Fully Composable and Adequate

Verified Compilation with
Direct Refinements between Open Modules

Ling Zhang ' Yuting Wang ! Jinhua Wu ! Jérémie Koenig 2 Zhong Shao ?

IShanghai Jiao Tong University, China

2Yale University, USA

POPL, January 2024, London

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Verified Compilation

CompCert: the State-of-the-Art
@ Verified compilation of a subset of C into assembly in Coq
@ Many Applications: CertiKOS, VST, Critical control system, etc.

Compiler Correctness = Refinement of Semantics
o [Mi] < [M2] denotes the semantics of M; refines that of M

extract
fo0.c 2% fto.c]
semantics

v

3 extract
100,822 [to0.0]
semantics

‘ua:)d wo?)

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Verified Compilation

CompCert: the State-of-the-Art
@ Verified compilation of a subset of C into assembly in Coq
@ Many Applications: CertiKOS, VST, Critical control system, etc.

Compiler Correctness = Refinement of Semantics
o [Mi] < [M2] denotes the semantics of M; refines that of M

extract
@:l{foo_c:ﬂ -
semantics
T: Transitions
Yr < R
. Invariants
Y extract
@I:l[foo_s]] EE e
semantics

uDHdwo)

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Verified Compilation of Open Modules

Intuition: Get a refinement directly relating semantics of C and assembly modules.

Initial Call External Call External Return Final Return

B - B GO > F

[foo.c]

O
4y
Yr
oot - -~ -

I Value/Registers I Memory ==p Internal Transitions ==» External Transitions

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Verified Compilation of Open Modules

Intuition: Get a refinement directly relating semantics of C and assembly modules.

Initial Call External Call External Return Final Return

[foo.c] mme) [—— S
O
@ hy i hy P2 h3 J3 hy Ja
Yf
[foo.s] - R R

I Value/Registers I Memory ==p Internal Transitions ==» External Transitions

h : Invariants of Language States J : Invariants of Memory States

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Problem: Indirect Refinements

Observation: No existing work on CompCert produces direct refinement

Compositional CompCert [POPL15]: [foo.s] <c [foo.c]
CompCertM [POPL'20): [foo.s] <1+ <2 +...+ <n [foo.c]
CompCertO [PLDI'21]: [foo.s] =<1:=<2-...-=n [foo.c]

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Problem: Indirect Refinements

Observation: No existing work on CompCert produces direct refinement

Compositional CompCert [POPL15]: [foo.s] [foo.c]
T
Only with C interfaces

CompCertM [POPL'20): [foo.s] <1+ <2 +...+ <n [foo.c]

CompCertO [PLDI'21]: [foo.s] =<1:=<2-...-=n [foo.c]

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Problem: Indirect Refinements

Observation: No existing work on CompCert produces direct refinement

Compositional CompCert [POPL15]: [foo.s] [foo.c]
T
Only with C interfaces

CompCertM [POPL 20]: [[foo.s]][<1 + <o +...+ ﬁn]l[foo.c]]
T
Union of Refinements

CompCertO [PLDI'21]: [foo.s] =<1:=<2-...-=n [foo.c]

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Problem: Indirect Refinements

Observation: No existing work on CompCert produces direct refinement

Compositional CompCert [POPL15]: [foo.s] [foo.c]
T
Only with C interfaces

CompCertM [POPL 20]: [[foo.s]][<1 + <o +...+ ﬁn]l[foo.c]]
T
Union of Refinements

CompCertO [PLDI'21]: [foo.s] [41 c=o e 4,,] [foo.<]
T

Concatenation of Refinements

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Main Challenge

Challenge: Vertical composition of direct refinements is difficult

Clight

}

C#minor
19
passes

v
Mach

|

Asm

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Main Challenge

Challenge: Vertical composition of direct refinements is difficult

Clight Clight
7
C#minor
"

19 Vertical Composition %

passes 2 Yf
7
Mach
o))

Ll

W
Asm Asm

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Main Challenge

Challenge: Vertical composition of direct refinements is difficult

Clight Clight
7
C#minor
19 Yf Vertical Composition % Q: Can we hide the

passes : Yf intermediate semantics?

[eo)
il

7
Mach

Ll

W
Asm Asm

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Our Contributions

Approach to Direct Refinements Supporting:
@ Vertical and horizontal composition
e Equivalence of semantics and syntactic linking (i.e., Adequacy)

@ Heterogeneous modules with mutual calls

Applications:
@ CompCert's full compilation chain

@ Extension to user-level verification

Notice: We focus on imperative programs with global memory and pointers.

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

A Running Example

Heterogeneous Modules with Callbacks and Pointer Passing:
@ A client written in C;

@ An encryption server written in X86 assembly.

1 /% Client.c */ 1 /% Server.s x/

2 int result; > key: .long 42

3 void encrypt(int i, void(*p)(intx*)); 3 encrypt:

4 4 ... /] Alloc 24—bytes frame
5 static void red(int *r) { s // RSP[8] = key XOR i
6 result = xr; 6 mov key RAX

7} 7 xor RAX RDI

s // Entry point s mov RDI 8(RSP)

o int request(int i) { o // call p(RSP + 8)

10 encrypt(i,rcd); 10 lea 8(RSP) RDI

11 return result: 11 call RSI

12} 12

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

A Running Example

@ encrypt (11, rcd)
request (11)

. . _—
Environment ——— = Client.c Server.s

(3) rcd(rsp+8) (m[RSP+8] = 42 XOR 11]

1 /% Client.c */ 1 /% Server.s x/

2 int result; > key: .long 42

3 void encrypt(int i, void(*p)(intx*)); 3 encrypt:

4 4 ... /] Alloc 24—bytes frame
5 static void red(int *r) { s // RSP[8] = key XOR i
6 result = xr; 6 mov key RAX

7} 7 xor RAX RDI

s // Entry point s mov RDI 8(RSP)

o int request(int i) { o // call p(RSP + 8)

10 encrypt(i,rcd); 10 lea 8(RSP) RDI

11 return result: 11 call RSI

12} 12

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Verification Steps

(1) Prove CompCert has the direct refinement <y¢;
(2) Prove [Server.s] <ac Ls;
(3) Exploit the compositionality and adequacy of <ac.

:I [Client.c] @ L \:<—
SR e et
3| ¢
LA 3@
= < ()
[Client.s] @ [Server.s]
3
v

P el
1
1

[Client.s + Server.s] \.%

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

@ Direct Refinements for Adequacy and Horizontal Composition

@ Transitive Kripke Memory Relation for Vertical Composition

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Direct Refinement for CompCert

Direct refinement <,. as forward simulation with
@ Invariant for source and target program states;

Initial Call External Call External Return Final Return

I Value/Registers I Memory ==) Internal Transitions ==» External Transitions

[Client.s] <ac [Client.c]

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Direct Refinement for CompCert

Direct refinement <,. as forward simulation with
@ Invariant for source and target program states;

Initial Call External Call External Return Final Return
h : ho : h3 : ha :
I Value/Registers I Memory h : Invariants of Values

[Client.s] <ac [Client.c]

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Direct Refinement for CompCert

Direct refinement <,. as forward simulation with
@ Invariant for source and target program states;

Initial Call External Call External Return Final Return
hy : ﬁ ho : J2 hs : J3 ha : Ja

I Value/Registers I Memory h : Invariants of Values Jj : Memory Injections

[Client.s] <ac [Client.c]

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Direct Refinement for CompCert

Direct refinement <,. as forward simulation with
@ Invariant for source and target program states;
@ Protection for program states across external calls.

Initial Call External Call External Return Final Return

hy ﬁ ho @ hs js ha| \ |Ja

I Value/Registers I Memory h : Invariants of Values Jj : Memory Injections

[Client.s] <ac [Client.c]

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Adequacy of Direct Refinements

Adequacy trivially holds as invariants directly relates C and assembly states:
@ Invariants formalize the CompCert C calling convention;

@ Source function arguments are mapped directly to registers and the stack.

[Client.s]) [Server.s]
3
7
[Client.s + Server.s]

Zhang, Wang, Wu, Koenig, Shao

Verified Compilation with Direct Refinements

Horizontal Composition of Direct Refinements

Direct protection of private states against external calls :
o Callee-saved registers and stack pointer must be restored upon returning.
@ Private stack memory (e.g., spilled registers) must not be modified

Rely-guarantee reasoning

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Horizontal Composition of Direct Refinements

Direct protection of private states against external calls :
o Callee-saved registers and stack pointer must be restored upon returning.
@ Private stack memory (e.g., spilled registers) must not be modified

Rely-guarantee reasoning

g =eenor 1

L l l *
L4 .
L4 A
l' “
! q: qé-----}rﬁ 4r
: 1 1
1 " ‘\
4
Y l RN Guarantee AN l
. «

Lr: g2 rn

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Horizontal Composition of Direct Refinements

Direct protection of private states against external calls :
o Callee-saved registers and stack pointer must be restored upon returning.
@ Private stack memory (e.g., spilled registers) must not be modified

Rely-guarantee reasoning

'I|[Client.c]] ® Ls !
qi LEEERE] 2 r{ e e e -
‘ A
. l l * @ 8 @
0' “ Yf Yf Yf
:' qé LEER T 2 ré %
Li: a1 o « N TT T TTTTssssssssssooo---o \
R s, [Client.s] @ [Server.s]:
Y l K Guarantee AR l Pmmmtootommomooooooooooes
. « <ac h tric rely and t diti
L. 9 ry (Xac has symmetric rely and guarantee conditions)

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

© Direct Refinements for Adequacy and Horizontal Composition

@ Transitive Kripke Memory Relation for Vertical Composition

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Recall the Challenge

Challenge: Vertical composition of refinements

Clight Clight
7
C# minor
\?
19 ’ 3
passes : Vertical Composition Yf

[ce]
i

7
Mach

—

v
Asm Asm

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Recall the Challenge

Challenge: Vertical composition of rely-guarantee conditions

Ly: Gue=p gy=====pri==pn Ly: Que=p gy ====epri==pn

N
Pl oy | =

L3: G3uep gymmmmcpry=apr3 L3: G3==p gymmmmehrz==hp I3

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

A Kripke Relation with Memory Protection

Kripke relation injp for protection:
@ At an external call, infer private memory from the injection;

@ No modification to private memory allowed during the call.

m [] my
j S
my L1 m

Allocated by Callee

Private memory are the shaded areas, including
@ Source caller's memory NOT in the domain of j

@ Target caller's memory NOT in the image of j

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Example of Memory Protection by inj

Before the server calls back rcd:

request(11) encrypt (11,rcd) rcd(bg)
Environment ======9 [Client.c]| ==mmaaaap [uunnaaa)
bresult bi
C: | i | :
| | L]
| | | |
e b e | L LY\ ______
| | | |
P | | | |
/ | | K | |
result bkey I bRSP1 I bRSPz - []
! SILIIIIAI S22 7877777 ! 42l I2777 7777777 L
Asm B P 33 B
I ! I]
. €-=-=-== T B T]
Environment ======9 [Client.s]| ======p [Server.s] ==p
request encrypt rcd

Protected Memory: bj, brsp,, and part of bgsp,

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Example of Memory Protection by i

During the server calls back rcd:

request(11) encrypt (11,rcd) rcd(bg)
Environment ======g ﬂcllent‘c]] IEEEEERTY = LS mEmmmma) ﬂcllent C]]
bresult bj_ br
c: || | " :
I I]
| | | |
| | "
2 T - B
P | | | |
/ -
bresult bkey : bRSP1 : bRSPz B : bRSPz
! 4172777 /////// ///// ! 44227777 2777777 L]
Asm : - lﬁz%e;z 33 [B7) | busr. | B2 |
I ! I l

Enwronment I [Client.s]| ======p [Server. s]] .. } [Client.s]
request encrypt

Protected Memory: bj, brsp,, and part of bgsp,

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Example of Memory Protection by injp

After the server calls back rcd:

request(11) encrypt (11,rcd)
Environment ======9 [Client.c] ========p [g
bresult bkey bi

77777

77
i
i

77777

¢ [

brsp, brsp,

| |
| |
| | .

| |

! LIIIIIIAI I 22777877777 ! 44227777 2777777

4] e r T 33 R

. - THEEARA i RAL

Asm : V- UBise Y RBXARES Brispy Bhy
| |

€« - = - — = -

T T
Environment ======9 [Client.s] ======$ [Server.s]
request encrypt

SN

Protected Memory: bj, brsp,, and part of bgsp,

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Vertical Composition of Direct Refinements

Observations:
@ injp is uniform: its protection works for all passes;

@ injp is transitive: injp-injp = injp.

Li: que=p gy====epri==pr Li: que=p gy ==e==eprq==pn
S
7

Ly: Q2uap ghmmmmeprhaapn = % m

[3: G3uep gymmmmehry==pr3 [3: G3=ap gsmmmmeprz==hp I3

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Transitivity of injp

Key to prove injp - injp = injp:

@ Construct an interpolating state when the external call returns.

M| eesmam=na) mll

J12 l

m i/
2 J13

J23 l

M3 smmmemmna) mé

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Transitivity of injp

Key to prove injp - injp = injp:

@ Construct an interpolating state when the external call returns.

Jl m&l

M3 smmmemmna) mé

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Transitivity of injp

Key to prove injp - injp = injp:

@ Construct an interpolating state when the external call returns.

M| eesmam=na) mll

Jl @Azl

M) =mmmmm= =) _/]l_3
| wﬁ%
M3 ammmmmnnep ml How to construct it?

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Construction of the Interpolating State

Protection after Composition > Protection before Composition

@ Public memory of m}, = (Image of j12) N (Domain of j»3);

e m)j is unchanged from my except for its public memory is projected from mj.

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Construction of the Interpolating State

Protection after Composition > Protection before Composition

@ Public memory of m}, = (Image of j12) N (Domain of j»3);

e m)j is unchanged from my except for its public memory is projected from mj.

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Construction of the Interpolating State

Protection after Composition > Protection before Composition

@ Public memory of m}, = (Image of j12) N (Domain of j»3);

e m)j is unchanged from my except for its public memory is projected from mj.

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Construction of the Interpolating State

Protection after Composition > Protection before Composition

m;: |63 = mmmee s BE[] B[|63 []ibf

ma: T -l i [18] | 8
J23 J23 / 3 /D
my LY B[) eee-eeemy b BT 0]

@ Public memory of m}, = (Image of j12) N (Domain of j»3);

e m)j is unchanged from my except for its public memory is projected from mj.

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Construction of the Interpolating State

Protection after Composition > Protection before Composition

@ Public memory of m}, = (Image of j12) N (Domain of j»3);

e m)j is unchanged from my except for its public memory is projected from mj.

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

CompCert(O) with Direct Refinement

Cinjp — Cinj Canjp
Cinjp — Cinj / \

Invariant

Protection

Cinjp * Cinjp = Cinjp

Ttlexs — 1tlogs Cext * Cinjp = Cinjp

Passes Rely — Guarantee
Self-Sim TO * Cinjp — TO * Cinjp
SimplLocals
Cminorgen
Selection Wt * Coxt — Wt * Cext
RTLgen Cext — Cext
Self-Sim Cinj — Cinj
Tailcall Cext — Cext
Inlining Cinjp — Cinj
Self-Sim Cinjp > Cinjp
Constprop IO : Cinjp —» TO * Cinjp
CSE O« Cinjp — XO * Cinjp
Deadcode IO : Cinjp — TO * Cinjp
Unusedglob Cinj = Cinj
Allocation Wt + Cext * CL — Wt + Cext + CL
Tunneling
Stacking 1tlinjp + LM — LM - machinj
Asmgen machext + MA — macheyt + MA
Self-Sim asMjpj * @SMinjp —* asMipj * aslinjp

Significant Passes

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

CompCert(O) with Direct Refinement

Passes Rely — Guarantee
Self-Sim TO * Cinjp — TO * Cinjp
SimplLocals Cinjp — Cinj ‘<)
Cminorgen cinji —» cin; M a'C |
Selection Wt * Coxt — Wt * Cext
RTLgen Cext — Cext TO * Cinjp * Cinjp * Cinjp * WL * Cext * Cext * Cinj
Inlining Cinjp — Cinj *Cinjp * Cinj * Wb * Cext * CL-1tleys - 1t1injp
Self-Sim Cinjp — Cinjp LM - machgyt + MA - asinj * aSMinjp
Constprop TO * Cinjp — YO * Cinjp
CSE IO+ Cinjp = TO * Cinjp —
Deadcode IO : Cinjp — TO * Cinjp
Unusedglob Cinj = Cinj
Allocation Wt - Cext * CL —» Wt » Cext + CL TO * Cinjp * Cinj * Cinj * Wt * Cext * Cext ° Cinj
Tunneling LTtlext — Lltlext *Cext * Cinj * Cinjp * O * Cinjp * TO * Cinjp * IO
Stackin 1tlinip - LM — LM - machin;
Asmgeng macheii + MA — macheyt * Mi\ *Cinjp * Cinj * WE Coxt * CL» 1T 1exy - LM
Self-Sim asmipj + asminjp —» aslipj * ashipjp 'maChinj ° maChext M MA * asminj M asminjp

Significant Passes

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

CompCert(O) with Direct Refinement

Cinjp — Cinj < ac
o+ wt - CAinjp * aSmynjp
ro - Cjnjp —» YO Cinjp 3

ro + wt » CAinjp * aSmynjp

Passes Rely — Guarantee
Self-Sim TO * Cinjp — TO * Cinjp
SimplLocals
Cminorgen Cinjp — Cinj
Selection Wt * Coxt — Wt * Cext
RTLgen Cext — Cext
Self-Sim Cinj — Cinj
Tailcall Cext — Cext
Inlining Cinjp — Cinj
Self-Sim Cinjp > Cinjp
Constprop IO : Cinjp —» TO * Cinjp
CSE
Deadcode IO : Cinjp — TO * Cinjp
Unusedglob Cinj = Cinj
Allocation Wt + Cext * CL — Wt + Cext + CL
Tunneling 1tlext — ltlext
Stacking 1tlinjp + LM — LM - machinj
Asmgen machext + MA — macheyt + MA
Self-Sim asMjpj * @SMinjp —* asMipj * aslinjp

Significant Passes

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

Direct refinements of realistic verified compilers are feasible:

@: [foo.c]
O

CompCert 4y

! \r
@l: [foo.s]

Discovery: Transitivity of Kripke Relation with Memory Protection

Ongoing/Future work:

@ Reduce to the original CompCert M T
@ Connect with Program Verification https://doi.org/10.5281/
@ Verified Compilation of Safe/Unsafe Rust zenodo.10036618

Zhang, Wang, Wu, Koenig, Shao Verified Compilation with Direct Refinements

https://doi.org/10.5281/zenodo.10036618
https://doi.org/10.5281/zenodo.10036618

