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Verified compilation of open modules (i.e., modules whose functionality depends on other modules) provides

a foundation for end-to-end verification of modular programs ubiquitous in contemporary software. However,

despite intensive investigation in this topic for decades, the proposed approaches are still difficult to use in

practice as they rely on assumptions about the internal working of compilers whichmake it difficult for external

users to apply the verification results. We propose an approach to verified compositional compilation without

such assumptions in the setting of verifying compilation of heterogeneous modules written in first-order

languages supporting global memory and pointers. Our approach is based on the memory model of CompCert

and a new discovery that a Kripke relation with a notion of memory protection can serve as a uniform and

composable semantic interface for the compiler passes. By absorbing the rely-guarantee conditions on memory

evolution for all compiler passes into this Kripke Memory Relation and by piggybacking requirements on

compiler optimizations onto it, we get compositional correctness theorems for realistic optimizing compilers

as refinements that directly relate native semantics of open modules and that are ignorant of intermediate

compilation processes. Such direct refinements support all the compositionality and adequacy properties

essential for verified compilation of open modules. We have applied this approach to the full compilation chain

of CompCert with its Clight source language and demonstrated that our compiler correctness theorem is open

to composition and intuitive to use with reduced verification complexity through end-to-end verification of

non-trivial heterogeneous modules that may freely invoke each other (e.g., mutually recursively).

CCS Concepts: • Software and its engineering→ Formal software verification; Compilers; • Theory

of computation→ Program verification.

Additional Key Words and Phrases: Verified Compositional Compilation, Direct Refinements, Kripke Relations

ACM Reference Format:

Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong Shao. 2024. Fully Composable and Adequate

Verified Compilation with Direct Refinements between Open Modules. Proc. ACM Program. Lang. 8, POPL,

Article 72 (January 2024), 31 pages. https://doi.org/10.1145/3632914

∗Corresponding author

Authors’ addresses: Ling Zhang, John Hopcroft Center for Computer Science, School of Electronic Information and Electrical

Engineering, Shanghai Jiao Tong University, China, ling.zhang@sjtu.edu.cn; Yuting Wang, John Hopcroft Center for

Computer Science, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China,

yuting.wang@sjtu.edu.cn; Jinhua Wu, John Hopcroft Center for Computer Science, School of Electronic Information and

Electrical Engineering, Shanghai Jiao Tong University, China, jinhua.wu@sjtu.edu.cn; Jérémie Koenig, Yale University, USA,

jeremie.koenig@yale.edu; Zhong Shao, Yale University, USA, zhong.shao@yale.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART72

https://doi.org/10.1145/3632914

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 72. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-7190-6983
HTTPS://ORCID.ORG/0000-0003-3990-2418
HTTPS://ORCID.ORG/0000-0001-5812-053X
HTTPS://ORCID.ORG/0000-0002-3168-5925
HTTPS://ORCID.ORG/0000-0001-8184-7649
https://doi.org/10.1145/3632914
https://orcid.org/0000-0001-7190-6983
https://orcid.org/0000-0003-3990-2418
https://orcid.org/0000-0001-5812-053X
https://orcid.org/0000-0002-3168-5925
https://orcid.org/0000-0001-8184-7649
https://doi.org/10.1145/3632914


72:2 Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong Shao

1 INTRODUCTION

Verified compilation ensures that behaviors of source programs are faithfully transported to target
code, a property desirable for end-to-end verification of software whose development involves
compilation. As software is usually composed of modules independently developed and compiled,
researchers have developed a wide range of techniques for verified compositional compilation or
VCC that support modules invoking each other (i.e., open), being written in different languages
(i.e., heterogeneous) and transformed by different compilers [Patterson and Ahmed 2019].

We are concerned with VCC for first-order languages with global memory states and support of
pointers (e.g., see Gu et al. [2015]; Jiang et al. [2019]; Koenig and Shao [2021]; Song et al. [2020];
Stewart et al. [2015]; Wang et al. [2019]). As it stands now, the proposed approaches are inherently
limited at supporting open modules (e.g. libraries) as they either deviate from the native semantics
of modules or expose the semantics of intermediate representations for compilation, resulting in
correctness theorems that are difficult to work with for external users. In this paper, we investigate
an approach that eliminates these limitations while retaining the full benefits of VCC, i.e., obtaining
correctness of compiling open modules that is fully composable, adequate, and extensional.

1.1 Full Compositionality and Adequacy in Verified Compilation

Correctness of compiling open modules is usually described as refinement between semantics of
source and target modules. We shall write ! (possibly with subscripts) to denote semantics of open
modules and write !1 ≼ !2 to denote that !1 is refined by !2. Therefore, the compilation of any
module"2 into"1 is correct iff [["1]] ≼ [["2]] where [["8 ]] denotes the semantics of"8 .

To support the most general form of VCC, it is critical that the established refinements are fully
composable, i.e., both horizontally and vertically composable, and adequate for native semantics:

Vertical Compositionality: !1 ≼ !2 ⇒ !2 ≼ !3 ⇒ !1 ≼ !3

Horizontal Compositionality: !1 ≼ !
′
1 ⇒ !2 ≼ !

′
2 ⇒ !1 ⊕ !2 ≼ !

′
1 ⊕ !

′
2

Adequacy for Native Semantics: [["1 +"2]] ≼ [["1]] ⊕ [["2]]

[[a.c]]

[[a.i1]]

[[a.i2]]

[[a.s]]

≼
≼

≼

!1

[[b.s]]

≼

⊕

⊕

[[a.s + b.s]]

≼

Fig. 1. Motivating Example

The first property states that refinements are transitive. It is essential
for composing proofs for multi-pass compilers. The second property
guarantees that refinements are preserved by semantic linking (denoted
by ⊕). It is essential for composing correctness of compiling open mod-
ules (possibly through different compilers). The last one ensures that,
given any modules, their semantic linking coincides with their syntactic
linking (denoted by +). It ensures that linked semantics do not deviate
from native semantics and is essential to propagate verified properties
to final target programs.

We use the example in Fig. 1 to illustrate the importance of the above
properties in VCC where heterogeneous modules are compiled through
different compilation chains and linked into a final target module. In this
example, a source C module a.c is compiled into an assembly module
a.s through a multi-pass optimizing compiler like CompCert: it is first
compiled to a.i1 in an intermediate representation (IR) for optimization (e.g., the RTL language
of CompCert) and then to a.i2 in another IR for code generation (e.g., the Mach language of
CompCert). Finally, it is linked with a library module b.s which is not compiled at all (an extreme
case where the compilation chain is empty). The goal is to prove that the semantics of linked target
assembly a.s + b.s refines the combined source semantics [[a.c]] ⊕ !1 where !1 is the semantic
specification of b.s, i.e., [[a.s + b.s]] ≼ [[a.c]] ⊕ !1 . The proof proceeds as follows:
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(b) CompCertM
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≼
4
·
≼
3
·
≼
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(c) CompCertO

Fig. 2. Refinements in the Existing Approaches to VCC

(1) Prove every pass respects refinement, from which [[a.i1]] ≼ [[a.c]], [[a.i2]] ≼ [[a.i1]] and
[[a.s]] ≼ [[a.i2]]. Moreover, show b.s meets its specification, i.e., [[b.s]] ≼ !1 ;

(2) By vertically composing the refinement relations for compiling a.c, we get [[a.s]] ≼ [[a.c]];
(3) By further horizontally composing with [[b.s]] ≼ !1 , we get [[a.s]] ⊕ [[b.s]] ≼ [[a.c]] ⊕ !1 ;
(4) By adequacy for assembly and vertical composition, conclude [[a.s + b.s]] ≼ [[a.c]] ⊕ !1 .

1.2 Problems with the Existing Approaches to Refinements

Despite the simplicity of VCC at an intuitive level, full compositionality and adequacy are sur-
prisingly difficult to prove for any non-trivial multi-pass compiler. First and foremost, the formal
definitions must take into account the facts that each intermediate representation has different
semantics and each pass may imply a different refinement relation. To facilitate the discussion
below, we classify different open semantics by language interfaces (or simply interfaces) which
formalize their interaction with environments. We write ! : I to denote that ! has a language
interface I. For instance, [[a.c]] : C denotes that the semantics of a.c has the interface C which
only allows for interaction with environments through function calls and returns in C. Similarly,
[[a.s]] : A denotes the semantics of a.s whereA only allows for interaction at the assembly level.
Note that the interface for a module may not match its native semantics. For example, [[a.s]] : C
asserts that [[a.s]] actually converts assembly level calls/returns to C function calls/returns for
interacting with C environments (e.g., extracting arguments from registers and memory to form an
argument list for C function calls). In this case, [[a.s]] deviates from the native semantics of a.s.
When the interface of [["]] is not explicitly given, it is implicitly the native interface of" . We write
≼: I1 ⇔ I2 to denote a refinement between two semantics with interfaces I1 and I2. For instance,
given ≼ac: A ⇔ C that relates open semantics at the C and assembly levels, [[b.s]] ≼ac !1 asserts
that [[b.s]] is the native semantics of b.s and is refined by the C level specification !1 .

For VCC, it is essential that variance of open semantics and refinements does not impede compo-
sitionality and adequacy. The existing approaches achieve this by imposing algebraic structures

on refinements. We categorize them by their algebraic structures below, and explain the problems
facing them via three well-known extensions of CompCert [Leroy 2023] (the state-of-the-art verified
C compiler) to support VCC, i.e., Compositional CompCert (CompComp) [Stewart et al. 2015],
CompCertM [Song et al. 2020] and CompCertO [Koenig and Shao 2021].

Constant Refinement. An obvious way to account for different semantics in VCC is to force
every semantics to use the same language interface I and a constant refinement ≼I : I ⇔ I.
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CompComp adopts this “one-type-fits-all” approach by having every language of CompCert to
use C function calls/returns for module-level interactions and using a uniform refinement relation
≼C : C ⇔ C known as structured simulation [Stewart et al. 2015]. In this case, vertical and horizontal
compositionality is established by proving transitivity of ≼C and symmetry of rely-guarantee
conditions of ≼C . However, because the C interface is adopted for assembly semantics, adequacy at
the target level is lost, making end-to-end compiler correctness not provable as shown in Fig. 2a.

Sum of Refinements. A more relaxed approach allows users to choose language interfaces for
different IRs from a finite collection {I1, . . . ,I<} and refinements for different passes from a finite
set {≼1, . . . , ≼=} relating these interfaces, i.e., ≼8 : I1 + . . . + I< ⇔ I1 + . . . + I< . In essence, a
constant refinement is split into a sum of refinements s.t. ! ≼1 + . . . + ≼= !

′ holds if ! ≼
8
!′ for

some 1 ≤ 8 ≤ =. Then, every compiler pass can use ≼1 + . . . + ≼= as the uniform refinement relation,
which is proven both composable and adequate under certain well-formedness constraints. Fig. 2b
depicts such an example where semantics have both C and assembly interfaces (e.g., [[a.s]] : A+C)
and the refinement relations ≼8 : A + C ⇔ A + C(1 ≤ 8 ≤ 5) are tailored for each pass. This
is the approach adopted by CompCertM [Song et al. 2020]. However, the top-level refinement
≼1 + . . . + ≼= is difficult to use by a third party without introducing complicated dependency on
intermediate results of compilation. For example, horizontal composition with ≼1 + . . . + ≼= only
works for modules self-related by all the refinements ≼8 (1 ≤ 8 ≤ =). Since ≼8s are tailored for
individual passes, they inevitably depend on the intermediate semantics used in compilation. Such
dependency is only exacerbated as new languages, compilers and optimizations are introduced.

Product of Refinements. The previous approach effectively “flattens” the refinements for indi-
vidual compiler passes into an end-to-end refinement. A different approach adopted by Comp-
CertO [Koenig and Shao 2021] is to “concatenate” the refinements for individual passes into a chain
of refinements by a product operation (_ ·_) such that ! ≼1 · ≼2 !

′′ if ! ≼1 !
′ and !′ ≼2 !

′′ for some
!′. Fig. 2c illustrates how it works. Vertical composition is simply the concatenation of refinements.
For example, composing refinements for compiling a.c results in [[a.s]] ≼3 · ≼2 · ≼1 [[a.c]]. Ade-
quacy is trivially guaranteed with native interfaces. However, horizontal composition still depends
on the intermediate semantics of compilation because of the concatenation. For example, in Fig. 2c,
to horizontally compose with [[a.s]] ≼3 · ≼2 · ≼1 [[a.c]], it is necessary to show !1 refines [[b.s]]
via the same product, i.e., to construct intermediate semantics bridging ≼1, ≼2 and ≼3.

Summary. The existing approaches for VCC either lack adequacy because they force non-native
language interfaces on semantics for open modules (e.g., CompComp) or lack compositionality
that is truly extensional because they depend on intermediate semantics used in compilation (e.g.,
CompCertM and CompCertO). Such dependency makes their correctness theorems for compiling
open modules (e.g., libraries) difficult to further compose with and incurs a high cost in verification.

1.3 Challenges for Direct Refinement of Open Modules

The ideal approach to VCC should produce refinements that directly relate the native semantics
of source and target open modules without mentioning any intermediate semantics and support
both vertical and horizontal composition. We shall call them direct refinements of open modules.
For example, a direct refinement between a.c and a.s could be ≼ac: A ⇔ C s.t. [[a.s]] ≼ac
[[a.c]]. It relates assembly and C without mentioning intermediate semantics, and could be further
horizontally composed with [[b.s]] ≼ac !1 and vertically composed by adequacy to get [[a.s +
b.s]] ≼ac [[a.c]] ⊕ !1 . Note that even the top-level refinement is still open to horizontal and
vertical composition, making direct refinements effective for supporting VCC for open modules.
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The main challenge in getting direct refinements is tied to their “real” vertical composition, i.e.,
given any direct refinements ≼1 and ≼2, how to show ≼1 · ≼2 is equivalent to a direct refinement ≼3.
This is considered very technical and involved (see Hur et al. [2012b]; Neis et al. [2015]; Patterson
and Ahmed [2019]; Song et al. [2020]) because of the difficulty in constructing interpolating program
states for transitively relating evolving source and target states across external calls of open modules.
This problem also manifests in proving transitivity for logical relations where construction of
interpolating terms of higher-order types is not in general possible [Ahmed 2006]. In the setting of
compiling first-order languages with global memory, all previous work avoids proving real vertical
composition of direct refinements. Some produce refinement without adequacy by introducing
intrusive changes to semantics to make construction of interpolating states possible. For example,
CompComp instruments the semantics of languages with effect annotations to expose internal
effects for this purpose. Some essentially restrict vertical composition to closed programs (e.g.,
CompCertM). Some leave the top-level refinement a combination of refinements that still exposes
the intermediate steps of compilation (e.g., CompCertO). Finally, even if the problem of vertical
composition was solved, it is not clear if the solution can support realistic optimizing compilers.

1.4 Our Contributions

In this paper, we propose an approach to direct refinements for VCC of imperative programs that
addresses all of the above challenges. Our approach is based on the memory model of CompCert
which supports first-order states and pointers. We show that in this memory model interpolating
states for proving vertical compositionality of refinements can be constructed by exploiting the
properties on memory invariants known as memory injections. The solution is based on a new
discovery that a Kripke relation with memory protection can serve as a uniform and composable
relation for characterizing the evolution of memory states across external calls. With this relation
we successfully combined the correctness theorems of CompCert’s passes into a direct refinement
between C and assembly modules. We summarize our technical contributions below:

• We prove that injp—a Kripke Memory Relation with a notion of memory protection—is
both uniform (i.e., memory transformation in every compiler pass respects this relation) and
composable (i.e., transitive modulo an equivalence relation). The critical observation making
this proof possible is that interpolating memory states can be constructed by exploiting
memory protection inherent to memory injections and the functional nature of injections.
• Based on the above observation, we show that a direct refinement from C to assembly can be
derived by composing open refinements for all of CompCert’s passes starting from Clight.
In particular, we show that compiler passes can use different Kripke relations sufficient for
their proofs (which may be weaker than injp) and these relations will later be absorbed
into injp via refinements of open semantics. Furthermore, we show that assumptions for
compiler optimizations can be formalized as semantic invariants and, when piggybacked onto
injp, can be transitively composed. Based on these techniques, we upgrade the proofs in
CompCertO to get a direct refinement from C to assembly for the full CompCert, including all
of its optimization passes. These experiments show that direct refinements can be obtained
without fundamental changes to the verification framework of CompCert.
• We demonstrate the simplicity and usefulness of direct refinements by applying it to end-to-
end verification of several non-trivial examples with heterogeneous modules that mutually

invoke each other. In particular, we observe that C level refinements can be absorbed into
the direct refinement of CompCert by transitivity of injp. Combining direct refinements
with full compositionality and adequacy, we derive end-to-end refinements from high-level
source specifications to syntactically linked assembly modules in a straightforward manner.
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1 /* client.c */

2 int result;

3

4 void encrypt(int i,

5 void(*p)(int*));

6

7 void process(int *r)

8 {

9 result = *r;

10 }

11

12 int request(int i)

13 {

14 encrypt(i,process);

15 return i;

16 }

(a) Client in C

1 /* server.s */

2 key:

3 .long 42

4 encrypt:

5 // allocate frame

6 Pallocframe 24 16 0

7 // RSP[8] = i XOR key

8 Pmov key RAX

9 Pxor RAX RDI

10 Pmov RDI 8(RSP)

11 // call p(RSP + 8)

12 Plea 8(RSP) RDI

13 Pcall RSI

14 // free frame

15 Pfreeframe 24 16 0

16 Pret

(b) Server in Asm

1 /* server_opt.s

2 * key is an constant

3 * and inlined in code */

4 encrypt:

5 // allocate frame

6 Pallocframe 24 16 0

7 // RSP[8] = i XOR 42

8 Pxori 42 RDI

9

10 Pmov RDI 8(RSP)

11 // call p(RSP + 8)

12 Plea 8(RSP) RDI

13 Pcall RSI

14 // free frame

15 Pfreeframe 24 16 0

16 Pret

(c) Optimized Server

Fig. 3. An Example of Encryption Client and Server

The above developments are fully formalized in Coq based on the latest CompCertO which
is in turn built on top of CompCert v3.10 (see the data-availability statement at the end of the
paper for more details). While the formalisation of our approach is tied to CompCert’s block-based
memory model [Leroy et al. 2012], and applied to its particular chain of compilation, we present
evidence in §7 that variants of injp could be adapted for alternate memory models for first-order
languages, and that it may be extended to support new optimizations. Therefore, this work provides
a promising direction for further evolving the techniques for VCC.

1.5 Structure of the Paper

Below we first introduce the key ideas supporting this work in §2. We then introduce necessary
background and discuss the technical challenges for building direct refinements in §3. We present
our technical contributions in §4, §5 and §6. We discuss the generality and limitations of our
approach in §7. We discuss evaluation and related work in §8 and finally conclude in §9.

2 KEY IDEAS

We introduce a running example with heterogeneous modules and callback functions to illustrate
the key ideas of our work. This example is representative of mutual dependency between modules
that often appears in practice and it shows how free-form invocation between modules can be
supported by our approach. As we shall see in §6, our approach also handles more complicated
programs with mutually recursive heterogeneity without any problem.
The example is given in Fig. 3. It consists of a client written in C (Fig. 3a) and an encryption

server hand-written in x86 assembly by using CompCert’s assembly syntax where instruction
names begin with P (Fig. 3b). For now, let us ignore Fig. 3c which illustrates how optimizations
work in direct refinements. Users invoke request to initialize an encryption request. It is relayed to
the function encrypt in the server with the prototype void encrypt(int i, void (*p)(int*))

which respects a calling convention placing the first and second arguments in registers RDI and
RSI, respectively. The main job of the server is to encrypt i (RDI) by XORing it with an encryption
key (stored in the global variable key) and invoke the callback function p (RSI). Finally, the client
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@1!1 : A1

@2 A2

Guarantee

@′
2

!2 :

A ′
2

@′
1

A ′
1

Rely

≼

(a) Rely-Guarantee Simulation

@1!1 : @′
1

A ′
1

A1

@2!2 : @′
2

A ′
2

A2

@3!3 : @′
3

A ′
3

A3
≼
1
2

≼
2
3

Rely

Rely

(b) Naive Vertical Composition

@1!1 : @′
1

A ′
1

A1

@3!3 : @′
3

A ′
3

A3

≼
1
3

Rely

(c) A Direct Refinement

Fig. 5. Basic Concepts of Open Simulations

takes over and stores the encrypted value in the global variable result. The pseudo instruction
Pallocframe m n o allocates a stack frame of m bytes and stores its address in register RSP. In
this frame, a pointer to the caller’s stack frame is stored at the o-th byte and the return address is
stored at the n-th byte. Note that Pallocframe 24 16 0 in encrypt reserves 8 bytes on the stack
from RSP + 8 to RSP + 16 for storing the encrypted value whose address is passed to the callback
function p. Pfreeframe m n o frees the frame and restores RSP and the return address RA.

[[client.c]]

[[client.s]]

C
o
m
p
C
ert

≼
a
c

!S

[[server.s]]

≼
a
c

⊕

⊕

[[client.s + server.s]]

≼
i
d

!CS

≼
c

≼
a
c

Fig. 4. Verifying the Running Example

With the running example, our goal is to verify its
end-to-end correctness by exploiting the direct refine-
ment ≼ac: A ⇔ C derived from CompCert’s compi-
lation chain as shown in Fig. 4. The verification pro-
ceeds as follows. First, we establish [[client.s]] ≼ac
[[client.c]] by the correctness of compilation. Then,
we prove [[server.s]] ≼ac !S manually by providing
a specification !S for the server that respects the direct
refinement. At the source level, the combined semantics
is further refined to a single top-level specification !CS. Fi-
nally, the source and target level refinements are absorbed
into the direct refinement by vertical composition and
adequacy, resulting in a single direct refinement between
the top-level specification and the target program:

[[client.s + server.s]] ≼ac !CS

The refinements of open modules discussed in our paper are based on forward simulations
between small-step operational semantics (often in the form of labeled transition systems or LTS)
which have been witnessed in a wide range of verification projects [Gu et al. 2015; Jiang et al. 2019;
Koenig and Shao 2021; Song et al. 2020; Stewart et al. 2015; Wang et al. 2019]. Fig. 5a depicts a
refinement !2 ≼ !1 between two open semantics (LTS) !1 and !2. The source (target) semantics
!1 (!2) is initialized with a query (i.e., function call) @1 (@2) and may invoke an external call @′1
(@′2) as the execution goes. The execution continues when @′1 (@

′
2) returns with a reply A ′1 (A

′
2) and

finishes with a reply A1 (A2). For the refinement to hold, an invariant between the source and target
program states must hold throughout the execution which is denoted by the vertical double arrows
in Fig. 5a. Furthermore, this refinement relies on external calls satisfying certain well-behavedness
conditions (known as rely-conditions; e.g., external calls do not modify the private memory of
callers). In turn, it guarantees the entire source and target execution satisfy some well-behavedness
conditions (known as guarantee-conditions, e.g., they do not modify the private memory of their

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 72. Publication date: January 2024.



72:8 Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong Shao

calling environments). The rely-guarantee conditions are essential for horizontal composition: two
refinements !1 ≼ !2 and !

′
1 ≼ !

′
2 with complementary rely-guarantee conditions can be composed

into a single refinement !1 ⊕ !2 ≼ !
′
1 ⊕ !

′
2. However, vertical composition of such refinements

is difficult. A naive vertical composition of two refinements (one between !1 and !2 and another
between !2 and !3) simply concatenates them together like Fig. 5b, instead of generating a single
refinement between !1 and !3 like Fig. 5c.

1 This exposes the intermediate semantics (i.e., !2) and
imposes serious limitations on VCC as discussed in §1.2. Therefore, to the best of our knowledge,
none of the existing approaches fully support the verification outlined in Fig. 4.

To address the above problem, we develop direct refinements with the following distinguishing
features: 1) they always relate the semantics of modules at their native interfaces, thereby supporting
adequacy; 2) they do not mention the intermediate process of compilation, thereby supporting
heterogeneous modules and compilers; 3) they provide direct memory protection for source and
target semantics via a Kripke relation, thereby enabling horizontal composition of refinements
for heterogeneous modules; 4) most importantly, they are vertically composable. The first three
features are manifested in the very definition of direct refinements, which we shall discuss in §2.1
below. We then discuss the vertical composition of direct refinements in §2.2, which relies on the
discovery of the uniformity and transitivity of a Kripke relation for memory protection.

2.1 Refinement Supporting Adequacy, Heterogeneity and Horizontal Composition

To illustrate the key ideas, we use the top-level direct refinement ≼ac in Fig. 4 as an example. In the
remaining discussions we adopt the block-based memory model of CompCert [Leroy et al. 2012]
where a memory state consists of a disjoint set of memory blocks. ≼ac is a forward simulation that
directly relates C and assembly modules with their native language interfaces. By the definition of
these interfaces (See §3.1), a C query @C = E 5 [sg] (®E)@< is a function call to E 5 with signature sg,
a list of arguments ®E and a memory state<; a C reply AC = E ′@<′ carries a return value E ′ and
an updated memory state<′. An assembly query @A = rs@< invokes a function with the current
register set rs and memory state<. An assembly reply AA = rs′@<′ returns from a function with
the updated registers rs′ and memory<′. By definition, !2 ≼ac !1 means that !1 and !2 behave like
C and assembly programs at the boundary of modules, respectively. However, there is no restriction
on how !1 and !2 are actually implemented internally, which enables source-level specifications
with C interfaces like !S in Fig. 4.

The rely and guarantee conditions imposed by ≼ac are symmetric and bundledwith the simulation
invariants at the boundary of modules. They make assumptions about how C and assembly queries
should be related at the call sites and provide conclusions about how the replies should be related
after the calls return. Given any matching source and target queries @C = E 5 [sg] (®E)@<1 and
@A = rs@<2, it is assumed that

(1) The memory states are related by an invariant 9 known as a memory injection function [Leroy
et al. 2012], i.e., memory blocks in<1 are projected by 9 into those in<2;

(2) The function pointer E 5 is related to the program counter register in rs;
(3) The source arguments ®E are projected either to registers in rs or to outgoing argument slots

in the stack frame RSP in<2 according to the C calling convention;
(4) The outgoing arguments on the target stack frame are freeable and not in the image of 9 .

The first three requirements ensure that C arguments and memory are related to assembly regis-
ters and memory according to CompCert’s C calling convention. The last one ensures outgoing
arguments are protected, thereby preserving the invariant of open simulation across external calls.

1To simplify the presentation, we often elide the guarantee conditions in figures for simulation.
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Fig. 6. Direct Refinement of the Hand-wri�en Server

After the function calls return, the source and target queries AC = res@<′1 and AA = rs′@<′2
must satisfy the following requirements:

(1) The updated memory states<′1 and<
′
2 are related by an updated memory injection 9 ′;

(2) The C-level return value res is related to the value stored in the register for return value;
(3) For any callee-saved register r , rs′ (r) = rs(r);
(4) The stack pointer register and program counter are restored.
(5) The access to memory during the function call is protected by a Kripke Memory Relation injp

such that the private stack data for other function calls are not modified.

The first two requirements ensure that return values and memories are related according to the
calling convention. The following two ensure that registers are correctly restored before returning.
The last requirement plays a critical role in rely-guarantee reasoning and enables horizontal
composition of direct refinements as we shall see soon.

2.1.1 Adequacy and Heterogeneity via Direct Refinement. By definition, ≼ac is basically a formalized
C calling convention for CompCert with direct relations between C and assembly operational
semantics and with invariants for protecting register values and memory states. Adequacy is
automatically guaranteed as syntactic linking coincides with semantics linking at the assembly
level. That is, given any assembly modules a.s and b.s, [[a.s + b.s]] ≼id [[a.s]] ⊕ [[b.s]].
Moreover, ≼ac does not mention anything about compilation. It works for any heterogeneous

module and compilation chain that meet its requirements, even for hand-written assembly. Take
the refinement of [[server.s]] ≼ac !S in Fig. 4 as an example. The first few steps of the simulation
are depicted in Fig. 6, where !S is an LTS hand-written by us and [[server.s]] is derived from
the CompCert assembly semantics. Because !S is only required to respect the C interface, we
choose a form easy to comprehend where its internal executions are in big steps. Now, suppose the
environment calls encrypt with source and target queries initially related by CompCert’s calling
convention s.t. AB (RDI) = 8 and AB (RSI) = ? . After the initialization �1 and �2, the execution enters
internal states related by an invariant '. Then, the target execution takes internal steps  2 until
reaching an external call. This corresponds to executing lines 5-13 in Fig. 3b, which allocates the
stack frame RSP, performs encryption by storing i XOR key at the address RSP+8, and calls back ?
with RSP+8. At the source level, these steps correspond to one big-step execution  1 which allocates
a memory block 10, stores i XOR key at 10, and prepares to call ? with 10. Therefore, the memory
injection in ' maps 10 to RSP+8. The source and target execution continue with transitions -1 and
-2 to the external calls to ? , return from ? and go on until they return from encrypt.

2.1.2 Horizontal Composition via Kripke Memory Relations. The Kripke Memory Relation (KMR)
injp provides essential protection for private values on the stack, which ensures that simulations
between heterogeneous modules can be established and their horizontal composition is feasible.

We illustrate these points via our running example. Assume that the environment calls request
in the client with 11 which in turn calls encrypt in the server to get the value 11 XOR 42 = 33
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Fig. 7. Snapshot of the Memory State a�er Call Back

whose address is passed back to the client by calling process. Fig. 7 depicts a snapshot of the
memory states and the injection right after process is entered (i.e., at line 8 in Fig. 3a), where boxes
denote allocated memory blocks, black arrows between blocks denote injections, and red arrows
denote pointers. The source semantics allocates one block for each local variable (18 for i, 10 for
the encrypted value 33 and 1A for r) while the target semantics stores their values in registers or
stacks (11 is stored in RDI while 33 on the stack because its address is taken and may be modified by
the callee). One stack frame is allocated for each function call which stores private data including
pointers to previous frames (1RSP), return addresses (RA), and callee-saved registers (e.g., RBX).

injp is essential for proving simulation for open modules as it guarantees simulation can be
re-established after external calls return. Informally, at every external call site, injp marks all
memory regions outside the footprint (domain and image) of the current injection as private and
does not allow the external call to modify those memory regions. From the perspective of server.s,
when the snapshot in Fig. 7 is taken, the execution is inside the thick dashed line in Fig. 6 and
protected by injp. Therefore, all the shaded memory in Fig. 7 are marked as private and protected
against the callback to process. Indeed, they correspond to either memory values turned into
temporary variables (e.g., 18 ) or private stack data (e.g., 1RSP, RBX and RA in block 1RSP1 ) that should
not be touched by process. Such protection ensures that when process returns, all the private
values are still valid, thereby re-establishing the simulation invariant.

The role of injp is reversed for the incoming calls from the environment: it guarantees that the
entire execution from the initial query to the final reply will not touch any private memory of
the environment. Therefore, injp is used to impose a reliance on memory protection by external
calls and to provide a symmetric guarantee of memory protection for the environment callers. Any
simulations with compatible language interfaces that satisfy this rely-guarantee condition can be
horizontally composed. For example, we can horizontally compose [[client.s]] ≼ac [[client.c]]
and [[server.s]] ≼ac !S into [[client.s]] ⊕ [[server.s]] ≼ac [[client.c]] ⊕ !S in Fig. 4.

2.2 Uniform and Transitive KMR for Vertical Composition of Direct Refinements

Direct refinements are only useful if they can be vertically composed, which is critical for composing
refinements obtained from individual compiler passes into a single top-level refinement such as
≼ac and for further composition with source-level refinements as shown in Fig. 4.
We discuss our approach for addressing this problem by using CompCert and CompCertO as the

concrete platforms. It is based on the following two observations. First, injp in fact captures the
rely-guarantee conditions for memory protection needed by every compiler pass in CompCert. At
a high-level, it means that the rely-guarantee conditions as depicted in Fig. 5 can all be replaced
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by injp (modulo the details on language interfaces). Second, injp is transitively composable, i.e.,
any vertical pairing of injp can be proved equivalent to a single injp. It means that given two
refinements !2 ≼12 !1 and !3 ≼23 !2 as depicted in Fig. 5b, when their rely-guarantee conditions are
uniformly represented by injp, they can be merged into the direct refinement !3 ≼13 !1 in Fig. 5c
with a single injp as the rely-guarantee condition. We shall present the technical challenges leading
to these observations in §3 and elaborate on the observations themselves in §4.
By the above observations, an obvious approach for applying direct refinements to realistic

optimizing compilers is to prove open simulation for every compiler pass using injp, and vertically
compose those simulations into a single simulation. However, for a non-trivial compiler like Comp-
Cert, it means we need to rewrite a significant part of its proofs. More importantly, optimization
passes in CompCert need additional rely-guarantee conditions as they are based on value analysis.
To address the first problem, we start from the refinement proofs with least restrictive KMRs for
individual passes in CompCertO [Koenig and Shao 2021], and exploit the properties that these KMRs
can eventually be “absorbed” into injp in vertical composition to generate a direct refinement
parameterized only by injp. To address the second problem, we propose a notion of semantic

invariant that captures the rely-guarantee conditions for value analysis. When piggybacked onto
injp, this semantic invariant can be transitively composed along with injp and eventually pushed
to the C level. It then becomes a condition for enabling optimizations at the source level, e.g., for
supporting the refinement of the optimized server in Fig. 3c. We discuss those solutions in §5.
Finally, we observe that source-level refinements can also be parameterized by injp, which

enables end-to-end program verification as depicted in Fig. 4 as we shall discuss in §6.

3 BACKGROUND AND CHALLENGES

3.1 Background

We introduce the memory model, open simulations, and injpwhich is critical for direct refinements.

3.1.1 Block-based Memory Model. By Leroy et al. [2012], a memory state< (of type mem) consists
of a disjoint set of memory blocks. A memory address or pointer (1, >) points to the >-th byte in the
block 1 where 1 has type block and > has type Z (integers). The value at (1, >) is denoted by<[1, >].
Values (of type val) are either undefined (Vundef), 32- or 64-bit integers or floats, or pointers of the
form Vptr(1, >). For simplicity, we often write 1 for Vptr(1, 0). The memory operations including
allocation, free, read and write are provided and governed by permissions. The permission of
a memory cell is ordered from high to low as Freeable ⩾ Writable ⩾ Readable ⩾ NA where
Freeable enables all operations, Writable enables all but free, Readable enables only read, and
NA enables none. If ?1 ⩾ ?2 then any cell with permission ?1 also has permission ?2. perm(<, ?)
denotes the set of cells with at least permission ? . For example, (1, >) ∈ perm(<, Readable) iff the
cell at (1, >) in< is readable. An address with no permission at all is not in the footprint of memory.
Transformations of memory states are captured via partial functions 9 : block→ ⌊block × Z⌋

called injection functions, s.t. 9 (1) = ∅ if1 is removed frommemory and 9 (1) = ⌊(1′, >)⌋ if1 is shifted
(injected) to (1′, >) in the target memory. We define meminj = block→ ⌊block × Z⌋. E1 and E2 are

related under 9 (denoted by E1 ↩→
9
E E2) if either E1 is Vundef, or they are both equal scalar values,

or pointers shifted according to 9 , i.e., E1 = Vptr(1, >), 9 (1) = ⌊(1′, > ′)⌋ and E2 = Vptr(1′, > + > ′).
Given this relation, there is a memory injection between the source memory state<1 and the

target state<2 under 9 (denoted by<1 ↩→
9
< <2) if the following properties are satisfied which

ensure preservation of permissions and values under injection:

∀ 11 12 > >
′ ?, 9 (11) = ⌊(12, >

′)⌋ ⇒ (11, >) ∈ perm(<1, ?) ⇒ (12, > + >
′) ∈ perm(<2, ?).

∀ 11 12 > >
′, 9 (11) = ⌊(12, >

′)⌋ ⇒ (11, >) ∈ perm(<1, Readable) ⇒<1 [11, >] ↩→
9
E <2 [12, > + >

′] .
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Memory injections are transitive and necessary for verifying transformations of memory structures
(e.g., merging local variables into stack-allocated data and generating a concrete stack frame). For
the remaining passes, a simpler relation called memory extension is used instead, which employs an
identity injection. Reasoning about permissions under refinements is a major source of complexity.

3.1.2 A Framework for Open Simulations. In CompCertO [Koenig and Shao 2021], a language

interface � = ⟨�@, �A ⟩ is a pair of sets �@ and �A denoting acceptable queries and replies for open
modules, respectively. Different interfaces may be used for different languages. The relevant ones
for our discussion have been introduced in §2.1 and formally defined as follows. The language
interface at the C level is C = ⟨val × sig × val∗ × mem, val × mem⟩ where its queries and replies
take the forms E 5 [sg] (®E)@< and E ′@<′, respectively. The language interface at the assembly level
is A = ⟨regset × mem, regset × mem⟩ where its queries and replies take the form rs@<.
Open labeled transition systems (LTS) represent semantics of modules that may accept queries

and provide replies at the incoming side and provide queries and accept replies at the outgoing side
(i.e., calling external functions). An open LTS ! : � ↠ � is a tuple ⟨�, (, � ,→, � , -,. ⟩ where � (�)
is the language interface for outgoing (incoming) queries and replies, � ⊆ �@ a set of initial queries,
( a set of internal states, � ⊆ � × ( (� ⊆ ( × �A ) transition relations for incoming queries (replies),
- ⊆ ( ×�@ (. ⊆ ( ×�A × () transitions for outgoing queries (replies), and→⊆ ( × E∗ × ( internal
transitions emitting events of type E. Note that (B, @$ ) ∈ - iff an outgoing query @$ happens at B ;
(B, A$ , B′) ∈ . iff after @$ returns with A$ the execution continues with an updated state B′.
Kripke relations are used to describe evolution of program states in open simulations between

LTSs. A Kripke relation ' : , → {( | ( ⊆ � × �} is a family of relations indexed by a Kripke
world, ; for simplicity, we define K, (�, �) = , → {( | ( ⊆ � × �}. A simulation convention

relating two language interfaces �1 and �2 is a tuple R = ⟨,,R@ : K, (�
@
1
, �

@
2
),RA : K, (�

A
1
, �A

2
)⟩

which we write as R : �1 ⇔ �2. Simulation conventions serve as interfaces of open simulations
by relating source and target language interfaces. For example, a C-level convention c : C ⇔
C = ⟨meminj,R

@
c,R

A
c⟩ relates C queries and replies as follows, where the Kripke world consists of

injections and, in a given world 9 , the values and memory in queries and replies are related by 9 .

(E 5 [B6] (®E)@<, E
′
5
[B6] ( ®E ′)@<′) ∈ R

@
c ( 9) ⇔ E 5 ↩→

9
E E
′
5
∧ ®E ↩→

9
E
®E ′ ∧< ↩→

9
< <′

(E@<, E ′@<′) ∈ RAc ( 9) ⇔ E ↩→
9
E E
′ ∧< ↩→

9
< <′

Open forward simulations describe refinement between LTS. To establish an open (forward)
simulation between !1 : �1 ↠ �1 and !2 : �2 ↠ �2, one needs to find two simulation conventions
R� : �1 ⇔ �2 and R� : �1 ⇔ �2 that connect queries and replies at the outgoing and incoming
sides, and show the internal execution steps and external interactions of open modules are related
by an invariant '. This simulation is denoted by !1 ⩽R�↠R� !2 and formally defined as follows (for
simplicity, we shall write !1 ⩽R !2 to denote !1 ⩽R↠R !2):

Definition 3.1. Given !1 : �1 ↠ �1, !2 : �2 ↠ �2, R� : �1 ⇔ �2 and R� : �1 ⇔ �2,
!1 ⩽R�↠R� !2 holds if there is some Kripke relation ' ∈ K,�

((1, (2) that satisfies:

(1) ∀ @1 @2, (@1, @2) ∈ R
@

�
(F�) ⇒ (@1 ∈ �1 ⇔ @2 ∈ �2)

(2) ∀ F� @1 @2 B1, (@1, @2) ∈ R
@

�
(F�) ⇒ (@1, B1) ∈ �1 ⇒ ∃ B2, (B1, B2) ∈ '(F�) ∧ (@2, B2) ∈ �2 .

(3) ∀ F� B1 B2 C, (B1, B2) ∈ '(F�) ⇒ B1
C
→ B′1 ⇒ ∃ B

′
2, (B

′
1, B
′
2) ∈ '(F�) ∧ B2

C

→∗ B′2 .
(4) ∀ F� B1 B2 @1, (B1, B2) ∈ '(F�) ⇒ (B1, @1) ∈ -1 ⇒

∃F� @2, (@1, @2) ∈ R
@

�
(F�) ∧ (B2, @2) ∈ -2 ∧

∀ A1 A2 B
′
1, (A1, A2) ∈ R

A
�
(F�) ⇒ (B1, A1, B

′
1) ∈ .1 ⇒ ∃ B

′
2, (B

′
1, B
′
2) ∈ '(F�) ∧ (B2, A2, B

′
2) ∈ .2.

(5) ∀ F� B1 B2 A1, (B1, B2) ∈ '(F�) ⇒ (B1, A1) ∈ �1 ⇒ ∃ A2, (A1, A2) ∈ R
A
�
(F�) ∧ (B2, A2) ∈ �2.
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Fig. 8. Open Simulation between LTS

Here, property (1) requires initial queries to match; (2) requires initial states to hold under the
invariant '; (3) requires internal execution to preserve '; (4) requires ' to be preserved across exter-
nal calls, and (5) requires final replies to match. According to these properties, a complete forward
simulation looks like Fig. 8. From the above definition, it is easy to prove the horizontal and vertical
compositionality of open simulations and adequacy for assembly modules, i.e., ∀ !1 !2 !

′
1 !
′
2, !1 ⩽R

!2 ⇒ !′1 ⩽R !
′
2 ⇒ !1 ⊕ !

′
1 ⩽R !2 ⊕ !

′
2 and ∀ ("1 "2 : Asm), [["1]] ⊕ [["2]] ⩽id [["1 +"2]].

The Kripke worlds (e.g., memory injections) may evolve as the execution goes on. Rely-guarantee
reasoning about such evolution is essential for horizontal composition of simulations. For illus-
tration, the Kripke worlds at the boundary of modules are displayed in Fig. 8. The evolution of
worlds across external calls is governed by an accessibility relationF� {� F

′
� for describing the

rely-condition. By assuming F� {� F
′
�, one needs to prove the guarantee condition F� {� F

′
� ,

i.e., the evolution of worlds in the whole execution respects {� . Simulations with symmetric
rely-guarantee conditions can be horizontally composed, even with mutual calls between modules.

Note that the accessibility relation and evolution of Kripke worlds are not explicit in the definition
of simulation conventions. Instead, they are implicit by assuming a modality operator ^ is always
applied to RA s.t. A ∈ ^RA (F) ⇔ ∃ F ′,F { F ′ ∧ A ∈ RA (F ′). We often ignore accessibility and
modality when talking purely about simulation conventions in the remaining discussion.

Accessibility relations are mainly for describing evolution of memory states across external calls.
For this, simulation conventions are parameterized by Kripke Memory Relations or KMR.

Definition 3.2. A Kripke Memory Relation is a tuple ⟨,, 5 ,{, '⟩ where, is a set of worlds,
5 :, → meminj a function for extracting injections from worlds, {⊆ , ×, an accessibility
relation between worlds and ' : K, (mem, mem) a Kripke relation over memory states that is
compatible with the memory operations. We writeF { F ′ for (F,F ′) ∈{.

We write R to emphasize that a simulation convention R is parameterized by the KMR  , meaning
R shares the same type of worlds with  and inherits its accessibility relation.
The most interesting KMR is injp as it provides protection on memory w.r.t. injections.

Definition 3.3 (Kripke Relation with Memory Protection). injp = ⟨,injp, 5injp,{injp, 'injp⟩ where

,injp = (meminj × mem × mem), 5injp ( 9, _, _) = 9 , (<1,<2) ∈ 'injp ( 9,<1,<2) ⇔<1 ↩→
9
< <2 and

( 9,<1,<2) {injp ( 9
′,<′1,<

′
2) ⇔ 9 ⊆ 9 ′ ∧ unmapped( 9) ⊆ unchanged-on(<1,<

′
1)

∧ out-of-reach( 9,<1) ⊆ unchanged-on(<2,<
′
2).

∧ mem-acc(<1,<
′
1) ∧ mem-acc(<2,<

′
2)

Here, mem-acc(<,<′) denotes monotonicity of memory states such as valid blocks can only increase
and read-only data does not change in value. unchanged-on(<,<′) denotes memory cells whose
permissions and values are not changed from< to<′ and

(11, >1) ∈ unmapped( 9) ⇔ 9 (11) = ∅
(12, >2) ∈ out-of-reach( 9,<1) ⇔ ∀ 11 >

′
2, 9 (11) = ⌊(12, >

′
2)⌋ ⇒ (11, >2 − >

′
2) ∉ perm(<1, NA).
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Fig. 9. Kripke Worlds Related by injp

By definition, a world ( 9,<1,<2) evolves to
( 9 ′,<′1,<

′
2) under injp only if 9 ′ is strictly larger

than 9 and any memory cells in<1 and<2 not in
the domain (i.e., unmapped by 9 ) or image of 9 (i.e.,
out-of-reach by 9 from<1) will be protected, mean-
ing their values and permissions are unchanged from
<1 (<2) to<

′
1 (<

′
2). An example is shown in Fig. 9

where the shaded regions in <1 are unmapped by 9 and unchanged while those in <2 are out-
of-reach from 9 and unchanged.<′1 and<

′
2 may contain newly allocated blocks which are not

protected by injp. When injp is used at the outgoing side, it denotes that the simulation relies on
knowing that the unmapped and out-of-reach regions at the call side are not modified by external
calls. When injp is used at the incoming side, it denotes that the simulation guarantees such
regions at initial queries are not modified by the simulation itself.

3.2 Challenges for Vertically Composing Open Simulations

As discussed in §2.2, the challenge for constructing direct refinements for multi-pass optimizing
compilers lies in their vertical composition. Themost basic vertical composition for open simulations
is stated below which is easily proved by pairing of individual simulations [Koenig and Shao 2021].

Theorem 3.4 (V. Comp). Given !1 : �1 ↠ �1, !2 : �2 ↠ �2 and !3 : �3 ↠ �3, and given

R12 : �1 ⇔ �2, S12 : �1 ⇔ �2, R23 : �2 ⇔ �3 and S23 : �2 ⇔ �3,

!1 ⩽R12↠S12 !2 ⇒ !2 ⩽R23↠S23 !3 ⇒ !1 ⩽R12 ·R23↠S12 ·S23 !3 .

Here, (_ · _) is a composed simulation convention s.t. R · S = ⟨,R ×,S,R
@
· S

@,RA · SA ⟩ where for
any @1 and @3, (@1, @3) ∈ R

@
· S

@ (FR,FS) ⇔ ∃@2, (@1, @2) ∈ R
@ (FR) ∧ (@2, @3) ∈ S

@ (FS) (similarly
for RA · SA ). Then, given any compiler with # passes and their refinement relations !1 ⩽R12↠S12
!2, . . . , !# ⩽R#,# +1↠S#,# +1 !#+1, we get their concatenation !1 ⩽R12 ·...·R#,# +1↠S12 ·...·S#,# +1 !#+1,
which exposes internal compilation and weakens compositionality as we have discussed in §1.2.

The above problem may be solved if the composed simulation convention can be refined into
a single convention directly relating source and target queries and replies. Given two simulation
conventions R, S : �1 ⇔ �2, R is refined by S if

∀ FS @1 @2, (@1, @2) ∈ S
@ (FS) ⇒ ∃ FR, (@1, @2) ∈ R

@ (FR)∧
∀ A1 A2, (A1, A2) ∈ R

A (FR) ⇒ (A1, A2) ∈ S
A (FS)

which we write as R ⊑ S. If both R ⊑ S and S ⊑ R, then R and S are equivalent and written as
R ≡ S. By definition, R ⊑ S indicates any query for S can be converted into a query for R and any
reply resulting from the converted query can be converted back to a reply for S. By wrapping the
incoming side of an open simulation with a more general convention and its outgoing side with a
more specialized convention, one gets another valid open simulation [Koenig and Shao 2021]:

Theorem 3.5. Given !1 : �1 ↠ �1 and !2 : �2 ↠ �2, if R
′
� ⊑ R� : �1 ⇔ �2, R� ⊑ R

′
� : �1 ⇔ �2

and !1 ⩽R�↠R� !2, then !1 ⩽R′�↠R
′
�
!2.

Now, we would like to prove the “real” vertical composition generating direct refinements
(simulations). Given any !1 ⩽R12↠R12 !2 and !2 ⩽R23↠R23 !3, if we can show the existence of
simulation conventions R13 directly relating source and target semantics s.t. R13 ≡ R12 · R23, then
!1 ⩽R13↠R13 !3 holds by Theorem 3.4 and Theorem 3.5, which is the desired direct refinement.
This composition is illustrated in Fig. 10 where the parts enclosed by dashed boxes represent the
concatenation of !1 ⩽R12↠R12 !2 and !2 ⩽R23↠R23 !3. The direct queries and replies are split and
merged for interaction with parallelly running simulations underlying the direct refinement.
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Fig. 10. Vertical Composition of Open Simulations by Refinement of Simulation Conventions
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Fig. 11. Composition of KMRs

Since simulation conventions are parameterized by KMRs, a major obstacle to the real vertical
composition of open simulations is to prove KMRs for individual simulations can be composed into
a single KMR. For this, one needs to define refinements between KMRs. Given any KMRs  and !,
 ⊑ ! (i.e.,  is refined by !) holds if the following is true:

∀ F! <1 <2, (<1,<2) ∈ '! (F!) ⇒ ∃ F , (<1,<2) ∈ ' (F ) ∧ 5! (F!) ⊆ 5 (F ) ∧
∀ F ′ <

′
1 <
′
2, F { F

′
 ⇒ (<

′
1,<

′
2) ∈ ' (F

′
 ) ⇒

∃ F ′!, F! {! F
′
! ∧ (<

′
1,<

′
2) ∈ '! (F

′
!) ∧ 5 (F

′
 ) ⊆ 5! (F

′
!).

We write  ≡ ! to denote that  and ! are equivalent, i.e.,  ⊑ ! and ! ⊑  .
Continue with the proof of real vertical composition, i.e., proving R13 ≡ R12 · R23. Assume

R8 is parameterized by KMR  8 , showing the existence of R13 s.t. R13 ⊑ R12 · R23 amounts to
proving a parallel refinement over the parameterizing KMRs, i.e., there exists  13 s.t.  13 ⊑  12 · 23

where  12 ·  23 = ⟨,12 ×,23, 512 × 523,{12 × {23, '12 × '23⟩. A more intuitive interpretation is
depicted in Fig. 11a where black symbols are ∀-quantified (assumptions we know) and red ones are
∃-quantified (conclusions we need to construct). Note that Fig. 11a exactly mirrors the refinement
on the outgoing side in Fig. 10. For simplicity, we useF8 not only to represent worlds, but also to
denote '8 (F8 ) (where '8 is the Kripke relation given by KMR  8 ) when it connects memory states
through vertical lines. A dual property we need to prove for the incoming side is shown in Fig. 11b.

In both cases in Fig. 11, we need to construct interpolating states for relating source and target
memory (i.e.,<′2 in Fig. 11a and<2 in Fig. 11b). The construction of<′2 is especially challenging, for
which we need to decompose the evolved worldF ′13 intoF

′
12 andF

′
23 s.t. they are accessible from the

original worldsF12 andF23. It is not clear at all how this construction is possible because 1)<′2 may
have many forms since Kripke relations are in general non-deterministic and 2) KMRs (e.g., injp)
introduce memory protection for external calls which may not hold after the (de-)composition.
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Fig. 12. Closure of Public Memory

1 void f() {

2 int x, y;

3 g(&y);

4 }

(a) Example
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. . .
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(b) SimplLocals
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. . .

g

(c) Stacking

Fig. 13. Protection of Private Memory by injp

Because of the above difficulties, existing approaches eithermake substantial changes to semantics
for constructing interpolating states, thereby destroying adequacy [Stewart et al. 2015], or do not
even try to merge Kripke memory relations, but instead leave them as separate entities [Koenig
and Shao 2021; Song et al. 2020]. As a result, direct refinements cannot be achieved.

4 A UNIFORM AND TRANSITIVE KRIPKE MEMORY RELATION

To overcome the challenge for vertically composing open simulations, we exploit the observation
that injp in fact can be viewed as a most general KMR. Then, the compositionality of KMRs
discussed in §3.2 is reduced to transitivity of injp, i.e., injp ≡ injp · injp.

4.1 Uniformity of injp

We show that injp is both a reasonable guarantee condition and a reasonable rely condition for all
the compiler passes in CompCert. It is based on the observation that a notion of private and public
memory can be derived from injections and coincides with the protection provided by injp.

4.1.1 Public and Private Memory via Memory Injections.

Definition 4.1. Given<1 ↩→
9
< <2, the public memory regions in<1 and<2 are defined as follows:

pub-src-mem( 9) = {(1, >) | 9 (1) ≠ ∅};
pub-tgt-mem( 9,<1) = {(1, >) | ∃1

′ > ′, 9 (1′) = ⌊(1, > ′)⌋ ∧ (1′, > − > ′) ∈ perm(<1, NA)}.

By definition, a cell (1, >) is public in the source memory if it is in the domain of 9 , and (1, >) is
public in the target memory if it is mapped by 9 from some valid public source memory. Anymemory
not public with respect to 9 is private. We can see that private memory corresponds exactly to un-
mapped and out-of-reach memory defined by injp, i.e., for any1 and > , (1, >) ∈ pub-src-mem( 9) ⇔
(1, >) ∉ unmapped( 9) and (1, >) ∈ pub-tgt-mem( 9,<) ⇔ (1, >) ∉ out-of-reach( 9,<).
With Definition 4.1 and the properties of memory injection (see §3.1.1), we can easily prove

access of pointers in a readable and public source location gets back another public location.

Lemma 4.2. Given<1 ↩→
9
< <2,

∀ 11 >1, (11, >1) ∈ pub-src-mem( 9) ⇒ (11, >1) ∈ perm(<1, Readable) ⇒
<1 [11, >1] = Vptr(1′1, >

′
1) ⇒ (1

′
1, >
′
1) ∈ pub-src-mem( 9).

It implies that readable public memory regions form a “closure” such that the sequences of reads
are bounded inside these regions, as shown in Fig. 12. The horizontal arrows indicates a pointer
value (18+1, >8+1) is read from (18 , >8 ) with possible adjustment with pointer arithmetic. Note that
all memory cells at (18 , >8 )s and (1

′
8 , >
′
8 )s have Readable permission. By Lemma 4.2, (18 , >8 )s are all

in public regions. By Definition 4.1, the mirroring reads (1′8 , >
′
8 )s are also in public regions.
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4.1.2 injp as a Uniform Rely Condition. injp is adequate for preventing external calls from
interfering with internal execution for all the compiler passes of CompCert. 2 To illustrate this
point, we discuss the effect of injp on two of CompCert’s passes using Fig. 13a as an example
where g is an external function. The first pass is SimplLocalswhich converts local variables whose
memory addresses are not taken into temporary ones. As shown in Fig. 13b, x is turned into a
temporary variable at the target level which is not visible to g. Therefore, x at the source level
becomes private data as its block 1G is unmapped by 9 , thereby protected by injp and cannot be
modified by g. The second pass is Stacking which expands the stack frames with private regions
for return addresses, spilled registers, arguments, etc. Continuing with our example, the only public
stack data in Fig. 13c is ~. All the private data is out-of-reach, thereby protected by injp.

4.1.3 injp as a Uniform Guarantee Condition. For injp to serve as a uniform guarantee condition,
it suffices to show the private memory of the environment is protected between initial calls and
final replies. During an open forward simulation, all incoming values and memories are related

by some initial injection 9 (e.g., ®E1 ↩→
9
E ®E2 and<1 ↩→

9
< <2). In particular, the pointers in them are

related by 9 . Therefore, any sequence of reads starting from pointers stored in the initial queries
only inspect public memories in the source and target, as already shown in Fig. 12. The private (i.e.,
unmapped or out-of-reach) regions of the initial memories are not modified by internal execution.
Moreover, because injection functions only grow bigger during execution but never change in
value and the outgoing calls have injp as a rely-condition, the initially unmapped (out-of-reach)
regions will stay unmapped (out-of-reach) and be protected during external calls. As a result, we
conclude that injp is a reasonable guarantee condition for any open simulation.

4.2 Transitivity of injp
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923

<′
1

<′
3

{injp 9 ′
13 ⇒

<1

<2

<3

912

923

<′
1

<′
3

9 ′
13

<′
2

9 ′
12

9 ′
23

{injp

{injp

Fig. 14. Construction of Interpolating States

The goal is to show the two refinements
in Fig. 11 hold when  8 9 = injp, i.e., injp ≡
injp·injp. As discussed in §3.2, the critical step
is to construct interpolating memory states that
transitively relate source and target states. The
construction is based on two observations: 1)
the memory injections deterministically decide
the value and permissions of public memory
because they encode partial functional transfor-
mations on memory states, and 2) any memory
not in the domain or range of the partial functions is protected (private) and unchanged throughout
external calls. Although the proof is quite involved, the result can be reused for all compiler passes
thanks to injp’s uniformity.

4.2.1 injp ⊑ injp · injp. By definition, we need to prove the following lemma:

Lemma 4.3. injp ⊑ injp · injp holds. That is,

∀912 923 <1 <2 <3, <1 ↩→
912
< <2 ⇒<2 ↩→

923
< <3 ⇒ ∃ 913, <1 ↩→

913
< <3 ∧

∀<′1 <
′
3 9
′
13, ( 913,<1,<3) {injp ( 9

′
13,<

′
1,<

′
3) ⇒<′1 ↩→

9 ′
13
< <′3 ⇒

∃<′2 9
′
12 9
′
23, ( 912,<1,<2) {injp ( 9

′
12,<

′
1,<

′
2) ∧<

′
1 ↩→

9 ′
12
< <′2

∧( 923,<2,<3) {injp ( 9
′
23,<

′
2,<

′
3) ∧<

′
2 ↩→

9 ′
23
< <′3.

This lemma conforms to the graphic representation in Fig. 11a. To prove it, an obvious choice
is to pick 913 = 923 · 912. Then, we are left to prove the existence of interpolating state<′2 and the

2In fact, the properties in Definition 3.3 are exactly from CompCert’s assumptions on external calls.
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Fig. 15. Constructing of an Interpolating Memory State

memory and accessibility relations as shown in Fig. 14. By definition,<′2 consists of memory blocks
newly allocated with respect to<2 and blocks that already exist in<2. The latter can be further
divided into public and private memory regions with respect to injections 912 and 923. Then,<

′
2 is

constructed following the ideas that 1) the public and newly allocated memory should be projected
from the updated source memory<′1 by 9

′
12, and 2) the private memory is protected by injp and

should be copied over from<2 to<
′
2.

We use the concrete example in Fig. 15 to motivate the construction of <′2. Here, the white
and green areas correspond to locations in perm(_, NA) (with at least some permission) and in

perm(_, Readable) (with at least readable permission), respectively. Given<1 ↩→
912
< <2,<2 ↩→

923
<

<3 and ( 923 · 912,<1,<3) {injp ( 9
′
13,<

′
1,<

′
3), we need to define 9 ′12 and 9

′
23 and build<′2 satisfying

<′1 ↩→
9 ′
12
< <′2,<

′
2 ↩→

9 ′
23
< <′3, ( 912,<1,<2) {injp ( 9

′
12,<

′
1,<

′
2), and ( 923,<2,<3) {injp ( 9

′
23,<

′
2,<

′
3).

<′1 and<
′
3 are expansions of<1 and<3 with new blocks and possible modification to the public

regions of<1 and<3. Here,<
′
1 has a new block 14

1
and<′3 has two new block 13

3
and 14

3
.

We first fix 9 ′12, 9
′
23 and the shape of blocks in <′2. We begin with <2 and introduce a newly

allocated block 14
2
whose shape matches 14

1
in <′1. Then, 9

′
12 is obtained by expanding 912 with

identity mapping from 14
1
to 14

2
. Furthermore, 9 ′23 is also expanded with a mapping from 14

2
to a

block in<′3; this mapping is determined by 9 ′13.
We then set the values and permissions for memory cells in<′2 so that it satisfies injection and the

unchanged-on properties for readable memory regions implied by ( 912,<1,<2) {injp ( 9
′
12,<

′
1,<

′
2)

and ( 923,<2,<3) {injp ( 9
′
23,<

′
2,<

′
3). The values and permissions for newly allocated blocks are

obviously mapped from<′1 by 9
′
12. Those for old blocks are fixed as follows. By memory protection

provided in ( 923 · 912,<1,<3) {injp ( 9
′
13,<

′
1,<

′
3), the only memory cells in<1 that may have been

modified in<′1 are those mapped all the way to<3 by 923 · 912, while the cells in<3 that may be
modified in<′3 must be in the image of 923 · 912. To match this fact, the only old memory regions
in<′2 whose values and permissions may be modified are those both in the image of 912 and the
domain of 923. Those are the public memory with respect to 912 and 923 and displayed as the gray
areas in Fig. 15b. Following idea 1) above, the values and permissions in those regions are projected
from<′1 by applying the injection function 912. Note that there is an exception: values in read-only
public regions are copied over from<2. Following idea 2) above, the remaining old memory regions
are private with respect to 912 and 923 and should have the same values and permissions as in<2.
Note that the accessibility relations ( 912,<1,<2) {injp ( 9

′
12,<

′
1,<

′
2) and ( 923,<2,<3) {injp

( 9 ′23,<
′
2,<

′
3) can be derived from ( 923 · 912,<1,<3) {injp ( 9

′
13,<

′
1,<

′
3) because the latter enforces

stronger protection than the former. This is due to unmapped and out-of-reach regions getting
bigger as memory injections get composed. For example, in Fig. 15, 11

1
is mapped by 912 but becomes

unmapped by 923 · 912; the image of 11
2
in 11

3
is in reach by 923 but becomes out-of-reach by 923 · 912.
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Table 1. Significant Passes of CompCert

Languages/Passes Outgoing↠ Incoming

Clight C ↠ C

Self-Sim ro · cinjp ↠ ro · cinjp

SimplLocals cinjp ↠ cinj
Csharpminor C ↠ C

Cminorgen cinjp ↠ cinj
Cminor C ↠ C

Selection wt · cext ↠ wt · cext

CminorSel C ↠ C

RTLgen cext ↠ cext

RTL C ↠ C

Self-Sim cinj ↠ cinj

Tailcall cext ↠ cext

Inlining cinjp ↠ cinj
Self-Sim cinjp ↠ cinjp

Language/Pass Outgoing↠ Incoming

Constprop ro · cinjp ↠ ro · cinjp
CSE ro · cinjp ↠ ro · cinjp

Deadcode ro · cinjp ↠ ro · cinjp
Unusedglob cinj ↠ cinj
Allocation wt · cext · CL↠ wt · cext · CL

LTL L ↠ L

Tunneling ltlext ↠ ltlext

Linear L ↠ L

Stacking ltlinjp · LM↠ LM · machinj
Mach M ↠M

Asmgen machext · MA↠ machext · MA

Asm A ↠ A

Self-Sim asminj ↠ asminj

Self-Sim asminjp ↠ asminjp

4.2.2 injp · injp ⊑ injp. By definition, we need to prove:

Lemma 4.4. injp · injp ⊑ injp holds. That is,

∀913 <1 <3, <1 ↩→
913
< <3 ⇒ ∃ 912 923 <2, <1 ↩→

912
< <2 ∧<2 ↩→

923
< <3 ∧

∀<′1 <
′
2 <
′
3 9
′
12 9
′
23, ( 912,<1,<2) {injp ( 9

′
12,<

′
1,<

′
2) ⇒ ( 923,<2,<3) {injp ( 9

′
23,<

′
2,<

′
3) ⇒

<′1 ↩→
9 ′
12
< <′2 ⇒<′2 ↩→

9 ′
23
< <′3 ⇒ ∃ 9

′
13, ( 913,<1,<3) {injp ( 9

′
13,<

′
1,<

′
3) ∧<

′
1 ↩→

9 ′
13
< <′3.

This lemma conforms to Fig. 11b. To prove it, we pick 912 to be an partial identity injection
( 912 (1) = ⌊1, 0⌋ when 913 (1) ≠ ∅) , 923 = 913 and<2 = <1. Then the lemma is reduced to proving

the existence of 9 ′13 that satisfies ( 913,<1,<3) {injp ( 9
′
13,<

′
1,<

′
3) and <

′
1 ↩→

9 ′
13
< <′3. By picking

9 ′13 = 9 ′12 · 9
′
23, we can easily prove these properties by exploiting the properties of injp.

5 DERIVATION OF THE DIRECT REFINEMENT FOR COMPCERT

In this section, we discuss the proofs and composition of open simulations for the compiler passes of
CompCert into the direct refinement ≼ac following the ideas discussed in §2.2. CompCert compiles
Clight programs into Asm programs through 19 passes [Leroy 2023], including several optimization
passes working on the RTL intermediate language. First, we prove the open simulations for all
these passes with appropriate simulation conventions. In particular, we directly reuse the proofs of
non-optimizing passes in CompCertO and update the proofs of optimizing passes with semantic
invariants. Second, we prove a collection of properties for refining simulation conventions in
preparation for vertical composition. Those properties enable absorption of KMRs into injp and
composition of semantic invariants. They rely critically on transitivity of injp. Finally, we vertically
compose the simulations and refine the incoming and outgoing simulation conventions into a
single simulation convention C, thereby establishing ⩽C as the top-level refinement ≼ac.

5.1 Open Simulation of Individual Passes

We list the compiler passes and their simulation types in Table 1 (passes on the right follow the
passes on the left) together with their source and target languages and interfaces (in bold fonts).
The passes in black are reused from CompCertO, while those in red are reproved optimizing passes.
The passes in blue are self-simulating passes we inserted; they will be used in §5.3 for refining
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composed simulation conventions. Note that we have omitted passes with the identity simulation
convention (i.e., simulations of the form !1 ⩽id !2) in Table 1 as they do not affect the proofs. 3

5.1.1 Simulation Conventions and Semantic Invariants. We first introduce relevant simulation
conventions and semantic invariants shown in Table 1. The simulation conventions c : C ⇔ C,
ltl : L ⇔ L, mach :M ⇔M, and asm : A ⇔ A relate the same language interfaces with
queries and replies native to the associated intermediate languages. They are parameterized by
a KMR  to allow different compiler passes to have different assumptions on memory evolution.
Conceptually, this parameterization is unnecessary as we can simply use injp for every pass
due to its uniformity (as discussed in §4.1). Nevertheless, it is useful because the compiler proofs
become simpler and more natural with the least restrictive KMRs which may be weaker than injp.
CompCertO defines several KMRs weaker than injp: id is used when memory is unchanged; ext
is used when the source and target memory share the same structure; inj is a simplified version of
injp without its memory protection. The simulation conventions CL : C ⇔ L, LM : L ⇔M and
MA :M ⇔ A capture the calling convention of CompCert: CL relates C-level queries and replies to
those in the LTL language where the arguments are distributed to abstract stack slots; LM further
relates abstract stack slots with states on an architecture independent machine; MA relates this state
to registers and memory in the assembly language (X86 assembly in our case). As discussed before,
some refinements rely on invariants on the source semantics. The semantic invariant wt enforces
that arguments and return values of function calls respect function signatures. ro is critical for
ensuring the correctness of optimizations, which will be discussed next.

1 const int key = 42;

2 void foo(int*);

3 int double_key () {

4 int a = key;

5 foo(&key);

6 return a + key;

7 }

(a) Source Program

1 const int key = 42;

2 void foo(int*);

3 int double_key () {

4 int a = 42;

5 foo(&key);

6 return 84;

7 }

(b) Target Program

Fig. 16. An Example of Constant Propagation

5.1.2 Open Simulation of Optimizations.

The optimizing passes Constprop, CSE and
Deadcode perform constant propagation, com-
mon subexpression elimination and dead code
elimination, respectively. They make use of a
static value analysis algorithm for collecting
information of variables during the execution.
For each function, this algorithm starts with
the known initial values of read-only (con-
stant) global variables. It simulates the func-
tion execution to analyze the values of global
or local variables after executing each instruc-
tion. In particular, for global constant variables,
their references at any point should have the initial values of constants. For local variables stored
on the stack, their references may have initial values or may not if interfered by other function calls.
When the analysis encounters a call to another function, it checks whether the address of current
stack frame is leaked to the callee directly through arguments or indirectly through pointers in
memory. If not, then the stack frame is considered unreachable from its callee. Consequently, the
references to local variables on unreachable stack frames after function calls remain to be their
initial values. Based on this analysis, the three passes then identify and perform optimizations.
Most of the proofs of closed simulations for those passes can be adapted to open simulation

straightforwardly. The only and main difficulty is to prove that information derived from static
analysis is consistent with the dynamic memory states in incoming queries and after external calls
return. We introduce the semantic invariant ro and combine it with injp to ensure this consistency.
The above optimization passes all use ro · cinjp as their simulation conventions (because RTL

3The omitted passes are Cshmgen, Renumber, Linearize, CleanupLabels and Debugvar.
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Fig. 17. Memory Injections from Call to Return of foo

conforms to the C interface). The adaptation of optimization proofs for those passes is similar. As
an example, we only discuss constant propagation whose correctness theorem is stated as follows:

Lemma 5.1. ∀(" " ′ : RTL), Constprop(") = " ′ ⇒ [["]] ⩽ro·cinjp [["
′]] .

Instead of presenting its proof, we illustrate how ro and injp help establish the open simulation
for Constprop through a concrete example as depicted in Fig. 16. This example covers optimization
for both global constants (e.g., key) and local variables (e.g., a). By static analysis of Fig. 16a, 1) key
contains 42 at line 4 because key is a constant global variable and, 2) both key and a contain 42

after the external call to foo returns to line 6. Here, the analysis confirms key has the value 42
because foo (if well-behaved) will not modify a constant global variable. Furthermore, a has the
value 42 because it resides in the stack frame of double_key which is unreachable from foo (in
fact, a is the only variable in the frame). As a result, the source program is optimized into Fig. 16b.
We first show that ro guarantees the dynamic values of global constants are consistent with

static analysis. That is, global variables are correct in incoming memory and are protected during
external calls. ro is defined as follows:

Definition 5.2. ro : C ⇔ C = ⟨,ro,R
@
ro,R

A
ro⟩ where,ro = (symtbl × mem) and

R
@
ro (se,<) = {(E 5 [sg] (®E)@<, E 5 [sg] (®E)@<) | ro-valid(B4,<)}
R
A
ro (se,<) = {(res@<

′, res@<′) | mem-acc(<,<′)}

Note that although ro takes the form of a simulation convention, it only relates the same queries
and replies, i.e., it only enforces invariants on the source side. This kind of simulation conventions
are what we called semantic invariants. A symbol table B4 (of type symtbl) is provided together
with memory, so that the semantics can locate the memory blocks and initial values of global
definitions. ro-valid(B4,<) states that the values of global constant variables in the incoming
memory< are the same as their initial values. Therefore, the optimization of key into 42 at line 4
of Fig. 16a is correct. For the call to foo, mem-acc(<,<′) ensures that read-only values in memory
are unchanged, therefore ro-valid is preserved across external calls (i.e., ro-valid(B4,<) ⇒
mem-acc(<,<′) ⇒ ro-valid(B4,<′)). As a result, replacing key with 42 at line 6 makes sense.
We then show that injp guarantees the dynamic values of unreachable local variables are

consistent with static analysis. That is, unreachable stack values are unchanged by external calls.
This protection is realized by injp with shrinking memory injections. Fig. 17 shows the protection
of a when calling foo. Before the external call to foo, the source blocks 1a and 1key are mapped to
target blocks by the current injection 9 . The analysis determines that the argument and memory
passed to foo do not contain any pointer to 1a. Therefore, we can simply remove 1a from 9 to get a
shrunk yet valid memory injection 91. Then, 1a is protected during the call to foo. 1a is added back
to the injection after foo returns and the simulation continues.
Finally, Unusedglob which removes unused static global variables is verified by assuming that

global symbols remain the same throughout the compilation and with a weaker KMR inj.
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Fig. 18. Transitivity of ro · cinjp

5.2 Properties for Refining Simulation Conventions

We present properties necessary for refining the composed simulation conventions in Table 1.

5.2.1 Commutativity of KMRs and Structural Conventions.

Lemma 5.3. For Z ∈ {CL, LM, MA} and  ∈ {ext, inj, injp} we have X · Z ⊑ Z · Y .

This lemma is provided by CompCertO [Koenig and Shao 2021]. X and Y denote the simulation
conventions for the source and target languages of Z, respectively (e.g., X = c and Y = ltl when
Z = CL). If = injpwe get cinjp ·CL ⊑ CL ·ltlinjp. This lemma indicates at the outgoing (incoming)
side a convention lower (higher) than CL, LM and MA may be lifted over them to a higher position
(pushed down to a lower position).

5.2.2 Absorption of KMRs into injp. The lemma below is needed for absorbing KMRs into injp:

Lemma 5.4. For any R, (1)Rinjp · Rinjp ≡ Rinjp (2)Rinjp ⊑ Rinj (3)Rinjp · Rinj · Rinjp ⊑ Rinjp
(4)Rinj · Rinj ⊑ Rinj (5)Rext · Rinj ≡ Rinj (6)Rinj · Rext ≡ Rinj (7)Rext · Rext ≡ Rext.

The simulation convention R is parameterized over a KMR. Property (1) is a direct consequence
of injp · injp ≡ injp, which is critical for merging simulations using injp. The remaining ones
either depend on transitivity of injp, or trivially hold as shown by Koenig and Shao [2021].

5.2.3 Composition of Semantic Invariants. Lastly, we also need to handle the two semantic invari-
ants ro and wt. They cannot be absorbed into injp because their assumptions are fundamentally
different. Therefore, our goal is to permute them to the top-level and merge any duplicated copies.
The following lemmas enable elimination and permutation of wt:

Lemma 5.5. For any R : C ⇔ C, we have (1)R · wt ≡ wt · R · wt and (2)R · wt ≡ wt · R .

ro is more difficult to handle as it does not commute with arbitrary simulation conventions. To
eliminate redundant ro, we piggyback ro onto injp and prove the following transitivity property:

Lemma 5.6. ro · cinjp ≡ ro · cinjp · ro · cinjp

Its proof is similar to that for cinjp ≡ cinjp · cinjp but with additional reasoning for establishing
ro. A graphic presentation of the proof is given in Fig. 18 which mirrors Fig. 11. We focus on the
additional reasoning and have omitted the{injp relations and the worlds for injp in Fig. 18. Note
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that by definition the worlds (B4,<) for ro do not evolve like those for injp. A red circle around a
memory state< indicates the necessity to prove that ro-valid in R

@
ro holds for<. The mem-acc

relations over dashed arrows are the properties over replies in RAro and must also be verified.
The above additional properties are proved based on two observations. First, the properties for

queries (i.e., ro-valid) are propagated in refinement along with copying of memory states. For
example, to prove the refinement in Fig. 18a, we are given ro-valid(B41,<

@
1
) and ro-valid(B42,<

@
2
)

according to the initial R
@
ro relations. By choosing (B41,<

@
1
) to be the world for the composed R

@
ro,

ro-valid(B41,<
@
1
) holds trivially for<

@
1
in the circle. To prove the refinement in Fig. 18b, we need to

prove that the interpolating memory state after the initial decomposition satisfies R
@
ro. By choosing

<
@
1
to be this state (in the middle circle in Fig. 18b and according to the proof of Lemma 4.4),

ro-valid(B41,<
@
1
) follows directly from the initial assumption. Second, the properties for replies

(i.e., mem-acc) have already been encoded into{injp by Definition 3.3. For example,<A
2
in Fig. 18a

is constructed by following exactly Lemma 4.3. Therefore, mem-acc(<
@
2
,<A

2
) trivially holds.

Finally, at the top level, we need ro and wt to commute which is straightforward to prove:

Lemma 5.7. ro · wt ≡ wt · ro

5.3 Proving the Direct Open Simulation for CompCert

We first insert self-simulations into the compiler passes, as shown in Table 1. This is to supply extra
Rinj, Rinjp, and ro for absorbing Rext (Rinj) into Rinj (Rinjp) by properties in Lemma 5.4 and for
transitive composition of ro. Self-simulations are obtained by the following lemma:

Theorem 5.8. If ? is a program written in Clight or RTL and R ∈ {ro, cext, cinj, cinjp}, or ? is

written in Asm and R ∈ {asmext, asminj, asminjp}, then [[?]] ⩽R↠R [[?]] holds.

We unify the conventions at the incoming and outgoing sides. We start with the simulation
!1 ⩽R↠S !2 which is the transitive composition of compiler passes in Table 1 where

R = ro · cinjp · cinjp · cinjp · wt · cext · cext · cinj · cext · cinjp · cinjp · ro · cinjp · ro · cinjp
·ro · cinjp · cinj · wt · cext · CL · ltlext · ltlinjp · LM · machext · MA · asminj · asminjp

S = ro · cinjp · cinj · cinj · wt · cext · cext · cinj · cext · cinj · cinjp · ro · cinjp · ro · cinjp
·ro · cinjp · cinj · wt · cext · CL · ltlext · LM · machinj · machext · MA · asminj · asminjp.

We then find two sequences of refinements C ⊑ R= ⊑ . . . ⊑ R1 ⊑ R and S ⊑ S1 ⊑ . . . ⊑ S< ⊑ C,
by which and Theorem 3.5 we get the simulation !1 ⩽C↠C !2. The direct simulation convention is
C = ro · wt · CAinjp · asminjp. ro enables optimizations at C level while wt ensures well-typedness.
The definition of CAinjp has already been discussed informally in §2.1; its formal definition is
given in the technical report [Zhang et al. 2023b]. The last asminjp is irrelevant as assembly code is
self-simulating by Theorem 5.8. The final correctness theorem is shown below:

Theorem 5.9. Compilation in CompCert is correct in terms of open simulations,

∀ (" : Clight) (" ′ : Asm), CompCert(") = " ′ ⇒ [["]] ⩽C [["
′]] .

We explain how the refinements are carried out at the outgoing side. Refinements at the incoming
side are similar. The following is the sequence of refined simulation conventions C ⊑ R= ⊑ . . . ⊑
R1 ⊑ R. It begins with R and ends with C.
(1) ro · cinjp · cinjp · cinjp · wt · cext · cext · cinj · cext · cinjp · ro · cinjp · ro · cinjp · ro · cinjp

·cinj · wt · cext · CL · ltlext · ltlinjp · LM · machext · MA · asminj · asminjp
(2) ro · cinjp · wt · cinj · cinjp · ro · cinjp

·cinj · wt · cext · CL · ltlext · ltlinjp · LM · machext · MA · asminj · asminjp
(3) ro · cinjp · wt · cinj · wt · cinjp · ro · cinjp

·cinj · cext · CL · ltlext · ltlinjp · LM · machext · MA · asminj · asminjp

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 72. Publication date: January 2024.



72:24 Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong Shao

@� Calle Callp

RetpRete

@$

A$A �

�( -(

.(�(

alloc

encrypt

free

e
x
t
e
r
n
a
l

(a) !S

@�

rs@<

@$

A$A �

�A -A

.A�A

e
x
t
e
r
n
a
l

(b) [[server_opt.s]]

Fig. 19. Specification and Open Semantics of server_opt.s

(4) wt · ro · cinjp · cinj · cinjp · ro · cinjp
·cinj · cext · CL · ltlext · ltlinjp · LM · machext · MA · asminj · asminjp

(5) wt · ro · cinjp · cinj · cinjp · ro · cinjp · cinj · cext · cext · cinjp · cext · cinj · CL · LM · MA · asminjp
(6) wt · ro · cinjp · cinjp · cinjp · ro · cinjp · cinjp · cinjp · cinjp · CL · LM · MA · asminjp
(7) wt · ro · cinjp · ro · cinjp · CL · LM · MA · asminjp
(8) wt · ro · cinjp · CL · LM · MA · asminjp
(9) ro · wt · cinjp · CL · LM · MA · asminjp
(10) ro · wt · CAinjp · asminjp

In each line, the letters in red are simulation conventions transformed by the refinement operation
at that step. In step (1), we merge simulation conventions and semantic invariants by property (1)
and (5-7) in Lemma 5.4 and by Lemma 5.6. In steps (2-3), we move and eliminate wt by Lemmas 5.5
and 5.7. In step (4), we lift conventions to higher positions by Lemma 5.3. In step (5), we absorb cext
into cinj and turns cinj into cinjp by property (2) in Lemma 5.4. In steps (6) and (7), we compose
cinjp and ro by their transitivity. In step (8), we commute semantic invariants by Lemma 5.7. Finally,
we merge cinjp and CL · LM · MA into CAinjp in step (9).

6 END-TO-END VERIFICATION OF HETEROGENEOUS MODULES

In this section, we give a formal account of end-to-end verification of heterogeneous modules based
on direct refinements. The discussion focuses on the running example in Fig. 4 and its variants.
Additional examples can be found in the technical report [Zhang et al. 2023b].

6.1 Refinement for the Hand-wri�en Server

We use server_opt.s instead of server.s to illustrate how optimizations are enabled by ro. The
proof for the unoptimized server is similar with only minor adjustments. A formal definition of
LTS for !S is given below and its transition diagram is given in Fig. 19a.

Definition 6.1. LTS of !S:

(( := {Calle 8 E 5 <, Callp sp E 5 <, Retp sp <, Rete<};
�( := {(Vptr(14 , 0) [int→ ptr→ void] ( [8, E 5 ])@<, Calle 8 E 5 <)};
→( := {(Calle 8 E 5 <, Callp sp E 5 <

′′) | (<′, sp) = alloc< 0 8 ∧
<′′ =<′ [sp← (8 XOR<[1: ])]} ∪ {(Retp sp <, Rete<′) | <′ = free< sp};

-( := {(Callp sp Vptr(1? , 0) <, Vptr(1? , 0) [ptr→ void] ( [Vptr(sp, 0)])@<)};
.( := {(Callp sp E 5 <, A4B@<

′, Retp sp <′)};
�( := {(Rete<, Vundef@<)}.

The LTS has four internal states as depicted in Fig. 19a. Initialization is encoded in �( . If the incoming
query @� contains a function pointer Vptr(14 , 0) which points to encrypt, !S enters Calle 8 E 5 <
where 8 and E 5 are its arguments. The first internal transition allocates the stack frame sp and
stores the result of encryption 8 XOR <[1: ] in sp where 1: contains key. Then, it enters Callp
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Fig. 20. Open Simulation between the Optimized Server and its Specification

which is the state before calling process. If the pointer E 5 = Vptr(1? , 0) of the current state

points to an external function, !S issues an outgoing C query @$ with a pointer to its stack frame
as its argument. After the external call, .( updates the memory with the reply and enters Retp.
The second internal transition frees B? and enters Rete and finally returns. Note that complete
semantics of !S is accompanied by a local symbol table which determines the initial value of global
variables (key) and asserts that it is a constant. The only difference between the specifications for
server_opt.s and server.s is whether key is a constant in the symbol table. The semantics of
assembly module [[server_opt.s]] is given by CompCertO whose transition diagram is shown
in Fig. 19b. All the states, including queries and replies, are composed of register sets and memories.

Now, we need to prove the following forward simulation. The most important points of the proof
are how ro enables optimizations and how injp preserves memory across external calls.

Theorem 6.2. !S ⩽C [[server_opt.s]].

At the top level, we expand C to ro · wt · CAinjp · asminjp and switch the order of ro and wt

by Lemma 5.7. By the vertical compositionality (Theorem 3.4), we first establish !S ⩽wt !S with the
well-typed outgoing arguments and return value. [[server_opt.s]] ⩽asminjp [[server_opt.s]] is
proved by Theorem 5.8.

We are left with proving !S ⩽ro·CAinjp [[server_opt.s]]. That is, we need to show the simulation
diagram in Fig. 20 holds where S = ro · CAinjp (which mirrors Fig. 6). Here, the given assumptions
and the conclusions to be proved are represented as black and red arrows, respectively. For the
proof, we need an invariant ' ∈ K,ro·CAinjp

((( , regset × mem). The most important point is that
ro and injp play essential roles in establishing the invariant. First, ro-valid is propagated from
the initial source query @�

C
to internal program states. This guarantees that the value of key read

from the source memory states is always 42, hence matching the constant in Pxori 42 RDI in
server_opt.s. Second, injp is essential for deriving that memory locations in the target stack
frame with offset > (> < 8 or 16 ≤ >) are unchanged since they are designated out-of-reach by '.
Therefore, the private stack values of the server are protected. For the unoptimized server, the only
difference is that we decompose !S ⩽ro·CAinjp [[server.s]] into !S ⩽ro !S which trivially holds
and !S ⩽CAinjp [[server.s]] which can be proved without the help of ro.

6.2 End-to-end Correctness Theorem

We first prove the following source-level refinement where !CS is the top-level specification. Its
proof follows the same pattern as Theorem 6.2 but is considerably simpler because the source and
target semantics share the same C interface.

Lemma 6.3. !CS ⩽ro·wt·cinjp [[client.c]] ⊕ !S.

We then prove the following simulation, which is immediate from the full compositionality, the
adequacy for assembly described in §3.1.2, Theorem 5.9, and Theorem 6.2:

Lemma 6.4. [[client.c]] ⊕ !S ⩽C [[client.s + server_opt.s]].
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1 /* client.c */

2 #define N 10

3 int input[N] = {...};

4 int result[N];

5 int i;

6 void encrypt(int i,

7 void(*p)(int*));

1 void request(int *r) {

2 if (i == 0) encrypt(input[i++], request);

3 else if (0 < i && i < N) {

4 result[i-1] = *r;

5 encrypt(input[i++], request);

6 } else result[i-1] = *r;

7 }

Fig. 21. Client with Multiple Encryption Requests

For end-to-end direct refinement, we need to absorb Lemma 6.3 into Lemma 6.4. The following
theorem is easily derived by applying Lemmas 5.5, 5.6 and 5.7.

Lemma 6.5. C ≡ ro · wt · cinjp · C.

The final end-to-end simulation is immediate by vertically composing Lemma 6.3, Lemma 6.4
and refining the simulation convention using Lemma 6.5.

Theorem 6.6. !CS ⩽C [[client.s + server_opt.s]].

6.3 Verification of the Mutually Recursive Client and Server

We introduce a variant of the running example with mutual recursion in Fig. 21. The server
remains the same while the client is changed. request itself is passed as a callback function to
encrypt, resulting in recursive calls to encrypt for encrypting and storing an array of values. To
perform the same end-to-end verification for this example, we only need to define a new top-level
specification !CS

′ and prove !CS
′
⩽ro·wt·cinjp [[client.c]] ⊕ !S. Other proofs are either unchanged

(e.g., the refinement of the server) or can be derived from Theorem 5.9, full compositionality and
adequacy. The complete proofs can be found in the technical report [Zhang et al. 2023b].

7 GENERALITY AND LIMITATIONS OF OUR APPROACH

We explain how our approach may be generalized to support other memory models, compilers and
optimizations for first-order languages. We also discuss the limitations of our approach.

7.1 Supporting Different Memory Models and Compilers

At a high level, injp is simply a general and transitive relation on evolving functional memory

invariants (represented as injections) enhanced with memory protection to guard against modifica-
tion to private memory by external calls. Many other first-order memory models can be viewed as
employing either a richer or a simplified version of injection as memory invariants and equipped
with a similar notion of memory protection. For example, the memory model of CompCertS [Besson
et al. 2015] extends injections to map symbolic values. Thememory refinements in the��2$ memory
model [Krebbers 2016] function like injections except that pointer offsets are represented as abstract
paths pointing into aggregated data structures. The memory model defined by Kang et al. [2015]
explicitly divides a memory state into public and private memory. Its memory invariant is an
equivalence relation between public source and target memory which is essentially an identity
injection. Therefore, uniform KMRs may be defined for those memory models as variants of injp.
To prove the transitivity of these KMRs, the key is the construction of interpolating memory

states after external calls as described in §4.2. This construction is based on the following general
ideas: 1) as KMRs are transitively composed, more memory gets protected, 2) the private memory
should be identical to the initial memory, and 3) the public memory should be projected from the
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updated source memory via memory invariants. As we can see, these ideas are applicable to any
memory model with functional memory invariants and a notion of private memory. Therefore, our
approach should work for the aforementioned memory models and compilers based on them.

7.2 Supporting Additional Optimization Passes

Given any new optimization pass whose additional rely-guarantee condition can be represented as
a semantics invariant � , we may piggyback � onto an enriched injp to achieve direct refinement.
To see that, note that any � consists of two parts: a condition for initial queries (e.g., ro-valid in
ro) and a condition for replies (e.g., mem-acc in ro). By extending injp to include the latter (just
like that Definition 3.3 includes mem-acc), if the enriched injp is still transitive, then we can easily
prove the following proposition which is generalized from Lemma 5.6.

Proposition 7.1. For any � : C ⇔ C and enriched injp, � · cinjp ≡ � · cinjp · � · cinjp.

The proof follows exactly the steps for proving Lemma 5.6. It is based on the two observations we
made near the end of §5.2.3, i.e., 1) the properties for initial queries of � hold along with copying of
memory states, and 2) the properties for replies trivially hold as they are part of the enriched injp.

7.3 Limitations

We discuss the limitations of our approach and possible solutions. First, it does not yet support
behavior refinements for whole programs in CompCert [Leroy 2023]. This is a technical limitation
and can be solved by reducing open simulations into closed simulations in CompCert. Second,
the proof for Unusedglob assumes that global symbols for removed definitions are preserved as
CompCertO’s simulation framework requires the same set of global symbols throughout compilation.
We need to weaken this requirement to enable removal of global symbols by compilation. Third,
open simulations assume given any input injection 9 , the execution outputs some injection 9 ′

related to 9 by injp. This may not work for memory models with fixed injection functions [Wang
et al. 2022]. A possible solution is to enrich injp to account for this fixed definition. Finally, given
a new optimization, if its rely-guarantee condition cannot be described as a semantic invariant � or
if injp enriched with � becomes intransitive, then direct refinements may not be derivable. In this
case, we may need stronger restrictions on this optimization for our approach to work.

8 EVALUATION AND RELATED WORK

Our Coq development took about 7 person-months and 18.3k lines of code (LOC) on top of Comp-
CertO. We added 3.7k LOC to prove the transitivity of injp, 3k LOC to verify the compiler passes
as discussed in §5.1, 1.2k LOC for composing simulation conventions as described in the rest of §5
and 7.3k LOC for the Client-Server examples. We also ported CompCertM’s example on mutually
recursive summation [Song et al. 2020], which adds 3.1k LOC [Zhang et al. 2023b]. For now, the cost
of examples is relatively high. However, we observe that a lot of low-level proofs such as pointer
arithmetic can be automated by proof scripts, many proofs with predictable patterns can be directly
derived from the program structures, and a lot of duplicated lemmas in the examples can be elimi-
nated. We will carry out those exercises in the future which should simplify the proofs significantly.
Below we compare our work with other frameworks for VCC and program verification.

8.1 Verified Compositional Compilation for First-Order Languages

In this work, we are concerned with VCC of first-order imperative programs with global memory
states and support of pointers. A majority of the work in this setting is based on CompCert. We
compare them from the perspectives listed in the first column of Table 2. An answer that is not a
simple “Yes” or “No” denotes that special constraints are enforced to support the given feature.
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Table 2. Comparison between Work on VCC Based on CompCert

CompComp CompCertM CompCertO CompCertX This Work

Direct Refinement No No No No Yes

Vertical Composition Yes RUSC Trivial CAL Yes

Horizontal Composition Yes RUSC Yes CAL Yes

Adequacy No Yes Yes Yes Yes

End-to-end Verification No Yes Unknown CAL Yes

Free-form Heterogeneity Yes Yes Yes No Yes

Behavior Refinement No Yes No Yes No

Compositional CompCert. CompComp supports VCC based on interaction semantics which is
a specialized version of open semantics with C interfaces [Stewart et al. 2015]. We have already
talked about its merits and limitations in §1.2. It is interesting to note that CompComp can also
be obtained based on our approach by adopting cinjp for every compiler pass and exploiting the
transitivity of cinjp, which does not require the instrumentation of semantics in CompComp.

CompCertM. CompCertM supports adequacy and end-to-end verification of mixed C and assem-
bly programs. A distinguishing feature of CompCertM is Refinement Under Self-related Contexts
or RUSC [Song et al. 2020]. A RUSC relation is a fixed collection of simulation relations. By exploit-
ing contexts that are self-relating under all of these simulation relations, horizontal and vertical
compositionality are achieved. However, refinements based on RUSC relations can be difficult
to use as they are not extensional. For example, the complete open refinement relation ⩽'1+...+'9
in CompCertM carries 9 RUSC relations '1, . . . , '9 (6 for compiler passes and 3 for source-level
verification). To establish the refinement between a.s and its specification !( , one needs to prove !(
are self-simulating over all 9 simulation relations. This can quickly get out of hand as more modules
and more compiler passes are introduced. By contrast, we only need to prove direct refinement for
once and the refinement is open to further horizontal or vertical composition. On the other hand,
CompCertM supports behavior refinement of closed programs which we do not yet (See §7.3).

CompCertO. Vertical composition is a trivial pairing of simulations in CompCertO, which exposes
internal compilation steps. CompCertO tries to alleviate this problem via ad-hoc refinement of
simulation conventions. The resulting top-level convention is CCCO = R

∗ · wt · CL · LM · MA · asmvainj
where R = cinjp + cinj + cext + cvainj + cvaext is a sum of conventions parameterized over KMRs.
In particular, cvaext is an ad-hoc combination of KMR and internal invariants for optimizations. R∗

means that R may be repeated for an arbitrary number of times. Since the top-level summation
of KMRs is similar to that in CompCertM, we need to go through a reasoning process similar to
CompCertM, only more complicated because of the need to reason about internal invariants of
optimizations in cvaext and indefinitely repeated combination of all the KMRs by R∗. Therefore, it
is unknown if the correctness theorem of CompCertO suffices for end-to-end program verification.

CompCertX. CompCertX [Gu et al. 2015; Wang et al. 2019] realizes a weaker form of VCC that
only allows assembly contexts to invoke C programs, but not the other way around. Therefore, it
does not support horizontal composition of modules with mutual recursions. The compositionality
and program verification are delegated to Certified Abstraction Layers (CAL) [Gu et al. 2015,
2018]. Furthermore, CompCertX does not support stack-allocated data (e.g., our server example).
However, its top-level semantic interface is similar to our interface, albeit not carrying a symmetric
rely-guarantee condition. This indicates that our work is a natural evolution of CompCertX.
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VCC for Concurrent Programs. VCC for concurrent programs needs to deal with multiple threads
and their linking. CASCompCert is an extension of CompComp that supports compositional
compilation of concurrency with no (or benign) data races [Jiang et al. 2019]. To make CompComp’s
approach to VCC work in a concurrent setting, CASCompCert imposes some restrictions including
not supporting stack-allocated data and allowing only nondeterminism in scheduling threads. A
recent advancement based on CASCompCert is about verifying concurrent programs [Zha et al.
2022] running on weak memory models using the promising semantics [Kang et al. 2017; Lee et al.
2020]. We believe the ideas in CASCompCert are complementary to this work and can be combined
with our approach to achieve VCC for concurrency with cleaner interface and less restrictions.

8.2 Verified Compositional Compilation for Higher-Order Languages

Another class of work on VCC focuses on compilation of higher-order languages. In this setting,
the main difficulty comes from complex language features together with higher-order states. A
prominent example is the Pilsner compiler [Neis et al. 2015] that compiles a higher-order language
into some form of assembly programs. The technique Pilsner adopts is called parametric simulations

that evolves from earlier work on reasoning about program equivalence via bisimulation [Hur et al.
2012a]. Another line of work is multi-language semantics [Patterson and Ahmed 2019; Patterson
et al. 2017; Perconti and Ahmed 2014; Scherer et al. 2018] where a language combining all source,
intermediate and target languages is used to formalize semantics. Compiler correctness is stated as
contextual equivalence or logical relations. It seems that our techniques are not directly applicable
to those work because relations on higher-order states cannot deterministically fix the interpolating
states. A possible solution is to divide the higher-order memory into a first-order and a higher-order
part such that the former does not contain pointers to the latter (forming a closure). By encapsulating
higher-order programs inside first-order states, we may be able to apply our approach.
The high-level ideas for constructing interpolating states for proving transitivity of injp can

also be found in some of the work on program equivalence [Ahmed 2006; Hur et al. 2012b]. To the
best of our knowledge, our approach is the first concrete implementation of these ideas that works
for a realistic optimizing compiler for imperative languages with non-trivial memory models.

8.3 Frameworks for Compositional Program Verification

Researchers have proposed frameworks for compositional program verification based on novel
semantics, refinements and separation logics [Chappe et al. 2023; Gu et al. 2015, 2018; He et al.
2021; Sammler et al. 2023; Song et al. 2023; Xia et al. 2019]. These frameworks aim at broader
program verification and may be combined with our approach to generate more flexible end-to-end
verification techniques. For example, to support more flexible certified abstraction layers, we may
combine our approach with data abstraction in CAL and extend horizontal linking to work with
abstraction layers. More details can be found in the technical report [Zhang et al. 2023b].

9 CONCLUSION AND FUTURE WORK

We have proposed an approach to compositional compiler correctness for first-order languages via
direct refinements between source and target semantics at their native interfaces, which overcomes
the limitations of the existing approaches on compositionality, adequacy and other important
criteria for VCC. In the future, we plan to support behavior (trace) refinement for closed programs
by reducing our open simulation into the whole-program correctness theorem for the original
CompCert. We also plan to combine our work with refinement-based program verification like
certified abstraction layers to support more substantial applications. Another research direction is
to apply our approach to different memory models and compilers for first-order and higher-order
languages, which will better test the limit of our approach and the usefulness of our discoveries.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 72. Publication date: January 2024.



72:30 Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong Shao

DATA-AVAILABILITY STATEMENT

The Coq artifact containing the formal developments described in this paper is available on Zen-
odo [Zhang et al. 2023a]. A technical report of this work is available on arXiv [Zhang et al. 2023b].

ACKNOWLEDGMENTS

We would like to thank our shepherd Yannick Zakowski and the anonymous referees for their
helpful feedback which improved this paper significantly. This work is supported in part by the
National Natural Science Foundation of China (NSFC) under Grant No. 62002217 and 62372290, and
by the Natural Science Foundation of the United States (NSF) under Grant No. 1763399, 2019285, and
2313433. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the funding agencies.

REFERENCES

Amal J. Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Proc. 15th European

Symposium on Programming (ESOP’06) (LNCS, Vol. 3924), Peter Sestoft (Ed.). Springer, Cham, 69–83. https://doi.org/10.

1007/11693024_6

Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2015. A Concrete Memory Model for CompCert. In Proc. 6th Interactive

Theorem Proving (ITP’15) (LNCS, Vol. 9236), Christian Urban and Xingyuan Zhang (Eds.). Springer, Cham, 67–83. https:

//doi.org/10.1007/978-3-319-22102-1_5

Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. 2023. Choice Trees: Representing

Nondeterministic, Recursive, and Impure Programs in Coq. Proc. ACM Program. Lang. 7, POPL, Article 61 (January 2023),

31 pages. https://doi.org/10.1145/3571254

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan(Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proc. 42nd ACM Symposium on

Principles of Programming Languages (POPL’15), Sriram K. Rajamani and David Walker (Eds.). ACM, New York, NY, USA,

595–608. https://doi.org/10.1145/2775051.2676975

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm Sjober, Hao Chen, David Costanzo,

and Tahnia Ramananandro. 2018. Certified Concurrent Abstraction Layers. In Proc. 2018 ACM Conference on Programming

Language Design and Implementation (PLDI’18), Jeffrey S. Foster and Dan Grossman (Eds.). ACM, New York, NY, USA,

646–661. https://doi.org/10.1145/3192366.3192381

Paul He, Eddy Westbrook, Brent Carmer, Chris Phifer, Valentin Robert, Karl Smeltzer, Andrei Ştefănescu, Aaron Tomb,

Adam Wick, Matthew Yacavone, and Steve Zdancewic. 2021. A Type System for Extracting Functional Specifications

from Memory-Safe Imperative Programs. Proc. ACM Program. Lang. 5, OOPSLA, Article 135 (October 2021), 29 pages.

https://doi.org/10.1145/3485512

Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012a. The Marriage of Bisimulations and Kripke Logical

Relations. In Proc. 39th ACM Symposium on Principles of Programming Languages (POPL’12), John Field and Michael

Hicks (Eds.). ACM, New York, NY, USA, 59–72. https://doi.org/10.1145/2103656.2103666

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2012b. The Transitive Composability of Relation Transition

Systems. Technical Report, MPI-SWS-2012-002. MPI-SWS. https://www.mpi-sws.org/tr/2012-002.pdf

Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. 2019. Towards Certified Separate Compilation for

Concurrent Programs. In Proc. 2019 ACM Conference on Programming Language Design and Implementation (PLDI’19),

Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, New York, NY, USA, 111–125. https://doi.org/10.1145/3314221.

3314595

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

memory Concurrency. In Proc. 44th ACM Symposium on Principles of Programming Languages (POPL’17), Giuseppe

Castagna and Andrew D. Gordon (Eds.). ACM, New York, NY, USA, 175–189. https://doi.org/10.1145/3009837.3009850

Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve Zdancewic, and Viktor Vafeiadis. 2015. A Formal

C Memory Model Supporting Integer-Pointer Casts. In Proc. 2015 ACM Conference on Programming Language Design

and Implementation (PLDI’15), David Grove and Stephen M. Blackburn (Eds.). ACM, New York, NY, USA, 326–335.

https://doi.org/10.1145/2737924.2738005

Jérémie Koenig and Zhong Shao. 2021. CompCertO: Compiling Certified Open C Components. In Proc. 2021 ACM Conference

on Programming Language Design and Implementation (PLDI’21). ACM, New York, NY, USA, 1095–1109. https://doi.org/

10.1145/3453483.3454097

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 72. Publication date: January 2024.

https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/978-3-319-22102-1_5
https://doi.org/10.1007/978-3-319-22102-1_5
https://doi.org/10.1145/3571254
https://doi.org/10.1145/2775051.2676975
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/3485512
https://doi.org/10.1145/2103656.2103666
https://www.mpi-sws.org/tr/2012-002.pdf
https://doi.org/10.1145/3314221.3314595
https://doi.org/10.1145/3314221.3314595
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/3453483.3454097


Fully Composable and Adequate Verified Compilation with Direct Refinements between Open Modules 72:31

Robbert Krebbers. 2016. A Formal C Memory Model for Separation Logic. J. Autom. Reason. 57 (2016), 319–387. https:

//doi.org/10.1007/s10817-016-9369-1

Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. 2020.

Promising 2.0: Global Optimizations in Relaxed Memory Concurrency. In Proc. 2020 ACM Conference on Programming

Language Design and Implementation (PLDI’20). ACM, New York, NY, USA, 362–376. https://doi.org/10.1145/3385412.

3386010

Xavier Leroy. 2005–2023. The CompCert Verified Compiler. https://compcert.org/.

Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2012. The CompCert Memory Model, Version 2.

Research Report RR-7987. INRIA. 26 pages. https://hal.inria.fr/hal-00703441

Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: a

Compositionally Verified Compiler for a Higher-Order Imperative Language. In Proc. 2015 ACM SIGPLAN International

Conference on Functional Programming (ICFP’15), Kathleen Fisher and John H. Reppy (Eds.). ACM, New York, NY, USA,

166–178. https://doi.org/10.1145/2784731.2784764

Daniel Patterson and Amal Ahmed. 2019. The Next 700 Compiler Correctness Theorems (Functional Pearl). Proc. ACM

Program. Lang. 3, ICFP, Article 85 (August 2019), 29 pages. https://doi.org/10.1145/3341689

Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. 2017. FunTAL: Reasonably Mixing a Functional

Language with Assembly. SIGPLAN Not. 52, 6 (2017), 495–509. https://doi.org/10.1145/3140587.3062347

James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Using Multi-language Semantics. In Proc. 23rd

European Symposium on Programming (ESOP’14) (LNCS, Vol. 8410), Zhong Shao (Ed.). Springer, Cham, 128–148. https:

//doi.org/10.1007/978-3-642-54833-8_8

Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg, and Derek Dreyer.

2023. DimSum: A Decentralized Approach to Multi-Language Semantics and Verification. Proc. ACM Program. Lang. 7,

POPL, Article 27 (January 2023), 31 pages. https://doi.org/10.1145/3571220

Gabriel Scherer, Max New, Nick Rioux, and Amal Ahmed. 2018. Fabous Interoperability for ML and a Linear Language. In

Foundations of Software Science and Computation Structures, Christel Baier and Ugo Dal Lago (Eds.). Springer, Cham,

146–162. https://doi.org/10.1007/978-3-319-89366-2_8

Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2020. CompCertM: CompCert

with C-Assembly Linking and Lightweight Modular Verification. Proc. ACM Program. Lang. 4, POPL, Article 23 (January

2020), 31 pages. https://doi.org/10.1145/3371091

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional Contextual

Refinement. Proc. ACM Program. Lang. 7, POPL, Article 39 (January 2023), 31 pages. https://doi.org/10.1145/3571232

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert. In Proc.

42nd ACM Symposium on Principles of Programming Languages (POPL’15). ACM, New York, NY, USA, 275–287. https:

//doi.org/10.1145/2676726.2676985

YutingWang, PierreWilke, and Zhong Shao. 2019. An Abstract Stack Based Approach to Verified Compositional Compilation

to Machine Code. Proc. ACM Program. Lang. 3, POPL, Article 62 (January 2019), 30 pages. https://doi.org/10.1145/3290375

Yuting Wang, Ling Zhang, Zhong Shao, and Jérémie Koenig. 2022. Verified Compilation of C Programs with a Nominal

Memory Model. Proc. ACM Program. Lang. 6, POPL, Article 25 (January 2022), 31 pages. https://doi.org/10.1145/3498686

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2019.

Interaction Trees: Representing Recursive and Impure Programs in Coq. Proc. ACM Program. Lang. 4, POPL, Article 51

(January 2019), 32 pages. https://doi.org/10.1145/3371119

Junpeng Zha, Hongjin Liang, and Xinyu Feng. 2022. Verifying Optimizations of Concurrent Programs in the Promising

Semantics. In Proc. 2021 ACM Conference on Programming Language Design and Implementation (PLDI’22). ACM, New

York, NY, USA, 903–917. https://doi.org/10.1145/3519939.3523734

Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong Shao. 2023a. Fully Composable and Adequate Verified

Compilation with Direct Refinements between Open Modules (Artifact). https://doi.org/10.5281/zenodo.10036618

Ling Zhang, Yuting Wang, Jinhua Wu, Jérémie Koenig, and Zhong Shao. 2023b. Fully Composable and Adequate Verified

Compilation with Direct Refinements between Open Modules (Technical Report). https://doi.org/10.48550/arXiv.2302.

12990

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 72. Publication date: January 2024.

https://doi.org/10.1007/s10817-016-9369-1
https://doi.org/10.1007/s10817-016-9369-1
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3385412.3386010
https://compcert.org/
https://hal.inria.fr/hal-00703441
https://doi.org/10.1145/2784731.2784764
https://doi.org/10.1145/3341689
https://doi.org/10.1145/3140587.3062347
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1145/3571220
https://doi.org/10.1007/978-3-319-89366-2_8
https://doi.org/10.1145/3371091
https://doi.org/10.1145/3571232
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3498686
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3519939.3523734
https://doi.org/10.5281/zenodo.10036618
https://doi.org/10.48550/arXiv.2302.12990
https://doi.org/10.48550/arXiv.2302.12990

	Abstract
	1 Introduction
	1.1 Full Compositionality and Adequacy in Verified Compilation
	1.2 Problems with the Existing Approaches to Refinements
	1.3 Challenges for Direct Refinement of Open Modules
	1.4 Our Contributions
	1.5 Structure of the Paper

	2 Key Ideas
	2.1 Refinement Supporting Adequacy, Heterogeneity and Horizontal Composition
	2.2 Uniform and Transitive KMR for Vertical Composition of Direct Refinements

	3 Background and Challenges
	3.1 Background
	3.2 Challenges for Vertically Composing Open Simulations

	4 A Uniform and Transitive Kripke Memory Relation
	4.1 Uniformity of injp
	4.2 Transitivity of injp

	5 Derivation of the Direct Refinement for CompCert
	5.1 Open Simulation of Individual Passes
	5.2 Properties for Refining Simulation Conventions
	5.3 Proving the Direct Open Simulation for CompCert

	6 End-to-End Verification of Heterogeneous Modules
	6.1 Refinement for the Hand-written Server
	6.2 End-to-end Correctness Theorem
	6.3 Verification of the Mutually Recursive Client and Server

	7 Generality and Limitations of Our Approach
	7.1 Supporting Different Memory Models and Compilers
	7.2 Supporting Additional Optimization Passes
	7.3 Limitations

	8 Evaluation and Related Work
	8.1 Verified Compositional Compilation for First-Order Languages
	8.2 Verified Compositional Compilation for Higher-Order Languages
	8.3 Frameworks for Compositional Program Verification

	9 Conclusion and Future Work
	Acknowledgments
	References

