU) in 1965-2000.
Here EU is defined as the states of the European Community.
These plots show relations among the USA, USSR/RUS,
Poland, and Western European states changed over time,
with Poland tied to the USSR/RUS until 1989, after which it

completely aligned itself with the West.

in Poland and the USSR/RUS’s policies from then on. By 1991
(Fig. 6¢), the Soviet Union (red star), Belarus, and Ukraine
followed suit, as they (the 2 red triangles) moved toward
the center. In 1992, after the Soviet bloc fully disintegrated
(Fig. 6d), its members had all migrated to the left, with Ukraine
and Belarus hanging in the middle, leaving China (red circle)
on the right, close to the Arabs and the third world. Figs. 6d- 6f
depict Russia’s effort to get close to the West, as Yeltsin vied
for Western support for admission to NATO or the EU. The
downward trend of the red line during 1992-1995 in Fig. 7a
indicates Russia’s similar lack of success seeking eventual
membership in the EU. After Yeltsin’s second election in
1996 and his inability to integrate his country into Western
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Fig. 8: The disintegration of the Soviet Union (1988-1992):
The evolution of 2-dimensional diffusion maps of nations ac-
cording to their voting patterns in the UN Assembly. Each dot
denotes the global position of a country in a particular year.
Special markers are drawn to denote: % (USA), A (UK), %
(USSR/RUS), B (POL),  (CHN). Several lines are also plotted
connecting the “paths” of these countries over time. Note how
USA and UK stayed relatively steady at their positions, while
the paths of Communist states started to diverge since 1989.
POL was the first to move out of the camp in 1990, followed by
USSR/RUS, whereas CHN remained in their original position
throughout the whole period.

institutions (Fig. 6g), Russia moved to the right of the map.
Fig. 7a records a sharp ascent of the red line after 1996,
implying Russia’s abandonment of its westward movement.
A further shift eastward occurred after Putin replaced Yeltsin
in 2000 (Fig. 6h), as Russia moved further to the right and
close to China.

The collapse is even more evident in Fig. 8, which provides
a time-evolution by stringing the 2-dimensional structures of
the alignments in Fig. 6 along the time dimension. It is
apparent from the figure that:

USA and UK stood close to each other in the 2-
dimensional alignment, and their distance remain rel-
atively stable throughout the 5-year period.

The break-up of the Soviet bloc is shown in the
diverging lines of the USSR/RUS, POL and CHN. The
bloc stayed intact until 1990, when POL moved away,
toward the other side of the map. In 1991, the Soviet
Union inched apart from CHN and the third-world
countries, and then Russia moved completely out by
1992.

For further analysis, we consider the group of Communist
countries in the years 1989-1991. Fig. 9 shows the diffusion
distances among these countries in 1989-1991. The group was
tight in 1989 and quickly disintegrated in 1990 and 1991, as
the diffusion distances suddenly spiked up in these two years.
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Fig. 9: Diffusion distances among the countries in the Soviet
Bloc (POL, HUN, CZE, ALB, YUG, BUL, ROM, USSR/RUS,
UKR, BLR) in 1989-1991. The colors denote distance value
Sfrom low (cool, blue color) to high (hot, red color).

1989 1990 1991
Middle East 2 7 6
Weapon Nonproliferation 2 6 5
Anti-Apartheid & Human Rights 6 2 2
Territory & Sovereignty 5 5 6
Others 5 0 1

TABLE I:  Topical breakdown of the 20 highest-variance
resolutions according to the votes of Eastern Bloc members
(POL, HUN, CZE, ALB, YUG, BUL, ROM, USSR/RUS, UKR,
BLR) during 1989-1991.

VI. THEMES ACROSS RESOLUTIONS

We now switch emphasis to inferring implicit structure
among resolutions. Since voting patterns are responsible for
the global embedding, further insight can be obtained by
looking at those resolutions that have the highest variance
among clusters of countries. In essence we are asking: among
nearby countries, which topics are most controversial; i.e., on
which neighbors vote differently. We focus, in particular, on
the Soviet bloc of Eastern European countries.

Numerical values are assigned to votes: Against (-1),
Abstain (0), For (1) so we can compute the variances of the
votes of the Eastern Bloc for every UN resolution in the three
years around the breakup of the Bloc.

Table I shows a topical breakdown of the 20 highest-
variance resolutions among these countries votes in 1989-
1991. During the first year most of the attention remained
focused on old Cold War issues and matters of development,
anti-colonialism, and human rights in the global south. The
Soviet bloc had commonly sided with less developed countries
against the developed north and west. But by 1990 and 1991
those divisive issues faded, and Middle Eastern issues became
dominant. On those issues the US and Israel were in a minority
even among other western states. Consequently they became,
and have remained, apart from the Assembly majority.

It is clear from this example that there are currents in the
resolutions. Our next goal is to discover them automatically. To
avoid preconceived notions, we adapt a hierarchical clustering
algorithm and an eigenfunction summary method.

VII. BUILDING HIERARCHICAL CLUSTERING TREES

We now seek to organize the resolutions according to how
countries voted on them, with the goal of uncovering themes
that summarize them. Given the lack of a prior on themes
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among resolutions — how many there are or, even, whether
any exist — we adapt a hierarical clustering algorithm.

For each cluster in the hierarchy, we seek a set of “summary
questions” that best approximate large groups of questions
underlying the embeddings. This has two advantages: (i) it
reduces the dimension of the data set; and (ii) if the summary
questions are combinations of small numbers of questions,
they are more interpretable. We stress that our approach is
in contrast to factor analysis, which leads to factors that are
linear combinations of all questions.

Any pair of resolutions are related if they are highly
correlated either positively or negatively. For example, during
the Cold War period, a UN resolution condemning Israel in
Middle East issues will most likely be rejected by the West
and supported by the Arabs; however, another UN resolution
in support of Israel would lead to the exact opposite voting
pattern. Therefore, we study the absolute value of data correla-
tion as a topical similarity function. More formally, this leads
to a relatively standard objective function that only depends
on dot products. It can be modified using the kernel trick to
incorporate non-linearities, in particular those that arise with
our diffusion kernel.

We treat each resolution as a vector of responses g;
normalized so >, q;(j) = 0 and |[g;|| = 1. We denote
Q={qy,.-.,q,} the set of votes to all resolutions. On the
way to designing an objective function, we first seek to find a
set of “summary questions” S = {s1,..., St} and a clustering
C = {c1,...,cx} of questions with summary questions with
the following properties:

k
Uei= (10)
=1
ciNc; =@,i#j (11)
Isill =1 (12)

Equations (10) and (11) guarantee that each question is
assigned to a single cluster. We now maximize the simi-
larity between each question and the summary question to
which it is assigned. The objective function is: ¢(C,S) =

k
S Yo [ @5]s) P

In bioinformatics this is called the diametric clustering ob-
jective function [15], and it has an equivalent metric clustering
minimization problem. Using the fact that [(g,]s;)[* <1

argmax $(C, §) = argmin{n — ¢(C, 5)}

’ k
= arg%ligz > dlg; )

=1 qjec;

where d(v,w) = /1 — |(v|w)|?. d(-,-) is a pseudometric,
which is to say (i) d(v,v) = 0; (i) d(v,w) = d(w,v); (iii)
d(u,v) + d(v,w) > d(u,w). (i) and (ii) are trivial. Proof of
(iii) is technical, and is omitted for space reasons.

The maximization version of this problem suggests one
heuristic, while the minimization problem suggests another.
The first is a modification of Lloy£s algorithm.

procedure MODIFIEDLLOYD({q1,...,qn})



cluster = initialclustering()
while ¢old 7£ ¢new do
Pold = ¢ne’w
for i =1 to k do
V = concat(q € ¢;)
end for
end while
for j =1 to n do
put g; in the cluster that maximizes |(v;|g;)|
end for
recompute ¢new
end procedure

V = [ge1] - - |gem]
> v; is largest left sing. vect.

This algorithm increases the objective function ¢ at each
stage. In fact, each for-loop increases ¢.

Proof: The second for-loop is straightforward, as each
question is assigned to the cluster that maximizes the objec-
tive. Therefore if any questions change cluster, the objective
function will increase.

Let V be defined as above. Then V = U % D « W7 where
U and W are unitary and D is a diagonal matrix of singular

vectors. Then
> Ia;ls)?
gj€Ec;

=Is"V|?

= ZD121<uz‘3>

where u; are the columns of U. This is maximized by setting
s to be equal to the largest singular vector w;

Therefore each stage of the algorithm increases ¢. Since
there are a finite number of clusterings, and hence values for
¢ and each stage of the algorithm increases ¢, it converges,
though possibly not to the global optimum. ]

A. Toward Thematic Hierarical Clustering

Although Lloyd’s algorithm guarantees a local maximum
in the objective function, for our application we seek a related
— but in a local sense, slightly different — condition: we
guarantee that the absolute correlation distance cannot exceed
a threshold.

We start with n individiual singleton clusters of entities £
and a data matrix D of m countries (rows) and n resolutions
(columns) (e.g. Table II). We also have a correlation threshold
6 € (0,1) and a cooldown ratio o € (0,1). We repeatedly
iterate through the following steps, merging clusters until
only one remains:

procedure GREEDYCLUSTER(D, 6)
unallocated = D
for ¢ in unallocated do
remove ¢ from unallocated
for q in unallocated do
if abs(corr(c, q) < 0) then
remove q from unallocated
assign q to cluster ¢
end if
end for
end for
reassign questions to most correlated cluster center
return clusters
end procedure
procedure GREEDYTREE(D, 0, «)
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#3508 | #3510 | #3515 | #3538 | #3570
USA T T T T N
UK -1 -1 -1 0 0
USSR/RUS 1 1 1 1 1
POL 0 0 0 0 0
CHN 1 1 0 1 1
TABLE II: An excerpt from the UN voting data [3] of 5

countries (USA, UK, USSR/RUS, POL, CHN) in 1990 on 5
issues, denoted by their roll call id’s (RCID): #3508 (Dissem-
ination of information on decolonization) #3510 (Observer
status of national liberation movements recognized by the
OAU and/or by the League of Arab States) #3515 (Cessation
of all nuclear test explosions) #3538 (Calls upon Israel to
become party to the Treaty on the Non-Proliferation of Nuclear
Weapons) #3570 (Status of the International Convention on
the Suppression and Punishment of the crime of Apartheid).
The votes are represented by numbers: 1 (Yes), O (Abstain), -1
(No).
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Fig. 10: Clustering result of UN resolutions during the period
1998-2002. Two individual clusters are marked with e and B
symbols for demonstration.

while numclusters > 1 do
clusters = GreedyCluster(D, )
set D to largest singular vector of each cluster
0 =0«a
end while
end procedure

Performance is very similiar to the Lloyd algorithm, which
could in effect be inserted into the first procedure.

B. Results on UN Resolutions

We applied the clustering algrithm on the set of UN
resolutions during the period 1998-2002 [3], with 6§ = 0.95
and o = 0.8. Fig. 10 shows the clustering hierarchy with two
clusters e and M. The resolutions in cluster e pertain only
to Middle East-related resolutions, while cluster B comprises
resolutions from two topics (Human Rights and Nuclear Dis-
armaments).

We take a more detailed look at the resolutions during the
breakup of the Soviet bloc in Figs.11 - 13.
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Fig. 11: Thematic clustering of UN Resolutions 1989. The W
cluster is about Middle East issues, while the e is about disar-
mament and nuclear weapons. The variance in voting patters
across Eastern Bloc countries on these issues is virtually 0.
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Fig. 12: Thematic clustering of UN Resolutions 1990. The
variance across clusters starts to increase, indicating political
change. The cluster o on Middle East issues is growing larger,
while others (e.g. W remain fixed on nuclear weapons issues.

[T |

VIII. DISCUSSION

In this paper we developed a diffusion-based approach
to embedding high-dimensional UN voting data and showed
how to cluster the resolutions “driving” these embeddings.
Organization among countries revealed political relationship,
and cluster analysis revealed thematic threads running across
time. In effect we showed that much of the historical record
can be “read out” from UN voting patterns.
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