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Optimal Rates for Zero-Order Convex Optimization:
The Power of Two Function Evaluations

John C. Duchi, Michael I. Jordan, Fellow, IEEE, Martin J. Wainwright, Senior Member, IEEE,
and Andre Wibisono

Abstract— We consider derivative-free algorithms for
stochastic and nonstochastic convex optimization problems that
use only function values rather than gradients. Focusing on
nonasymptotic bounds on convergence rates, we show that if pairs
of function values are available, algorithms for d-dimensional
optimization that use gradient estimates based on random
perturbations suffer a factor of at most

√
d in convergence

rate over traditional stochastic gradient methods. We establish
such results for both smooth and nonsmooth cases, sharpening
previous analyses that suggested a worse dimension dependence,
and extend our results to the case of multiple (m ≥ 2) evaluations.
We complement our algorithmic development with information-
theoretic lower bounds on the minimax convergence rate of such
problems, establishing the sharpness of our achievable results
up to constant (sometimes logarithmic) factors.

Index Terms— Optimization, zero-order optimization, on-line
learning, statistical learning, lower bounds.

I. INTRODUCTION

DERIVATIVE-FREE optimization schemes have a long
history in optimization; for instance, see the book by

Spall [1] for an overview. Such procedures are desirable
in settings in which explicit gradient calculations may
be computationally infeasible, expensive, or impossible.
Classical techniques in stochastic and non-stochastic
optimization, including Kiefer-Wolfowitz-type procedures
(see [2]), use function difference information to approximate
gradients of the function to be minimized rather than
calculating gradients. There has recently been renewed
interest in optimization problems with only functional
(zero-order) information available—rather than first-order
gradient information—in optimization, machine learning, and
statistics [3]–[7].
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In machine learning and statistics, this interest has centered
around bandit optimization [3], [4], [8], where a player and
adversary compete, with the player choosing points θ in some
domain � and an adversary choosing a point x , forcing
the player to suffer a loss F(θ; x). The goal is to choose
an optimal point θ ∈ � based only on observations of
function values F(θ; x). Applications of such bandit problems
include online auctions and advertisement selection for search
engines. Similarly, the field of simulation-based optimization
provides many examples of problems in which optimization
is performed based only on function values [1], [5], [9].
Additionally, in many problems in statistics—including graph-
ical model inference [10] and structured-prediction [11]—the
objective is defined variationally (as the maximum of a family
of functions), so explicit differentiation may be difficult.

Despite the long history and recent renewed interest in
such procedures, a precise understanding of their convergence
behavior remains elusive. In this paper, we study algorithms
for solving stochastic convex optimization problems of the
form

minimize
θ∈� f (θ) := EP [F(θ; X)] =

∫
X

F(θ; x)d P(x), (1)

where � ⊆ R
d is a compact convex set, P is a distribution

over the space X , and for P-almost every x ∈ X , the
function F(·; x) is closed and convex. We focus on the
convergence rates of algorithms observing only stochastic
realizations of the function values f (θ), though our algorithms
naturally apply in the non-stochastic case as well.

One related body of work focuses on problems where,
for a given value x ∈ X (or sample X ∼ P), it is
only possible to observe F(θ; x) at a single location θ .
Nemirovski and Yudin [12, Ch. 9.3] develop a randomized
sampling strategy that estimates the gradient ∇F(θ; x) via
randomized evaluations of function values at points θ on the
surface of an �2-sphere. Flaxman et al. [3] build on this
approach and establish some implications for bandit convex
optimization problems. The convergence rates given in these
early papers are sub-optimal, as more recent work shows [7].
For instance, Agarwal et al. [7] provide algorithms that achieve
convergence rates after k iterations of O(d16/

√
k); however,

as the authors themselves note, the algorithms are quite
complicated. Jamieson et al. [13] present simpler comparison-
based algorithms for solving a subclass of such problems, and
Shamir [14] gives optimal algorithms for quadratic objectives,
as well as providing some lower bounds on optimization error
when only single function values are available.
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Some of the difficulties inherent in optimization using
only a single function evaluation are alleviated when the
function F(·; x) can be evaluated at two points, as noted
independently by Agarwal et al. [4] and Nesterov [5]. Such
multi-point settings prove useful for optimization problems
in which observations X are available, yet we only have
black-box access to objective values F(θ; X); examples of
such problems include simulation-based optimization [5], [9]
and variational approaches to graphical models and
classification [10], [11]. The essential insight underlying
multi-point schemes is as follows: for small non-zero scalar u
and a vector Z ∈ R

d , the quantity (F(θ+u Z; x)− F(θ; x))/u
approximates a directional derivative of F(θ; x) in the
direction Z that first-order schemes may exploit. Relative to
schemes based on only a single function evaluation at each
iteration, such two-sample-based gradient estimators exhibit
faster convergence rates [4]–[6]. In the current paper, we
take this line of work further, in particular by characterizing
optimal rates of convergence over all procedures based on
multiple noisy function evaluations. Moreover, adopting the
two-point perspective, we present simple randomization-based
algorithms that achieve these optimal rates.

More formally, we study algorithms that receive a vector of
paired observations, Y (θ, τ ) ∈ R

2, where θ and τ are points
selected by the algorithm. The t th observation takes the form

Y t (θ t , τ t ) :=
[

F(θ t ; Xt )
F(τ t ; Xt )

]
, (2)

where Xt is an independent sample drawn from the
distribution P . After k iterations, the algorithm returns a
vector θ̂ (k) ∈ �. In this setting, we analyze stochastic
gradient and mirror-descent procedures [12], [15]–[17]
that construct gradient estimators using the two-point
observations Y t (as well as the natural extension to m ≥ 2
observations). By a careful analysis of the dimension
dependence of certain random perturbation schemes, we show
that the convergence rate attained by our stochastic gradient
methods is roughly a factor of

√
d worse than that attained by

stochastic methods that observe the full gradient ∇F(θ; X).
Under appropriate conditions, our convergence rates are a
factor of

√
d better than those attained in past work [4], [5].

For smooth problems, Ghadimi and Lan [6] provide
results sharper than those in the papers [4], [5], but
do not show optimality of their methods nor consider
non-Euclidean problems. In addition, although we present
our results in the framework of stochastic optimization, our
analysis also applies to (multi-point) bandit online convex
optimization problems [3], [4], [8], where our results are
the sharpest provided to date. Our algorithms apply in both
smooth and non-smooth cases as well as to non-stochastic
problems [5], [12], where our procedures give the fastest
known convergence guarantees for the non-smooth case.
Finally, by using information-theoretic techniques for proving
lower bounds in statistical estimation, we establish that our
explicit achievable rates are sharp up to constant factors or
(in some cases) factors at most logarithmic in the dimension.

The remainder of this paper is organized as follows:
in the next section, we present our multi-point gradient

estimators and their convergence rates, providing results
in Section II-A and II-B for smooth and non-smooth
objectives F , respectively. In Section III, we provide
information-theoretic minimax lower bounds on the best
possible convergence rates, uniformly over all schemes based
on function evaluations. We devote Sections IV and Section V
to proofs of the achievable convergence rates and the lower
bounds, respectively, deferring more technical arguments to
appendices.

Notation: For sequences indexed by d , the inequality
ad � bd indicates that there is a universal numerical constant c
such that ad ≤ c · bd . For a convex function f : R

d → R,
we let

∂ f (θ) := {g ∈ R
d | f (τ ) ≥ f (θ)+ 〈g, τ − θ〉 ∀ τ ∈ R

d}
denote the subgradient set of f at θ . We say a function f is
λ-strongly convex with respect to the norm ‖·‖ if for all θ,
τ ∈ R

d , we have f (τ ) ≥ f (θ)+ 〈g, τ − θ〉 + (λ/2) ‖θ − τ‖2

for all g ∈ ∂ f (θ). Given a norm ‖·‖, we denote its dual
norm by ‖·‖∗. We let N(0, Id×d ) denote the standard normal
distribution on R

d . We denote the �2-ball in R
d with radius

r centered at v by B
d (v, r), and S

d−1(v, r) denotes the
(d − 1)-dimensional �2-sphere in R

d with radius r centered
at v. We also use the shorthands B

d = B
d (0, 1) and

S
d−1 = S

d−1(0, 1), and � for the all-ones vector.

II. ALGORITHMS

We begin by providing some background on the class of
stochastic mirror descent methods for solving the problem
minθ∈� f (θ). They are based on a proximal function ψ ,
meaning a differentiable and strongly convex function defined
over �. The proximal function defines a Bregman divergence
Dψ : �×� → R+ via

Dψ(θ, τ ) := ψ(θ)− ψ(τ)− 〈∇ψ(τ), θ − τ 〉.
The mirror descent (MD) method generates a sequence of
iterates {θ t }∞t=1 contained in �, using stochastic gradient
information to perform the update from iterate to iterate. The
algorithm is initialized at some point θ1 ∈ �. At iterations
t = 1, 2, 3, . . ., the MD method receives a (subgradient) vector
g t ∈ R

d , which it uses to compute the next iterate via

θ t+1 = arg min
θ∈�

{〈
g t , θ

〉 + 1

α(t)
Dψ(θ, θ

t )

}
, (3)

where {α(t)}∞t=1 is a non-increasing sequence of positive
stepsizes.

Throughout the paper, we impose two assumptions that are
standard in analysis of mirror descent methods [12], [16], [17].
Letting θ∗ denote a minimizer of the problem (1), the first
assumption concerns properties of the proximal function ψ
and the optimizaton domain �.

Assumption A: The proximal function ψ is 1-strongly
convex with respect to the norm ‖·‖. There exists R < ∞
such that Dψ(θ∗, θ) ≤ 1

2 R2 for θ ∈ �, and the domain � is
compact.

Our second assumption is standard for almost all first-order
stochastic gradient methods [5], [17], [18], and it holds when-
ever the functions F(·; x) are G-Lipschitz with respect to
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the norm ‖·‖. We use ‖·‖∗ to denote the dual norm to ‖·‖,
and let g : � × X → R

d denote a measurable subgradient
selection for the functions F ; that is, g(θ; x) ∈ ∂F(θ; x)
with E[g(θ; X)] ∈ ∂ f (θ).

Assumption B: There is a constant G < ∞ such that
the (sub)gradient selection g satisfies E[‖g(θ; X)‖2∗] ≤ G2

for θ ∈ �.
When Assumptions A and B hold, the convergence rates

of stochastic mirror descent methods are well understood.
In detail, suppose that the variables Xt ∈ X are sampled
i.i.d. according to P . With the assignment g t = g(θ t ; Xt ),
let the sequence {θ t }∞t=1 be generated by the mirror descent
iteration (3). Then for a stepsize α(t) = α/

√
t , the average

θ̂ (k) = 1
k

∑k
t=1 θ

t satisfies

E[ f (θ̂ (k))] − f (θ∗) ≤ 1

2α
√

k
R2 + α√

k
G2. (4)

We refer to the papers [16], [17, Sec. 2.3] for results of this
type.

For the remainder of this section, we explore the use of
function difference information to obtain subgradient estimates
that can be used in mirror descent methods to achieve
statements similar to the convergence guarantee (4). We begin
by analyzing the smooth case—when the instantaneous
functions F(·; x) have Lipschitz gradients—and proceed to the
more general (non-smooth) case in the subsequent section.

A. Two-Point Gradient Estimates and
Convergence Rates: Smooth Case

Our first step is to show how to use two function values
to construct nearly unbiased estimators of the gradient of the
objective function f under a smoothness condition. Using
analytic methods different from those from past work [4], [5],
we are able to obtain optimal dependence with the problem
dimension d . In more detail, our procedure is based on a
non-increasing sequence of positive smoothing parameters
{ut }∞t=1 and a distribution μ on R

d , to be specified, satisfying
Eμ[Z Z�] = I . Given a smoothing constant u, vector z, and
observation x , we define the directional gradient estimate at
the point θ as

Gsm(θ; u, z, x) := F(θ + uz; x)− F(θ; x)

u
z. (5)

Using the estimator (5), we then perform the following two
steps. First, upon receiving the point Xt ∈ X , we sample an
independent vector Zt from μ and set

g t = Gsm(θ
t ; ut , Zt , Xt )

= F(θ t + ut Z t ; Xt )− F(θ t ; Xt )

ut
Z t . (6)

In the second step, we apply the mirror descent update (3) to
the quantity g t to obtain the next parameter θ t+1.

Intuition for the estimator (5) follows by considering
directional derivatives. The directional derivative f ′(θ, z) of
the function f at the point θ in the direction z is

f ′(θ, z) := lim
u↓0

1

u
( f (θ + uz)− f (θ)).

This limit always exists when f is convex [19, Ch. VI], and
if f is differentiable at θ , then f ′(θ, z) = 〈∇ f (θ), z〉. With
this background, the estimate (5) is motivated by the following
fact [5, eq. (32)]: whenever ∇ f (θ) exists, we have

E[ f ′(θ, Z)Z ] = E[〈∇ f (θ), Z〉 Z ] = ∇ f (θ),

where the final equality uses our unbiasedness assumption that
E[Z Z�] = I . Consequently, given sufficiently small choices
of ut , the vector (6) should be a nearly unbiased estimator of
the gradient ∇ f (θ t ).

In addition to the condition Eμ[Z Z�] = I , we require a
few additional assumptions on μ. The first ensures that the
estimator g t is well-defined.

Assumption C: The domain of the functions F and support
of μ satisfy

dom F(·; x) ⊃ �+ u1 suppμ for x ∈ X . (7)
If we apply smoothing with Gaussian perturbation, the
containment (7) implies dom F(·; x) = R

d , though we still
optimize over the compact set � in the update (3). We remark
in passing that if the condition (7) fails, it is possible to
optimize instead over the smaller domain (1 − ε)�, assuming
w.l.o.g. that � has non-empty interior, so long as μ has
compact support (cf. Agarwal et al. [4, Algorithm 2]). We also
impose the following properties on the smoothing distribution:

Assumption D: For Z ∼ μ, the quantity M(μ) :=√
E[‖Z‖4 ‖Z‖2∗] is finite, and moreover, there is a function

s : N → R+ such that

E[‖〈g, Z〉 Z‖2∗] ≤ s(d) ‖g‖2∗ for any g ∈ R
d . (8)

Although the quantity M(μ) is required to be finite, its
value does not appear explicitly in our theorem statements.
On the other hand, the dimension-dependent quantity s(d)
from condition (8) appears explicitly in our convergence rates.
As an example of these two quantities, suppose that we take μ
to be the distribution of the standard normal N(0, Id×d ), and
use the �2-norm ‖·‖ = ‖·‖2. In this case, a straightfoward
calculation shows that M(μ)2 � d3 and s(d) � d .

Finally, as previously stated, the analysis of this section
requires a smoothness assumption:

Assumption E: There is a function L : X → R+ such
that for P-almost every x ∈ X , the function F(·; x) has
L(x)-Lipschitz continuous gradient with respect to the norm
‖·‖, and the quantity L(P) := √

E[(L(X))2] is finite.
Essential to stochastic gradient procedures—recall

Assumption B and the result (4)—is that the gradient
estimator g t be nearly unbiased and have small norm.
Accordingly, the following lemma provides quantitative guar-
antees on the error associated with the gradient estimator (5).

Lemma 1: Under Assumptions D and E, the gradient
estimate (5) has expectation

E[Gsm(θ; u, Z , X)] = ∇ f (θ)+ uL(P)v(θ, u) (9)

for v = v(θ, u) ∈ R
d such that ‖v‖∗ ≤ 1

2E[‖Z‖2 ‖Z‖∗].
Its expected squared norm has the bound

E[‖Gsm(θ; u, Z , X)‖2∗]
≤ 2s(d)E

[
‖g(θ; X)‖2∗

]
+ 1

2
u2L(P)2 M(μ)2. (10)
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See Section IV-B for the proof. The bound (9) shows that the
estimator g t is unbiased for the gradient up to a correction
term of order ut , while the second inequality (10) shows that
the second moment is—up to an order u2

t correction—within
a factor s(d) of the standard second moment E[‖g(θ; X)‖2∗].
We note in passing that the parameter u in the lemma can be
taken arbitrarily close to 0, which only makes Gsm a better
estimate of g. The intuition is straightforward: with two points,
we can obtain arbitrarily accurate estimates of the directional
derivative.

Our main result in this section is the following theorem on
the convergence rate of the mirror descent method using the
gradient estimator (6).

Theorem 1: Under Assumptions A, B, C, D, and E, consider
a sequence {θ t } generated according to the mirror descent
update (3) using the gradient estimator (6), with step and
perturbation sizes

α(t) = α
R

2G
√

s(d)
√

t
and ut = u

G
√

s(d)

L(P)M(μ)
· 1

t

for t = 1, 2, . . .. Then for all k,

E
[

f (θ̂ (k))− f (θ∗)
] ≤ 2

RG
√

s(d)√
k

max
{
α, α−1

}

+ αu2 RG
√

s(d)

k
+ u

RG
√

s(d) log(2k)

k
, (11)

where θ̂ (k) = 1
k

∑k
t=1 θ

t , and the expectation is taken with
respect to the samples X and Z.

The proof of Theorem 1 builds on convergence proofs
developed in the analysis of online and stochastic convex
optimization [4], [5], [15], [17], but requires additional
technical care, since we never truly receive unbiased gradients.
We provide the proof in Section IV-A.

Before continuing, we make a few remarks. First, the
method is reasonably robust to the selection of the step-size
multiplier α; Nemirovski et al. [17] previously noted
this robustness for gradient-based MD methods. As long
as α(t) ∝ 1/

√
t , mis-specifying the multiplier α results

in a scaling at worst linear in max{α, α−1}. We may
also use multiple independent random samples Zt,i ,
i = 1, 2, . . . ,m, in the construction of the gradient
estimator (6) to obtain more accurate estimates of the gradient
via g t = 1

m

∑m
i=1 Gsm(θ

t ; ut , Zt,i , Xt ). See Corollary 2
to follow for an example of this construction. In addition,
the convergence rate of the method is independent of the
Lipschitz continuity constant L(P) of the instantaneous
gradients ∇F(·; X), because, as noted following Lemma 1, we
may take u arbitrarily close to 0. This suggests that similar
results may hold for non-differentiable functions; indeed, as
we show in the next section, a slightly more complicated
construction of the estimator g t leads to analogous guarantees
for general non-smooth functions.

Although we have provided bounds on the expected
convergence rate, it is possible to give high-probability
convergence guarantees (see [17], [20]) under additional
tail conditions on g—for example, under the bounded-
ness condition ‖g(θ; X)‖∗ ≤ G—though obtaining sharp
dimension-dependence requires care. Additionally, while we

have presented our results as convergence guarantees for
stochastic optimization problems, an inspection of our
analysis in Section IV-A shows that we also obtain (expected)
regret bounds for bandit online convex optimization problems
(see [3], [4], [8]).

1) Examples and Corollaries: We now provide examples
of sampling strategies giving bounds for the mirror descent
algorithm based on the subgradient estimator (6). For each
corollary, we specify the norm ‖·‖, proximal function ψ ,
and distribution μ. We then compute the values that the
distribution μ implies in Assumption E and apply Theorem 1
to obtain a convergence rate.

We begin with a corollary that characterizes the convergence
rate of our algorithm with the proximal function
ψ(θ) := 1

2 ‖θ‖2
2 under a Lipschitz condition:

Corollary 1: Given domain � ⊆ {θ ∈ R
d | ‖θ‖2 ≤ R},

suppose that μ is uniform on the surface of the �2-ball of
radius

√
d, and that E[‖g(θ; X)‖2

2] ≤ G2. Then

E
[

f (θ̂ (k))− f (θ∗)
] ≤ 2

RG
√

d√
k

max{α, α−1}

+ αu2 RG
√

d

k
+ u

RG
√

d log(2k)

k
.

Proof: By the assumption that E[Z Z�] = I , we see that
for any g ∈ R

d we have

E[‖〈g, Z〉 Z‖2
2] = dE[〈g, Z〉2] = dE[g�Z Z�g],

and as ‖Z‖2 = √
d , we have M(μ) =

√
E[‖Z‖6

2] = d3/2.
Thus Assumption D holds with s(d) = d , and the claim
follows from Theorem 1. �

The rate Corollary 1 provides is the fastest derived to
date for zero-order stochastic optimization using two function
evaluations; both Agarwal et al. [4] and Nesterov [5] achieve
rates of convergence of order RGd/

√
k. In concurrent work,

Ghadimi and Lan [6] provide a result (their Corollary 3.3) that
achieves a similar rate to that above, but their primary focus
is on non-convex problems. Moreover, we show in the sequel
that this convergence rate is actually optimal.

Using multiple function evaluations yields faster
convergence rates, as we obtain more accurate estimates of
the instantaneous gradients g(θ; X). The following extension
of Corollary 1 illustrates this effect:

Corollary 2: In addition to the conditions of Corollary 1,
let Z t,i , i = 1, . . . ,m be sampled independently according
to μ, and at each iteration of mirror descent use the gradient
estimate g t = 1

m

∑m
i=1 Gsm(θ

t ; ut , Zt,i , Xt ) with the step and
perturbation sizes

α(t) = αR

2G max{
√

d
m , 1}

· 1√
t

and ut = uG

L(P)d3/2 · 1

t
.

There exists a universal constant C ≤ 5 such that for all k,

E
[

f (θ̂(k))− f (θ∗)
]

≤ C
RG

√
1 + d

m√
k

[
max{α, α−1} + αu2

√
k

+ u
log(2k)

k

]
.
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Corollary 2 shows the intuitive result that, with a number
of evaluations linear in the dimension d , it is possible to
attain the standard (full-information) convergence rate RG/

√
k

(see [21]) using only function evaluations; we are (essentially)
able to estimate the gradient g(θ; X). We provide a proof of
Corollary 2 in Section IV-C.

In high-dimensional scenarios, appropriate choices for the
proximal function ψ yield better scaling on the norm of the
gradients [12], [17], [22]. In the setting of online learning
or stochastic optimization, suppose that one observes
gradients g(θ; X). If the domain � is the simplex, then
exponentiated gradient algorithms [16], [23] using the proxi-
mal function ψ(θ) = ∑

j θ j log θ j obtain rates of convergence
dependent on the �∞-norm of the gradients ‖g(θ; X)‖∞.
This scaling is more palatable than bounds that depend on
Euclidean norms applied to the gradient vectors, which may
be a factor of

√
d larger. Similar results apply using proximal

functions based on �p-norms [16], [24]. In our case, if we
make the choice p = 1 + 1

log(2d) and ψ(θ) = 1
2(p−1) ‖θ‖2

p ,
we obtain the following corollary, which holds under the
conditions of Theorem 1.

Corollary 3: Suppose that E[‖g(θ; X)‖2∞] ≤ G2, the
optimization domain � is contained in the �1-ball
{θ ∈ R

d | ‖θ‖1 ≤ R}, and μ is uniform on the
hypercube {−1, 1}d. There is a universal constant
C ≤ 2 exp(1) such that

E
[

f (θ̂ (k))− f (θ∗)
] ≤ C

RG
√

d log(2d)√
k

max
{
α, α−1

}

+C
RG

√
d log(2d)

k

(
αu2 + u log k

)
.

Proof: The chosen proximal function ψ is strongly
convex with respect to the norm ‖·‖p (see [12, Appendix 1]).
In addition, the choice q = 1+log(2d) implies 1/p+1/q = 1,
and ‖v‖q ≤ exp(1) ‖v‖∞ for any v ∈ R

d . Consequently, we
have E[‖〈g, Z〉 Z‖2

q ] ≤ exp(2)E[‖〈g, Z〉 Z‖2∞], which allows
us to apply Theorem 1 with the norm ‖·‖ = ‖·‖1 and the dual
norm ‖·‖∗ = ‖·‖∞.

We claim that Assumption D is satisfied with s(d) ≤ d .
Since Z ∼ Uniform({−1, 1}d), for g ∈ R

d we have

E

[
‖〈g, Z〉 Z‖2∞

]
= E

[
〈g, Z〉2

]
= ‖g‖2

2 ≤ d ‖g‖2∞ .

Finally, we have M(μ) =
√

E[‖Z‖4
1 ‖Z‖2∞] = d2, which

is finite as needed. By the inclusion of � in the �1-ball of
radius R and our choice of proximal function, we have

(p − 1)Dψ(θ, τ ) ≤ 1

2
‖θ‖2

p + 1

2
‖τ‖2

p + ‖θ‖p ‖τ‖p .

(For instance, see Lemma 3 in the paper [22].) We thus find
that Dψ(θ, τ ) ≤ 2R2 log(2d) for any θ, τ ∈ �, and using
the step and perturbation size choices of Theorem 1 gives the
result. �

Corollary 3 attains a convergence rate that scales with
dimension as

√
d log d , which is a much worse dependence

on dimension than that of (stochastic) mirror descent using
full gradient information [12], [17]. As in Corollaries 1 and 2,
which have similar additional

√
d factors, the additional

dependence on d suggests that while O(1/ε2) iterations are

required to achieve ε-optimization accuracy for mirror descent
methods, the two-point method requires O(d/ε2) iterations
to obtain the same accuracy. In Section III we show that
this dependence is sharp: apart from logarithmic factors, no
algorithm can attain better convergence rates, including the
problem-dependent constants R and G.

B. Two-Point Gradient Estimates and
Convergence Rates: General Case

We now turn to the general setting in which the
function F(·; x), rather than having a Lipschitz continuous
gradient, satisfies only the milder condition of Lipschitz
continuity. The difficulty in this non-smooth case is that the
simple gradient estimator (6) may have overly large norm.
For instance, a naive calculation using only the G-Lipschitz
continuity of the function f gives the bound

E

[
‖( f (θ + u Z)− f (θ))Z/u‖2

2

]

≤ G2
E

[
‖u ‖Z‖2 Z/u‖2

2

]
= G2

E[‖Z‖4
2]. (12)

This upper bound always scales at least quadratically
in the dimension, since we have the lower bound
E[‖Z‖4

2] ≥ (E[‖Z‖2
2])2 = d2, where the final equality uses the

assumption E[Z Z�] = Id×d . This quadratic dependence on
dimension leads to a sub-optimal convergence rate. Moreover,
this scaling appears to be unavoidable using a single perturbing
random vector: taking f (θ) = G ‖θ‖2 and setting θ = 0 shows
that the bound (12) may hold with equality.

Nevertheless, the convergence rate in Theorem 1 shows
that near non-smoothness is effectively the same as
being smooth. This suggests that if we can smooth the
objective f slightly, we may achieve a rate of convergence
even in the non-smooth case that is roughly the same as that
in Theorem 1. The idea of smoothing the objective has been
used to obtain faster convergence rates in both deterministic
and stochastic optimization [25], [26]. In the stochastic setting,
Duchi et al. [26] leverage the well-known fact that convolution
is a smoothing operation, and they consider minimization of
a sequence of smoothed functions

fu(θ) := E[ f (θ + u Z)] =
∫

f (θ + uz)dμ(z), (13)

where Z ∈ R
d has density with respect to Lebesgue measure.

In this case, fu is always differentiable; moreover, if f is
Lipschitz, then ∇ fu is Lipschitz under mild conditions.

The smoothed function (13) leads us to a two-point strategy:
we use a random direction as in the smooth case (6)
to estimate the gradient, but we introduce an extra step
of randomization for the point at which we evaluate the
function difference. Similar double-randomization schemes
were proposed by Gupal [27] (see also the book of
Polyak [28, Ch. 5.6.2]), though understanding of their con-
vergence behavior remained limited. Roughly speaking, this
randomness has the effect of making it unlikely that the
perturbation vector Z is near a point of non-smoothness, which
allows us to apply results similar to those in the smooth case.

More precisely, our construction uses two non-increasing
sequences of positive parameters {u1,t}∞t=1 and {u2,t}∞t=1 with
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u2,t ≤ u1,t/2, and two smoothing distributions μ1, μ2 on R
d .

Given smoothing constants u1, u2, vectors z1, z2, and obser-
vation x , we define the (non-smooth) gradient estimate at the
point θ as

Gns(θ; u1, u2, z1, z2, x)

:= F(θ + u1z1 + u2z2; x)− F(θ + u1z1; x)

u2
z2. (14)

Using Gns we may define our gradient estimator, which
follows the same intuition as our construction of the stochastic
gradient (6) from the smooth estimator (5). Now, upon receiv-
ing the point Xt , we sample independent vectors Zt

1 ∼ μ1 and
Zt

2 ∼ μ2, and set

g t = Gns(θ
t ; u1,t , u2,t , Zt

1, Zt
2, Xt ). (15)

We then proceed as in the preceding section, using this
estimator in the mirror descent method.

To demonstrate the convergence of gradient-based schemes
with gradient estimator (15), we require a few additional
assumptions. For simplicity, in this section we focus on
results for the Euclidean norm ‖·‖2. We impose the following
condition on the Lipschitzian properties of F(·; x), which is
a slight strengthening of Assumption B.

Assumption B′: There is a function G : X → R+ such that
for P-a.e. x ∈ X , the function F(·; x) is G(x)-Lipschitz
with respect to the �2-norm ‖·‖2, and the quantity
G(P) := √

E[G(X)2] is finite.
We also impose the following assumption on the smoothing

distributions μ1 and μ2.
Assumption F: The smoothing distributions are one of the

following pairs: (1) both μ1 and μ2 are standard normal in
R

d with identity covariance, (2) both μ1 and μ2 are uniform
on the �2-ball of radius

√
d + 2, or (3) the distribution μ1 is

uniform on the �2-ball of radius
√

d + 2 and the distribution
μ2 is uniform on the �2-sphere of radius

√
d. Additionally, we

assume the containment that for x ∈ X ,

dom F(·; x) ⊃ �+ u1,1 suppμ1 + u2,1 suppμ2.
We then have the following analog of Lemma 1, whose proof
we provide in Section IV-E:

Lemma 2: Under Assumptions B′ and F, the gradient esti-
mator (14) has expectation

E[Gns(θ; u1, u2, Z1, Z2, X)]
= ∇ fu1(θ)+

u2

u1
G(P)v(θ, u1, u2), (16)

where v = v(θ, u1, u2) has bound ‖v‖2 ≤ 1
2E[‖Z2‖3

2]. There
exists a universal constant c such that

E

[
‖Gns(θ; u1, u2, Z1, Z2, X)‖2

2

]

≤ c G(P)2d

(√
u2

u1
d + 1 + log d

)
. (17)

Comparing Lemma 2 to Lemma 1, both show that one
can obtain nearly unbiased gradient of the function f using
two function evaluations, but additionally, they show that the
squared norm of the gradient estimator is at most d times
larger than the expected norm of the subgradients ∂F(θ; x),
as captured by the quantity G2 from Assumption B or B′.

In our approach, non-smoothness introduces an additional
logarithmic penalty in the dimension; it may be possible to
remove this factor, but we do not know how at this time. The
key is that taking the second smoothing parameter u2 to be
small enough means that, aside from the dimension penalty,
the gradient estimator g t is essentially unbiased for ∇ fu1,t (θ

t )

and has squared norm at most G2d log d . This bound on size
is essential for our main result, which we now state.

Theorem 2: Under Assumptions A, B′, and F, consider
a sequence {θ t }∞t=1 generated according to the mirror descent
update (3) using the gradient estimator (15) with step and
perturbation sizes

α(t) = αR

G(P)
√

d log(2d)
√

t
, u1,t = u R

t
, u2,t = u R

d2t2 .

Then there exists a universal (numerical) constant c such that
for all k,

E
[

f (θ̂(k))− f (θ∗)
]

≤ c
RG(P)

√
d√

k

[
max{α, α−1}√log(2d)+ u

log(2k)√
k

]
,

(18)

where θ̂ (k) = 1
k

∑k
t=1 θ

t , and the expectation is taken with
respect to the samples X and Z.

The proof of Theorem 2 roughly follows that of Theorem 1,
except that we prove that the sequence θ t approximately
minimizes the sequence of smoothed functions fu1,t rather
than f . However, for small u1,t , these two functions are quite
close, which combined with the estimates from Lemma 2 gives
the result. We give the full argument in Section IV-D.

Theorem 2 shows that the convergence rate of our two-point
stochastic gradient algorithm for general non-smooth functions
is (at worst) a factor of

√
log d worse than the rate for smooth

functions in Corollary 1. Notably, the rate of convergence here
has substantially better dimension dependence than previously
known results [4]–[6].

III. LOWER BOUNDS ON ZERO-ORDER OPTIMIZATION

Thus far, we have presented two main results
(Theorems 1 and 2) that provide achievable rates for
perturbation-based gradient procedures. It is natural to
wonder whether or not these rates are sharp. In this section,
we show that our results are—in general—unimprovable
by more than a constant factor (a logarithmic factor in
dimension in the setting of Corollary 3). These results show
that no algorithm exists that can achieve a faster convergence
rate than those we have presented under the oracle model (2).

We begin by describing the notion of minimax error.
Let F be a collection of pairs (F, P), each of which defines
an objective function of the form (1). Let Ak denote the
collection of all algorithms that observe a sequence of data
points (Y 1, . . . ,Y k) ⊂ R

2 with Y t = [F(θ t , Xt ) F(τ t , Xt )]
and return an estimate θ̂ (k) ∈ �. Given an algorithm A ∈ Ak

and a pair (F, P) ∈ F , we define the optimality gap

εk(A, F, P,�) := f (θ̂(k))− inf
θ∈� f (θ)

= EP
[
F(θ̂(k); X)

] − inf
θ∈�EP [F(θ; X)],
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where θ̂ (k) is the output of algorithm A on the sequence
of observed function values. The expectation of this random
variable defines the minimax error

ε∗
k (F ,�) := inf

A∈Ak

sup
(F,P)∈F

E[εk(A, F, P,�)], (19)

where the expectation is taken over the observations
(Y 1, . . . ,Y k) and any additional randomness in A. This
quantity measures the performance of the best algorithm in Ak ,
where performance is required to be uniformly good over the
class F .

We now turn to the statement of our lower bounds, which
are based on simple choices of the classes F . For a given
�p-norm ‖·‖p , we consider the class of linear functionals

FG,p := {(F, P) | F(θ; x) = 〈θ, x〉 , EP [‖X‖2
p] ≤ G2

}
.

Each of these function classes satisfy Assumption B′ by
construction, and moreover, ∇F(·; x) has Lipschitz constant 0
for all x . We state each of our lower bounds assuming that
the domain � is equal to some �q -ball of radius R, that is,
� = {θ ∈ R

d | ‖θ‖q ≤ R}. Our first result considers the case
p = 2 with domain � an arbitrary �q -ball with q ≥ 1, so we
measure gradients in the �2-norm.

Proposition 1: For the class FG,2 and � = {θ ∈ R
d |

‖θ‖q ≤ R}, we have

ε∗
k (FG,2,�) ≥

1 − 1
q

12

G R√
k

min
{

d1− 1
q , k1− 1

q

}
. (20)

Combining the lower bound (20) with our algorithmic schemes
in Section II shows that they are optimal up to constant
factors. More specifically, for q ≥ 2, the �2-ball of radius
d1/2−1/q R contains the �q -ball of radius R, so Corollary 1
provides an upper bound on the minimax rate of conver-
gence of order RG

√
dd1/2−1/q/

√
k = RGd1−1/q/

√
k in the

smooth case, while for k ≥ d , Proposition 1 provides the
lower bound RGd1−1/q/

√
k. Theorem 2, providing a rate of

RG
√

d log d/
√

k in the general (non-smooth) case, is also
tight to within logarithmic factors. Consequently, the stochastic
gradient descent algorithm (3) coupled with the sampling
strategies (6) and (15) is optimal for stochastic problems with
two-point feedback.

We can prove a parallel lower bound that applies when using
multiple (m ≥ 2) function evaluations in each iteration, that
is, in the context of Corollary 2. In this case, an inspection of
the proof of Proposition 1 shows that we have the bound

ε∗
k (FG,2,�) ≥ 1 − 1

q

10

G R√
mk

min
{

d1− 1
q , k1− 1

q

}
. (21)

We show this in the remarks following the proof of
Proposition 1 in Section V-A. In particular, we see
that the minimax rate of convergence over the �2-ball
is RG

√
d/m/

√
k, which approaches the full information

minimax rate of convergence, RG/
√

k, as m → d .
For our second lower bound, we investigate the minimax

rates at which it is possible to solve stochastic convex
optimization problems in which the objective is Lipschitz
continuous in the �1-norm, or equivalently, in which the
gradients are bounded in �∞-norm. As noted earlier,

such scenarios are suitable for high-dimensional
problems (see [17]).

Proposition 2: For the class FG,∞ with � = {θ ∈ R
d |

‖θ‖1 ≤ R}, we have

ε∗
k (FG,∞,�) ≥ 1

24

G R√
k

min

{ √
k√

log(3k)
,

√
d√

log(3d)

}
.

This result also demonstrates the optimality of our mirror
descent algorithms up to logarithmic factors. Recalling
Corollary 3, the MD algorithm (3) with ψ(θ) = 1

2(p−1) ‖θ‖2
p ,

where p = 1 + 1/ log(2d), implies that ε∗
k (FG ,�) �

G R
√

d log(2d)/
√

k. On the other hand, Proposition 2
provides the lower bound ε∗

k (FG ,�) � G R
√

d/
√

k log d .
These upper and lower bounds match up to logarithmic factors
in dimension.

It is worth comparing these lower bounds to the
achievable rates of convergence when full gradient infor-
mation is available—that is, when one has access to the
subgradient selection g(θ; X)—and when one has access to
only a single function evaluation F(θ; X) at each iteration.
We begin with the latter, presenting a minimax lower bound
essentially due to Shamir [14] for comparison. We denote the
minimax optimization error using a single function evaluation

in each of k iterations by εsingle
k . For the lower bound, we

impose both Lipschitz conditions on the functions F and a
variance condition on the observations F(θ; X): for a given
variance σ 2, Lipschitz constant G, and �p-norm, we consider
the family of optimization problems defined by the class of
convex losses

Fσ,G,p := {
(F, P) | EP [‖∂F(θ; X)‖2

p] ≤ G2 and

E[(F(θ; X)− f (θ))2] ≤ σ 2}.
In our proofs, we restrict this class to functions of the form
F(θ; x) = c1 ‖θ − c2x‖1, where c1, c2 are constants chosen to
guarantee the above inclusions. By an extension of techniques
of Shamir [14, Th. 7], we have the following proposition.

Proposition 3: For any p, q ≥ 1, the class Fσ,G,p, and any
R > 0 with � ⊃ {θ ∈ R

d | ‖θ‖q ≤ R}, we have

ε
single
k (Fσ,G,q,�) ≥ 1

4
min

{
dσ√

k
,G Rd1− 1

p − 1
q

}
.

Proposition 3 shows that the asymptotic difficulty of opti-
mization grows at least quadratically with the dimension d .
Indeed, consider the Euclidean case ( p = q = 2), and
consider minimizing 1-Lipschitz convex functions over the
�2-ball. Assuming that observations have variance 1, the
minimax lower bound becomes 1

4 min{d/√k, 1}, so achieving
ε accuracy requires �(d2/ε2) iterations. This is substantially
worse than the complexity possible when using two function
evaluations: Corollary 1 implies that the minimax rate of
convergence scales as

√
d/k, so d/ε2 iterations are necessary

and sufficient to achieve ε accuracy. By comparing with
Corollary 2 and Proposition 1, we see a phase transition:
with only a single function evaluation per sample X , the
minimax rate is d/

√
k, yet with m ≥ 2 function

evaluations, it is possible to obtain rates of convergence scaling
as

√
d/m/

√
k.
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For the case of linear losses—that is, when
F(θ; x) = 〈θ, x〉—there is a smaller gap between convergence
rates possible using single function evaluation and those
attainable with multiple evaluations. In the Euclidean case of
the preceding paragraph, the minimax convergence rate for
linear losses scales (up to logarithmic factors) as

√
d/k when

only a single evaluation is available (see, e.g., Bubeck and
Cesa-Bianchi [29, Th. 5.11]). Similarly, optimization of linear
losses over the simplex (or the �1-ball)—the classical bandit
problem of Lai and Robbins [30], [31]—scales to within
logarithmic factors as

√
d/k in the paired evaluation case

(Corollary 3 and Proposition 2) and as
√

d/k in the single
evaluation case as well [32, Th. 5]. In the linear case, then,
there is not (generally) a phase transition between single and
multiple evaluations.

Returning now to a comparison with the full information
case, each of Propositions 1 and 2 includes an
additional

√
d factor as compared to analogous minimax

rates [16], [17], [21] applicable to the case of full gradient
information. These

√
d factors disappear from the achievable

convergence rates in Corollaries 1 and 3 when one uses
g t = g(θ; X) in the mirror descent updates (3). Consequently,
our analysis shows that in the zero-order setting—in addition
to dependence on the radius R and second moment G2—any
algorithm must suffer at least an additional O(√d) penalty
in convergence rate, and optimal algorithms suffer precisely
this penalty. In models for optimization in which there is
a unit cost for each function evaluation and a unit cost for
obtaining a single dimension of the gradient, the cost of using
full gradient information and that for using only function
evaluations is identical; in cases where performing d function
evaluations is substantially more expensive than computing a
single gradient, however, it is preferable to use full gradient
information if possible, even when the cost of obtaining the
gradients is somewhat nontrivial.

IV. CONVERGENCE PROOFS

We provide the proofs of the convergence results from
Section II in this section, deferring more technical arguments
to the appendices.

A. Proof of Theorem 1

Before giving the proof of Theorem 1, we state a
standard lemma on the mirror descent iterates
(see, for example, Nemirovski et al. [17, Sec. 2.3] or
Beck and Teboulle [16, eq. (4.21)]).

Lemma 3: Let {g t }k
t=1 ⊂ R

d be a sequence of vectors,
and let θ t be generated by the mirror descent iteration (3).
If Assumption A holds, then for any θ∗ ∈ � we have

k∑
t=1

〈
g t , θ t − θ∗〉 ≤ 1

2α(k)
R2 +

k∑
t=1

α(t)

2

∥∥g t
∥∥2

∗ .

Defining the error vector et := ∇ f (θ t ) − g t , Lemma 3
implies that

k∑
t=1

(
f (θ t )− f (θ∗)

) ≤
k∑

t=1

〈∇ f (θ t ), θ t − θ∗〉

=
k∑

t=1

〈
g t , θ t − θ∗〉 +

k∑
t=1

〈
et , θ t − θ∗〉 .

≤ 1

2α(k)
R2 +

k∑
t=1

α(t)

2

∥∥g t
∥∥2

∗ +
k∑

t=1

〈
et , θ t − θ∗〉. (22)

For each iteration t = 2, 3, . . ., let Ft−1 denote the σ -field
of X1, . . . , Xt−1 and Z1, . . . , Zt−1. Then Lemma 1 implies
E[et | Ft−1] = ut L(P)vt , where vt ≡ v(θ t , ut ) satisfies
‖vt‖∗ ≤ 1

2 M(μ). Since θ t ∈ Ft−1, we can first take an
expectation conditioned on Ft−1 to obtain

k∑
t=1

E[〈et , θ t − θ∗〉] ≤ L(P)
k∑

t=1

utE[‖vt‖∗
∥∥θ t − θ∗∥∥]

≤ 1

2
M(μ)RL(P)

k∑
t=1

ut ,

where in the last step above we have used the relation
‖θ t − θ∗‖ ≤ √

2Dψ(θ∗, θ) ≤ R. Statement (10) of Lemma 1
coupled with the assumption that E[‖g(θ t ; X)‖2∗ | Ft−1] ≤ G2

yields

E

[∥∥g t
∥∥2

∗
]

= E

[
E

[∥∥g t
∥∥2

∗ | Ft−1

]]

≤ 2s(d)G2 + 1

2
u2

t L(P)2 M(μ)2.

Applying the two estimates above to our initial bound (22)
yields that

k∑
t=1

E
[

f (θ t )− f (θ∗)
] ≤ 1

2α(k)
R2 + s(d)G2

k∑
t=1

α(t)

+ 1

4
L(P)2 M(μ)2

k∑
t=1

u2
t α(t)

+ 1

2
M(μ)RL(P)

k∑
t=1

ut . (23)

Now we use our choices of the sample size α(t)
and ut to complete the proof. For the former, we have
α(t) = αR/(2G

√
s(d)

√
t). Since

∑k
t=1 t− 1

2 <
∫ k

0 t− 1
2

dt = 2
√

k, we have

R2

2α(k)
+ s(d)G2

k∑
t=1

α(t) ≤ RG
√

s(d)
√

k(α + α−1).

For the second summation in the quantity (23), we have the
bound

αu2
(

G2s(d)

L(P)2 M(μ)2

)
RL(P)2 M(μ)2

4G
√

s(d)

k∑
t=1

1

t5/2

≤ αu2 RG
√

s(d)

since
∑k

t=1 t−5/2 ≤ 4. The final term in the inequality (23) is
similarly bounded by

u

(
G

√
s(d)

L(P)M(μ)

)
RL(P)M(μ)

2
(log k + 1)

= u
RG

√
s(d)

2
(log k + 1) ≤ u RG

√
s(d) log(2k).



2796 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 5, MAY 2015

Combining the preceding inequalities with Jensen’s inequality
yields the claim (11).

B. Proof of Lemma 1

Let h be an arbitrary convex function with Lh-Lipschitz
continuous gradient with respect to the norm ‖·‖. Using the
tangent plane lower bound for a convex function and the
Lh -Lipschitz continuity of the gradient, for any u > 0 we
have

h′(θ, z) = 〈∇h(θ), uz〉
u

≤ h(θ + uz)− h(θ)

u

≤ 〈∇h(θ), uz〉 + (Lh/2) ‖uz‖2

u
.

Consequently, for any point θ ∈ relint dom h and for any
z ∈ R

d , we have

h(θ + uz)− h(θ)

u
z = h′(θ, z)z + Lhu

2
‖z‖2 γ (u, θ, z)z,

(24)

where γ is some function with range contained in [0, 1]. Since
E[Z Z�] = Id×d by assumption, equality (24) implies

E

[
h(θ + u Z)− h(θ)

u
Z

]

= E

[
h′(θ, Z)Z + Lhu

2
‖Z‖2 γ (u, θ, Z)Z

]

= ∇h(θ)+ uLhv(θ, u), (25)

where v(θ, u) ∈ R
d is an error vector with

‖v(θ, u)‖∗ ≤ 1
2 E[‖Z‖2 ‖Z‖∗].

We now turn to proving the statements of the lemma.
Recalling the definition (5) of the gradient estimator, we see
that for P-almost every x ∈ X , expression (25) implies that

E[Gsm(θ; u, Z , x)] = ∇F(θ; x)+ uL(x)v(θ, u)

for v = v(θ, u) with 2 ‖v‖∗ ≤ E[‖Z‖2 ‖Z‖∗]. We have
E[∇F(θ; X)] = ∇ f (θ t ), and independence implies that

E[L(X) ‖v(θ, u)‖∗] ≤
√

E[L(X)2]
√

E[‖v‖2∗]
≤ 1

2
L(P)E[‖Z‖2 ‖Z‖∗],

from which the bound (9) follows.
For the second statement (10) of the lemma, apply

equality (24) to F(·; X), obtaining

Gsm(θ; u, Z , X) = 〈g(θ, X), Z〉 Z + L(X)u

2
‖Z‖2 γ Z

for some function γ ≡ γ (u, θ, Z , X) ∈ [0, 1]. The relation
(a + b)2 ≤ 2a2 + 2b2 then gives

E[‖Gsm(θ; u, Z , X)‖2∗]
≤ E

[(
‖〈g(θ, X), Z〉 Z‖∗ + 1

2

∥∥∥L(X)u ‖Z‖2 γ Z
∥∥∥∗

)2
]

≤ 2E

[
‖〈g(θ, X), Z〉 Z‖2∗

]
+ u2

2
E

[
L(X)2 ‖Z‖4 ‖Z‖2∗

]
.

Finally, Assumption D coupled with the independence
of X and Z gives the bound (10).

C. Proof of Corollary 2

We show that averaging multiple directional estimates
gives a gradient estimator whose expected squared norm is
smaller by a factor of m than that attained using a single
vector Z . Fixing x , let g = ∇F(θ; x)+uL(x)v(θ, u, x) denote
the expectation of Gsm(θ; u, Z , x) taken over Z uniform
on

√
dB

d , where 2 ‖v‖2 ≤ d3/2, by equation (25). In this
case, for Zi drawn i.i.d. μ, we obtain

E

[∥∥∥∥ 1

m

m∑
i=1

Gsm(θ; u, Zi , x)

∥∥∥∥
2

2

]

= ‖g‖2
2 + E

[∥∥∥∥ 1

m

m∑
i=1

Gsm(θ; u, Zi , x)− g

∥∥∥∥
2

2

]

= ‖g‖2
2 + 1

m
E[

∥∥∥Gsm(θ; u, Z1, x)− g
∥∥∥2

2
].

Now, taking an expectation over X , we have

E

[∥∥∥∥ 1

m

m∑
i=1

Gsm(θ; u, Zi , X)

∥∥∥∥
2

2

]

≤ E[‖∇F(θ; X)+ uL(X)v(θ, u, X)‖2
2]

+ 1

m
E[

∥∥∥Gsm(θ; u, Z1, X)
∥∥∥2

2
]

(i)≤ 2E[‖∇F(θ; X)‖2
2] + 1

2
u2d3

E[L(X)2]

+ 1

m

(
2dE[‖∇F(θ; X)‖2

2] + 1

2
u2 L(P)2d3

)

= 2
m + d

m
E[‖∇F(θ; X)‖2

2] + 1

2

m + 1

m
u2 L(P)2d3,

where inequality (i) follows from Lemma 1 and Jensen’s
inequality. Noting that the non-u-dependent terms scale as
(1 + d/m)E[‖∇F(θ; X)‖2

2], comparison of the last display
with Lemma 1’s application in Theorem 1 and Corollary 1
shows that the stepsizes specified in the corollary give the
desired guarantee.

D. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1.
To simplify our proof, we first state a lemma bounding the
moments of vectors that satisfy Assumption F.

Lemma 4: Let the random vector Z be distributed as
N(0, Id×d ), uniformly on the �2-ball of radius

√
d + 2,

or uniformly on the �2-sphere of radius
√

d. For any k ∈ N,
there is a constant ck (dependent only on k) such that

E

[
‖Z‖k

2

]
≤ ckd

k
2 .

In all cases we have E[Z Z�] = Id×d , and ck ≤ 3 for k = 4
and ck ≤ √

3 for k = 3.
See Appendix A for the proof. We now turn to the proof

proper. From Lemmas E.2 and E.3 of the paper [26], the
function fu defined in (13) satisfies f (θ) ≤ fu(θ) ≤
f (θ) + uG

√
d + 2 for θ ∈ �. Defining the error vector

et := ∇ fu1,t (θ
t ) − g t and noting that

√
d + 2 ≤ √

3d, we
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thus have
k∑

t=1

(
f (θ t )− f (θ∗)

)

≤
k∑

t=1

(
fu1,t (θ

t )− fu1,t (θ
∗)
) + √

3G
√

d
k∑

t=1

u1,t

≤
k∑

t=1

〈∇ fu1,t (θ
t ), θ t − θ∗〉 + √

3G
√

d
k∑

t=1

u1,t

=
k∑

t=1

(〈
g t , θ t − θ∗〉 + 〈

et , θ t − θ∗〉 + √
3G

√
du1,t

)
,

where we have used the convexity of fu and the definition
of et . Applying Lemma 3 to the summed

〈
g t , θ t − θ∗〉 terms

as in the proof of Theorem 1, we obtain

k∑
t=1

(
f (θ t )− f (θ∗)

)≤ R2

2α(k)
+ 1

2

k∑
t=1

α(t)
∥∥g t

∥∥2
2

+
k∑

t=1

〈
et , θ t − θ∗〉 + √

3G
√

d
k∑

t=1

u1,t .

(26)

The proof from this point is similar to the proof of Theorem 1
(cf. inequality (22)). Specifically, we bound the squared
gradient ‖g t‖2

2 terms, the error
〈
et , θ t − θ∗〉 terms, and then

control the summed ut terms. For the remainder of the proof,
we let Ft−1 denote the σ -field generated by the random
variables X1, . . . , Xt−1, Z1

1, . . . , Zt−1
1 , and Z1

2, . . . , Zt−1
2 .

Bounding
〈
et , θ t − θ∗〉: Our first step is note that

Lemma 2 implies E[et | Ft−1] = u2,t
u1,t

Gvt , where the vector

vt ≡ v(θ t , u1,t , u2,t ) satisfies ‖vt‖2 ≤ 1
2E[‖Z2‖3

2]. As in the
proof of Theorem 1, this gives

k∑
t=1

E[〈et , θ t − θ∗〉] ≤ G
k∑

t=1

u2,t

u1,t
E[‖vt‖2

∥∥θ t − θ∗∥∥
2]

≤ 1

2
E[‖Z2‖3

2] RG
k∑

t=1

u2,t

u1,t
.

When Assumption F holds, Lemma 4 implies the expectation
bound E[‖Z2‖3

2] ≤ √
3d3/2. Thus

k∑
t=1

E[〈et , θ t − θ∗〉] ≤
√

3d
√

d
2 RG

∑k
t=1

u2,t
u1,t
.

Bounding ‖g t‖2
2: Turning to the squared gradient terms

from the bound (26), Lemma 2 gives

E[∥∥g t
∥∥2

2] = E[E[∥∥g t
∥∥2

2 | Ft−1]]
≤ c G2d

(√
u2,t

u1,t
d + 1 + log d

)

≤ c′ G2d

(√
u2,t

u1,t
d + log(2d)

)
,

where c, c′ > 0 are numerical constants independent
of {u1,t }, {u2,t }.

Summing Out the Smoothing Penalties: Applying the
preceding estimates to our earlier bound (26), we get that for
a numerical constant c,

k∑
t=1

E
[

f (θ t )− f (θ∗)
]

≤ R2

2α(k)
+ cG2d log(2d)

k∑
t=1

α(t) + cG2d2
k∑

t=1

√
u2,t

u1,t
α(t)

+
√

3

2
RGd

√
d

k∑
t=1

u2,t

u1,t
+ √

3G
√

d
k∑

t=1

u1,t . (27)

We bound the right hand side above using our choices of α(t),
u1,t , and u2,t . We also use the relations

∑k
t=1 t− 1

2 ≤ 2
√

k and∑k
t=1 t−1 ≤ 1 + log k ≤ 2 log k for k ≥ 3. With the setting

α(t) = αR/(G
√

d log(2d)
√

t), the first two terms in (27)
become

R2

2α(k)
+ cG2d log(2d)

k∑
t=1

α(t)

≤ RG
√

d log(2d)

2α

√
k + 2cαRG

√
d log(2d)

√
k

≤ c′ max{α, α−1}RG
√

d log(2d)
√

k

for a universal constant c′. Since we have chosen
u2,t/u1,t = 1/(d2t), we may bound the third term in
expression (27) by

G2d2
k∑

t=1

√
u2,t

u1,t
α(t)

= G2d

(
αR

G
√

d log(2d)

)
k∑

t=1

1

t
≤ 2αRG

√
d√

log(2d)
log(2k).

Similarly, the fourth term in the bound (27) becomes
√

3

2
RGd

√
d

k∑
t=1

u2,t

u1,t
≤

√
3RG√

d
log(2k).

Finally, since u1,t = u R/t , we may bound the last term in
expression (27) with

√
3G

√
d

k∑
t=1

u1,t ≤ 2
√

3u RG
√

d log(2k).

Using Jensen’s inequality to note that E[ f (θ̂ (k))] ≤
1
k

∑k
t=1 E[ f (θ t )] and eliminating lower-order terms, we

obtain the claim (18).

E. Proof of Lemma 2

The proof of Lemma 2 relies on the following key technical
result:

Lemma 5: Let k ≥ 1 and u ≥ 0. Let Z1 ∼ μ1 and Z2 ∼ μ2
be independent random variables in R

d , where μ1 and μ2
satisfy Assumption F. There exists a constant ck , depending
only on k, such that for every 1-Lipschitz convex function h,

E

[
|h(Z1 + u Z2)− h(Z1)|k

]

≤ ckuk
[
ud

k
2 + 1 + log

k
2 (d + 2k)

]
.
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The proof is fairly technical, so we defer it to Appendix B.
It is based on the dimension-free concentration of Lipschitz
functions of standard Gaussian vectors and vectors uniform
on B

d .
We return now to the proof of Lemma 2 proper, providing

arguments for inequalities (16) and (17). For convenience we
recall the definition G(x) as the Lipschitz constant of F(·; x)
(Assumption B′) and the definition (14) of the non-smooth
directional gradient

Gns(θ; u1, u2, z1, z2, x)

= F(θ + u1z1 + u2z2; x)− F(θ + u1z1; x)

u2
z2.

We begin with the second statement (17) of Lemma 2.
By applying Lemma 5 to the 1-Lipschitz convex function
h(τ ) = 1

u1G(X)F(θ + u1τ ; X) and setting u = u2/u1, we
obtain

E

[
‖Gns(θ; u1, u2, Z1, Z2, x)‖2

2

]

= u2
1G(x)2

u2
2

E

[
(h(Z1 + (u2/u1)Z2)− h(Z1))

2 ‖Z2‖2
2

]

≤ G(x)2

u2 E

[
(h(Z1 + u Z2)− h(Z1))

4
] 1

2
E

[
‖Z2‖4

2

] 1
2
. (28)

Lemma 4 implies that E[‖Z2‖4
2]

1
2 ≤ √

3d for smoothing
distributions satisfying Assumption F.

It thus remains to bound the first expectation in the
product (28). By Lemma 5,

E

[
(h(Z1 + u Z2)− h(Z1))

4
]

≤ cu4
[
ud2 + 1 + log2 d

]

for a numerical constant c > 0. Taking the square root of both
sides of the preceding display, then applying inequality (28),
yields

E

[
‖Gns(θ; u1, u2, Z1, Z2, x)‖2

2

]

≤ c
G(x)2

u2 u2 d
[√

ud + 1 + log d
]
.

Integrating over x using the Lipschitz Assumption B′ proves
the inequality (17) in Lemma 2.

For the first statement of the lemma, we define the shorthand
Fu(θ; x) = E[F(θ + u Z1; x)], where the expectation
is over Z1 ∼ μ1, and note that by Fubini’s theorem,
E[Fu(θ; X)] = fu(θ). By taking the expectation of Gns with
respect to Z1 only, we get

E
[
Gns(θ; u1, u2, Z1, z2, x)

]

= Fu1(θ + u2z2; x)− Fu1(θ; x)

u2
z2.

Since θ �→ F(θ; x) is G(x)-Lipschitz, Lemmas E.2(iii) and
E.3(iii) of the paper by Duchi et al. [26] imply Fu(·; x)
is G(x)-Lipschitz, has G(x)/u-Lipschitz continuous gradient,
and satisfies the unbiasedness condition E[∇Fu(θ; X)] =
∇ fu(θ). Therefore, the same argument bounding the bias (9)
in the proof of Lemma 1 (recall inequalities (24) and (25))
yields the claim (16).

V. PROOFS OF LOWER BOUNDS

We now present the proofs for our lower bounds on the
minimax error (19). Our lower bounds are based on several
techniques from the statistics and information-theory literature
(see [33]–[35]). Our basic strategy is to reduce the optimiza-
tion problem to several binary hypothesis testing problems:
we choose a finite set of functions, show that optimizing well
implies that one can solve each of the binary hypothesis tests,
and then, as in statistical minimax theory [33], [34], apply
divergence-based lower bounds for the probability of error in
hypothesis testing problems.

Before embarking on our proofs, we assume all optimization
algorithms are deterministic (see [35]). This is no loss of gen-
erality, as each of our lower bounds applies to average (rather
than worst) case problems. Indeed, recall the definition (19) of
the minimax error, and let V be a finite set indexing a subset
{(Fv , Pv )}v∈V ⊂ F with fv (θ) = EPv [F(θ; X)]. Then

sup
(F,P)

E[εk(A, F, P,�)] ≥ 1

|V|
∑
v∈V

EPv

[
fv (θ̂)− inf

θ∈� fv (θ)
]
.

At each iteration of any algorithm A, we may write
(θ t , τ t ) = Ht(Y 1:t−1,Ut ), where Ut are random variables,
independent of Y 1:t−1, encoding the randomness in A, and Ht

is a deterministic function. By iterating expectations, we have

1

|V|
∑
v∈V

EPv

[
fv (θ̂ )− inf

θ∈� fv (θ)
]

= 1

|V|
∑
v∈V

E
[
EPv [ fv (θ̂ )− inf

θ∈� fv (θ) | U1:k]]

≥ inf
u1:k

1

|V|
∑
v∈V

EPv [ fv (θ̂ )− inf
θ∈� fv (θ) | U1:k = u1:k].

Thus, so long as we prove lower bounds for the averaged
optimality gap, we may incorporate the “best” randomness
into the algorithm A and assume it is deterministic.

A. Proof of Proposition 1

The basic outline of our proofs is similar. At a high
level, for each binary vector v in the Boolean hypercube
V = {−1, 1}d , we construct a linear function fv that is
“well-separated” from the other functions { fw,w �= v}. Our
notion of separation enforces the following property: if θv

minimizes fv over �, then for each coordinate j ∈ [d] for
which sgn(θ̂ j ) �= sgn(θvj ), there is an additive penalty in the
optimization accuracy fv (θ̂ ) − fv (θv). Consequently, we can
lower bound the optimization accuracy by the testing error
in the following canonical testing problem: nature chooses
an index v ∈ V uniformly at random, and we must iden-
tify the indices v j based on the observations Y 1, . . . ,Y k .
By applying lower bounds on the testing error related to the
Assouad and Le Cam techniques for lower bounding minimax
error [34], we thus obtain lower bounds on the optimization
error.

In more detail, consider (instantaneous) objective functions
of the form F(θ; x) = 〈θ, x〉. For each v ∈ V , let Pv denote
the Gaussian distribution N(δv, σ 2 Id×d ), where δ > 0 is a
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parameter to be chosen, so that

fv (θ) := EPv [F(θ; X)] = δ 〈θ, v〉.
For each v ∈ V , let θv minimize fv (θ) over � := {θ ∈ R

d |
‖θ‖q ≤ R}. A calculation shows that θv = −R d1/q v, so that
sgn(θvj ) = −v j . Next we claim that, for any vector θ̂ ∈ R

d ,

fv (θ̂ )− fv (θ
v ) ≥ 1 − 1

q

d1/q δR
d∑

j=1

1
{

sgn(θ̂ j ) �= sgn(θvj )
}
. (29)

Inequality (29) shows that if it is possible to optimize well—
that is, to find a vector θ̂ with a relatively small optimality
gap—then it is also possible to estimate the signs of v.
To establish inequality (29), we state a lemma providing a
gap in optimality for solutions of related problems:

Lemma 6: For a given integer i ∈ [d], consider the two
optimization problems (over θ ∈ R

d )

(A)
minimize θ�

�

subject to ‖θ‖q ≤ 1
and

(B)
minimize θ�

�

subject to ‖θ‖q ≤ 1, θ j ≥ 0 for j ∈ [i ],
with optimal solutions θ A and θ B, respectively. Then

〈
�, θ A

〉 ≤〈
�, θ B

〉 − (1 − 1/q)i/d1/q.
See Appendix C for a proof. Returning to inequality (29),

we note that fv (θ̂ ) − fv (θv) = δ〈v, θ̂ − θv〉. By symmetry,
Lemma 6 implies that for every coordinate j such that
sgn(θ̂ j ) �= sgn(θvj ), the objective value fv (θ̂ ) must be at least
a quantity (1 − 1/q)δR/d1/q larger than the optimal value
fv (θv), which yields inequality (29).

Now we use inequality (29) to give a probabilistic
lower bound. Consider the mixture distribution
P := (1/|V|)∑v∈V Pv . For any estimator θ̂ , we have

max
v

EPv [ fv (θ̂ )− fv (θ
v)] ≥ 1

|V|
∑
v∈V

EPv [ fv (θ̂ )− fv (θ
v )]

≥ 1−1/q

d1/q δR
d∑

j=1

P(sgn(θ̂ j ) �=−Vj ).

Consequently, the minimax error is lower bounded as

ε∗
k (FG,2,�) ≥ 1 − 1

q

d1/q δ R
{

inf
v̂

d∑
j=1

P(̂v j (Y
1:k) �= Vj )

}
, (30)

where v̂ denotes any (deterministic) testing function mapping
from the observations {Y t }k

t=1 to {−1, 1}d .
Next we lower bound the testing error by a total variation

distance. By Le Cam’s inequality, for any set A and distri-
butions P, Q, we have P(A) + Q(Ac) ≥ 1 − ‖P − Q‖TV.
We apply this inequality to the “positive j th coordinate” and
“negative j th coordinate” sampling distributions

P+ j := 1

2d−1

∑
v∈V :v j=1

Pv and P− j := 1

2d−1

∑
v∈V :v j=−1

Pv ,

corresponding to conditional distributions over Y t given the
events {v j = 1} or {v j = −1}. Applying Le Cam’s inequality

yields

P(̂v j (Y
1:k) �= Vj )

= 1

2
P+ j (̂v j (Y

1:k) �= 1)+ 1

2
P− j (̂v j (Y

1:k) �= −1)

≥ 1

2

(
1 − ∥∥P+ j − P− j

∥∥
TV

)
.

Combined with the bound
∑d

j=1

∥∥P+ j − P− j
∥∥

TV ≤√
d(

∑d
j=1

∥∥P+ j − P− j
∥∥2

TV)
1
2 (from the Cauchy-Schwartz

inequality), we obtain

ε∗
k (FG,2,�)

≥ (1 − 1
q )δR

2d1/q

d∑
j=1

(
1 − ∥∥P+ j − P− j

∥∥
TV

)

≥ (1 − 1
q )d

1− 1
q δR

2

(
1 −

(
1

d

d∑
j=1

∥∥P+ j − P− j
∥∥2

TV

) 1
2
)
. (31)

The remainder of the proof provides sharp enough bounds
on

∑
j

∥∥P+ j − P− j
∥∥2

TV to leverage inequality (31). Define the
covariance matrix

� := σ 2
[ ‖θ‖2

2 〈θ, τ 〉
〈θ, τ 〉 ‖τ‖2

2

]
= σ 2 [θ τ ]� [θ τ ], (32)

with the corresponding shorthand �t for the covariance com-
puted for the t th pair (θ t , τ t ). We have:

Lemma 7: For each j ∈ {1, . . . , d}, the total variation
norm is bounded as

∥∥P+ j − P− j
∥∥2

TV ≤ δ2
k∑

t=1

E

[[
θ t

j
τ t

j

]�
(�t )−1

[
θ t

j
τ t

j

]]
. (33)

See Appendix D for a proof of this lemma.
Now we use the bound (33) to provide a further lower bound

on inequality (31). We first note the identity

d∑
j=1

[
θ j

τ j

] [
θ j

τ j

]�
=

[ ‖θ‖2
2 〈θ, τ 〉

〈θ, τ 〉 ‖τ‖2
2

]
.

Recalling the definition (32) of the covariance matrix �,
Lemma 7 implies that

d∑
j=1

∥∥P+ j − P− j
∥∥2

TV

≤ δ2
k∑

t=1

E

[ d∑
j=1

tr

(
(�t )−1

[
θ t

j
τ t

j

] [
θ t

j
τ t

j

]� )]

= δ2

σ 2

k∑
t=1

E

[
tr
(
(�t )−1�t

)]
= 2

kδ2

σ 2 . (34)

Returning to the estimation lower bound (31), we thus find
the nearly final lower bound

ε∗
k (FG,2,�) ≥

(
1 − 1

q

)
d1−1/qδR

2

(
1 −

(
2kδ2

dσ 2

) 1
2
)
. (35)

Enforcing (F, P) ∈ FG,2 amounts to choosing the
parameters σ 2 and δ2 so that E[‖X‖2

2] ≤ G2 for
X ∼ N(δv, σ 2 Id×d ), after which we may use inequality (35)
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to complete the proof of the lower bound. By construction,
we have E[‖X‖2

2] = (δ2 + σ 2)d , so choosing σ 2 = 8G2/9d
and δ2 = (G2/9)min{1/k, 1/d} guarantees that

1 −
(

2kδ2

dσ 2

) 1
2

≥ 1 −
(

18

72

) 1
2 = 1

2

and

E[‖X‖2
2] = 8G2

9
+ G2d

9
min

{
1

k
,

1

d

}
≤ G2.

Substituting these choices of δ and σ 2 in inequality (35) gives
the lower bound

ε∗
k (FG,2,�) ≥ 1 − 1

q

12
d1−1/q RG min

{
1√
k
,

1√
d

}

= 1 − 1
q

12

d1−1/q RG√
k

min
{

1,
√

k/d
}
.

To complete the proof of the claim (20), we note that the
above lower bound also applies to any d0-dimensional problem
for d0 ≤ d . More rigorously, we choose V = {−1, 1}d0 ×
{0}d−d0 , and define the sampling distribution Pv on X so that
given v ∈ V , the coordinate distributions of X are independent
with X j ∼ N(δv j , σ

2) for j ≤ d0 and X j = 0 for j > d0.
A reproduction of the preceding proof, substituting d0 ≤ d for
each appearance of the dimension d , then yields the claimed
bound (20) when we choose d0 = min{k, d}.

Remarks on Multiple Evaluations: By an extension of
Lemma 7, we may consider the case in which at each iteration,
the method may query for function values at the m points
θ(1), . . . , θ(m) ∈ R

d . Let θ t
j,(i) denote the j th coordinate of

the i th query point in iteration t . In this case, an immediate
analogue of Lemma 7 implies

∥∥P+ j − P− j
∥∥2

TV ≤ δ2
k∑

t=1

E

⎡
⎢⎣
θ t

j,(1)
...

θ t
j,(m)

⎤
⎥⎦

�

(�t )−1

⎡
⎢⎣
θ t

j,(1)
...

θ t
j,(m)

⎤
⎥⎦,

where �t = σ 2[θ t
(1) · · · θ t

(m)]�[θ t
(1) · · · θ t

(m)] denotes a
covariance matrix as in equation (32). Following the calcu-
lation of inequality (34), we obtain

d∑
j=1

∥∥P+ j − P− j
∥∥2

TV ≤ δ2

σ 2

k∑
t=1

E

[
tr
(
(�t )−1�t

)]
= mkδ2

σ 2 .

Substituting this inequality in place of (34) and
following the subsequent proof implies the lower bound
1−q−1

10 d1−1/q RG/
√

mk · min{1,√k/d}. Replacing d with
min{k, d} gives inequality (21).

B. Proof of Proposition 2

The proof is similar to that of Proposition 1, except instead
of using the set V = {−1, 1}d , we use the 2d standard basis
vectors and their negatives, that is, V = {±e j }d

j=1. We use the
same sampling distributions as in the proof of Proposition 1,
so under Pv the random vectors X ∼ N(δv, σ 2 Id×d), and we
have fv = EPv [F(θ; X)] = δ 〈θ, v〉. Let us define Pj to be

the distribution Pv for v = e j and similarly for P− j , and let
θv = arg min θ { fv (θ) | ‖θ‖1 ≤ R} = −Rv.

We now provide the reduction from optimization to testing.
First, if v = ±e j , then any estimator θ̂ satisfying
sgn(θ̂ j ) �= sgn(θvj ) must have fv (θ̂ )− fv (θv) ≥ δR. We thus
see that for v ∈ {±e j },

fv (θ̂ )− fv (θ
v ) ≥ δ R 1

{
sgn(θ̂ j ) �= sgn(θvj )

}
.

Consequently, we obtain the multiple binary hypothesis testing
lower bound

max
v

EPv [ fv (θ̂ )− fv (θ
v )] ≥ 1

2d

∑
v∈V

EPv [ fv (θ̂)− fv (θ
v)]

≥ δR

2d

d∑
j=1

[
Pj (sgn(θ̂ j ) �= −1)+ P− j (sgn(θ̂ j ) �= 1)

]

(i)≥ δR

2d

d∑
j=1

[
1 − ∥∥Pj − P− j

∥∥
TV

]
.

For the final inequality (i), we applied Le Cam’s inequality
as in the proof of Proposition 1. Thus, as in the derivation
of inequality (31) from the Cauchy-Schwarz inequality, this
yields

ε∗
k (FG,∞,�) ≥ δR

2

(
1 − 1√

d

( d∑
j=1

∥∥Pj − P− j
∥∥2

TV

) 1
2
)
.

(36)

We now turn to providing a bound on
∑d

j=1

∥∥Pj − P− j
∥∥2

TV
analogous to that in the proof of Proposition 1. We claim that

d∑
j=1

∥∥Pj − P− j
∥∥2

TV ≤ 2
kδ2

σ 2 . (37)

Inequality (37) is nearly immediate from Lemma 7. Indeed,
given the pair W = [θ τ ] ∈ R

d×2, the observation Y = W� X
is distributed (conditional on v and W ) as N(δW�v,�) where
� = σ 2W�W is the covariance (32). For v = e j and
w = −e j , we know that 〈θ, v − w〉 = 2θ j and so

Dkl

(
N(δW�v,�)||N(δW�w,�)

)
= 2δ2

[
θ j

τ j

]�
�−1

[
θ j

τ j

]
.

By analogy with the proof of Lemma 7, we may repeat the
derivation of inequalities (33) and (34) mutatis mutandis to
obtain inequality (37). Combining inequalities (36) and (37)
then gives the lower bound

ε∗
k (FG,∞,�) ≥ δR

2

(
1 −

(
2δ2k

dσ 2

) 1
2
)
.

It thus remains to choose δ and σ 2 to guarantee the
containment (F, P) ∈ FG,∞. Equivalently, we must establish
the gradient bound E[‖X‖2∞] ≤ G2, with which the next
lemma helps.

Lemma 8: Given any vector with ‖v‖∞ ≤ 1, and the
random vector X ∼ N(δv, σ 2 Id×d ), we have

E[‖X‖2∞] ≤ 3σ 2 log(3d)+ 4δ2.
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Proof: The vector Z = X − δv has N(0, σ 2 Id×d)
distribution. By Jensen’s inequality, for all ε ≥ 0 we have

‖X‖2∞ ≤ (1 + ε) ‖Z‖2∞ + (1 + ε−1)δ2 ‖v‖2∞
≤ (1 + ε) ‖Z‖2∞ + (1 + ε−1)δ2.

Classical results on Gaussian vectors [36, Ch. 2] imply
E[‖Z‖2∞] ≤ σ 2( 1

λ log d + 1
2λ log 1

1−2λ) for all λ ∈ [0, 1/2],
so taking ε = 1/3 and λ = 4/9 implies the lemma. �

As a consequence of Lemma 8, by taking

σ 2 = 2G2

9 log(3d)
and δ2 = G2

36 log(3d)
min

{
1,

d

k

}
,

we obtain the bounds

E[‖X‖2∞] ≤ 2

3
G2 + 4

36
G2 < G2

and

1 −
(

2δ2k

dσ 2

) 1
2

≥ 1 −
(

18

72

) 1
2 = 1

2
.

Substituting into the lower bound on ε∗
k yields

ε∗
k ≥ δR

4
≥ 1

24
√

log(3d)

G R√
k

min
{√

k,
√

d
}
.

Modulo this lower bound holding for each dimension d0 ≤ d ,
this completes the proof.

To complete the proof, we note that as in the proof of
Proposition 1, we may provide a lower bound on the optimiza-
tion error for any d0 ≤ d-dimensional problem. In particular
fix d0 ≤ d and let V = {±e j }d0

j=1 ⊂ R
d . Now, conditional on

v ∈ V , let Pv denote the distribution on X with independent
coordinates whose distributions are X j ∼ N(δv j , σ

2) for
j ≤ d0 and X j = 0 for j > d0. As in the proof Proposition 1,
we may reproduce the preceding arguments by substituting
d0 ≤ d for every appearance of the dimension d , giving that
for all d0 ≤ d ,

ε∗
k (FG,∞,�) ≥ 1

24
√

log(3d0)

G R√
k

min
{√

k,
√

d0

}
.

Choosing d0 = min{d, k} completes the proof of
Proposition 2.

C. Proof of Proposition 3

This proof is somewhat similar to that of Proposition 1, in
that we use the set V = {−1, 1}d to construct a collection of
functions whose minima are relatively well-separated, but for
which function evaluations are hard to distinguish. In partic-
ular, for δ > 0, we construct functions fv whose minima—
for different elements v,w—are all of the order δ ‖v − w‖1
distant from one another, yet supθ | fv (θ)− fw(θ)| � δ, so that
many observations are necessary to distinguish the functions.

In more detail, for v ∈ V = {−1, 1}d , define the probability
distribution Pv to be supported on {v} × R, where each
independent draw X = (v, ξ) ∼ Pv contains an independent
ξ ∼ N(0, σ 2). Fix δ ∈ (

0, Rd−1/q
]
, and define Gd = Gd−1/p.

Then for x = (v, ξ), we define

F(θ; x) = Gd ‖θ − δv‖1 + ξ,

so

fv (θ) = Gd ‖θ − δv‖1 and F(θ; (v, ξ)) = fv (θ)+ ξ.

Consequently, we have δv = θv := arg min θ∈� fv (θ),
as ‖δv‖q ≤ Rd−1/q ‖v‖q = R, and the variance bound

E[(F(θ; X)− f (θ))2] ≤ σ 2 is evident. Moreover,

‖∂F(θ; x)‖p = Gd ‖sgn(θ − δv)‖p ≤ Gd−1/pd1/p = G,

so the functions belong to Fσ,G,p. By inspection, we have the
separation

fv (θ)− fv (θ
v) ≥ δGd

d∑
j=1

1
{
sgn(θ j ) �= v j

}
,

which is analogous to inequality (29).
Abusing notation and defining Pv to be the distribution

of the k observations F(θ t ; Xt ) available to the method, our
earlier extension (31) of Assouad’s method implies

ε
single
k (Fσ ,�) ≥ δGd

2

d∑
j=1

(
1 − ∥∥P+ j − P− j

∥∥
TV

)

≥ dδGd

2

(
1 −

(
1

2d

d∑
j=1

Dkl
(
P+ j ||P− j

) ) 1
2
)
,

(38)

where P+ j = 21−d ∑
v :v j=1 Pv , and similarly for − j . Now,

note that for any v,w ∈ V such that ‖v − w‖1 ≤ 2, we have
the inequality

sup
θ

| fv (θ)− fw(θ)| ≤ Gd ‖δv − δw‖1 ≤ 2δGd

(compare with Lemma 10 of Shamir [14]). In particular, this
uniform inequality implies that for distributions Pv and Pw , the
observations F(θ; X) = fv (θ) + ξ are normally distributed
random variables with (absolute) difference in means
bounded by δGd ‖v −w‖1 and variance σ 2. Using that the
KL divergence is jointly convex in both its arguments, we have
(by a completely parallel argument to the proof of Lemma 7
in Appendix D) that

Dkl
(
P+ j ||P− j

) ≤ 1

2d

∑
v∈V

Dkl
(
Pv,+ j ||Pv,− j

)

≤ k

2d

∑
v∈V

Dkl

(
N(δGd , σ

2)||N(−δGd, σ
2)
)

= k

2d

∑
v∈V

1

2σ 2 4G2
dδ

2 = 2kG2
dδ

2

σ 2 .

Substituting the KL divergence bound in the preceding display
into our inequality (38), we find

ε
single
k (Fσ ,�) ≥ dδGd

2

⎛
⎝1 −

√
k

G2
dδ

2

σ 2

⎞
⎠

= dδGd

2

(
1 − δ

√
kGd

σ

)
.

Choosing δ = min{Rd−1/q , σ/2Gd
√

k} and substituting
Gd = Gd−1/p gives the proposition.
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VI. DISCUSSION

We have analyzed algorithms for optimization problems
that use only random function values—as opposed to gradient
computations—to minimize an objective function. The
algorithms we present are optimal: their convergence rates
cannot be improved (in a minimax sense) by more than
numerical constant factors. In addition to showing the
optimality of several algorithms for smooth convex
optimization without gradient information, we have also shown
that the non-smooth case is no more difficult from an iteration
complexity standpoint, though it requires more carefully
constructed randomization schemes. As a consequence of
our results, we have additionally attained sharp rates for
bandit online convex optimization problems with multi-point
feedback. We have also shown the necessary transition in
convergence rates between gradient-based algorithms and
those that compute only function values: when (sub)gradient
information is available, attaining ε-accurate solution to an
optimization problem requires O(1/ε2) gradient observations,
while at least �(d/ε2) observations—but no more—are
necessary using paired function evaluations, and at
least �(d2/ε2) are necessary using only a single function
evaluation. An interesting open question is to further
understand this last setting: what is the optimal iteration
complexity in this case?

APPENDIX

In this appendix, we collect the proofs of the various lemmas
used in our convergence arguments.

A. Proof of Lemma 4

We consider each of the distributions in turn. When
Z has N(0, Id×d ) distribution, standard χ2-distributed random
variable calculations imply

E

[
‖Z‖k

2

]
= 2

k
2
�( k

2 + d
2 )

�( d
2 )

.

That E[Z Z�] = Id×d is immediate, and the constant values ck

for k ≤ 4 follow from direct calculations. For samples Z from
the �2-sphere, it is clear that ‖Z‖2 = √

d , so we may take
ck = 1 in the statement of the lemma. When
Z ∼ Uniform(Bd), the density p(t) of ‖Z‖2 is given
by d · td−1; consequently, for any k > −d we have

E[‖Z‖k
2] =

∫ 1

0
tk p(t) dt = d

∫ 1

0
td+k−1 dt = d

d + k
. (39)

Thus for Z ∼ Uniform(
√

d + 2 B
d ) we have E[Z Z�] = Id×d ,

and E[‖Z‖k
2] = (d + 2)k/2d/(d + k).

B. Proof of Lemma 5

The proof of Lemma 5 is based on a sequence of auxiliary
results. Since the Lipschitz continuity of h implies the result
for d = 1 directly, we focus on the case d ≥ 2. First, we have
the following standard result on the dimension-independent
concentration of rotationally symmetric sub-Gaussian random

vectors. We use this to prove that the perturbed h is close to
the unperturbed h with high probability.

Lemma 9 (Rotationally Invariant Concentration): Let Z be
a random variable in R

d having one of the fol-
lowing distributions: N(0, Id×d ), Uniform(

√
d + 2 B

d ), or
Uniform(

√
d S

d−1). There is a universal (numerical) constant
c > 0 such that for any G-Lipschitz continuous function h,

P (|h(Z)− E[h(Z)]| > ε) ≤ 2 exp

(
−c ε2

G2

)
.

In the case of the normal distribution, we take c = 1
2 .

These results are standard (e.g., see Propositions 1.10
and 2.9 of Ledoux [37]).

Our next result shows that integrating out Z2 leaves us
with a smoother deviation problem, at the expense of terms
of order at most uk logk/2(d). To state the lemma, we define
the difference function �u(θ) = E[h(θ + u Z2)] − h(θ). Note
that since h is convex and E[Z2] = 0, Jensen’s inequality
implies �u(θ) ≥ 0.

Lemma 10: Under the conditions of Lemma 5, we have

E

[
|h(Z1 + u Z2)− h(Z1)|k

]
≤ 2k−1

E[�u(Z1)
k]

+ c− k
2 2k−1k

k
2 uk log

k
2 (d + 2k)+ √

2uk

for any k ≥ 1. Here c is the same constant in Lemma 9.
Proof: For each θ ∈ �, the function τ �→ h(θ + uτ ) is

u-Lipschitz, so Lemma 9 implies

P
(∣∣h(θ + u Z2)− E[h(θ + u Z2)]

∣∣ > ε
) ≤ 2 exp

(
−c ε2

u2

)
.

On the event Aθ (ε) := {|h(θ + u Z2)− E[h(θ + u Z2)]| ≤ ε},
we have

|h(θ + u Z2)− h(θ)|k
≤ 2k−1 |h(θ + u Z2)− E[h(θ + u Z2)]|k + 2k−1�u(θ)

k

≤ 2k−1εk + 2k−1�u(θ)
k,

which implies

E

[
|h(θ + u Z2)− h(θ)|k · 1 {Aθ (ε)}

]

≤ 2k−1�u(θ)
k + 2k−1εk . (40a)

On the complement Ac
θ (ε), which occurs with probability at

most 2 exp(−cε2/u2), we use the Lipschitz continuity of h
and Cauchy-Schwarz inequality to obtain

E

[
|h(θ + u Z2)− h(θ)|k · 1

{
Aθ (ε)

c}]

≤ E

[
uk ‖Z2‖k

2 · 1
{

Aθ (ε)
c}]

≤ uk
E[‖Z2‖2k

2 ] 1
2 · P

(
Aθ (ε)

c) 1
2 .

By direct calculations, Assumption F implies that
E[‖Z2‖2k

2 ] ≤ (d + 2k)k . Thus,

E

[
|h(θ + u Z2)− h(θ)|k · 1

{
Aθ (ε)

c}]

≤ uk(d + 2k)
k
2 · √

2 exp

(
−c ε2

2u2

)
. (40b)
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Combining the estimates (40a) and (40b) gives

E

[
|h(θ + u Z2)− h(θ)|k

]
≤ 2k−1�u(θ)

k

+2k−1εk + √
2uk(d + 2k)

k
2 exp

(
−c ε2

2u2

)
.

Setting ε2 = k
c u2 log(d + 2k) and taking expectations over

Z1 ∼ μ1 gives Lemma 10. �
By Lemma 10, it suffices to control the bias E[�u(Z1)] =

E[h(Z1 + u Z2) − h(Z1)]. The following result allows us
to reduce this problem to one of bounding a certain
one-dimensional expectation.

Lemma 11: Let Z and W be random variables in R
d with

rotationally invariant distributions and finite first moments. Let
H denote the set of 1-Lipschitz convex functions h : R

d → R,
and for h ∈ H, define V (h) = E[h(W )− h(Z)]. Then

sup
h∈H

V (h) = sup
a∈R+

E
[| ‖W‖2 − a| − | ‖Z‖2 − a|] .

Proof: First, we note that V (h) = V (h ◦ U) for any
unitary transformation U ; since V is linear, if we define ĥ as
the average of h ◦ U over all unitary U then V (h) = V (ĥ).
Moreover, for h ∈ H, we have ĥ(θ) = ĥ1(‖θ‖2) for some
ĥ1 : R+ → R, which is necessarily 1-Lipschitz and convex.

Letting H1 denote the 1-Lipschitz convex h : R → R

satisfying h(0) = 0, we thus have suph∈H V (h) =
suph∈H1

E[h(‖W‖2) − h(‖Z‖2)]. Now, we define G1 to be
the set of measurable non-decreasing functions bounded
in [−1, 1]. Then by first-order properties of convex functions
[19, Ch. I], for any h ∈ H1, we can write h(t) = ∫ t

0 g(s)ds
for some g ∈ G1. Using this representation, we have

sup
h∈H

V (h)

= sup
h∈H1

{E[h(‖W‖2)− h(‖Z‖2)]}

= sup
g∈G1

{
E[h(‖W‖2)− h(‖Z‖2)] | h(t) =

∫ t

0
g(s)ds

}
. (41)

Let ga denote the {−1, 1}-valued function with step at a,
that is, ga(t) = −1 {t ≤ a} + 1 {t > a} . We define G(n)1 to be
the set of non-decreasing step functions bounded in [−1, 1]
with at most n steps, that is, functions of the form g(t) =∑n

i=1 bi gai (t), where |g(t)| ≤ 1 for all t ∈ R. We may then
further simplify the expression (41) by replacing G1 with G(n)1 .
The extremal points of G(n)1 are the step functions {ga | a ∈ R},
and since the supremum (41) is linear in g, it may be taken
over such ga. Lemma 11 then follows by noting the integral
equality

∫ t
0 ga(s)ds = |t − a| − |a|. The restriction to a ≥ 0

in the lemma follows since ‖v‖2 ≥ 0 for all v ∈ R
d . �

By Lemma 11, for any 1-Lipschitz h, the associated
difference function has expectation bounded as

E[�u(Z1)] = E[h(Z1 + u Z2)− h(Z1)]
≤ sup

a∈R+
E
[|‖Z1 + u Z2‖2 − a| − |‖Z1‖2 − a|] .

For the distributions identified by Assumption F, we can in
fact show that the preceding supremum is attained at a = 0.

Lemma 12: Let Z1 ∼ μ1 and Z2 ∼ μ2 be independent,
where μ1 and μ2 satisfy Assumption F. For any u ≥ 0, the
function

a �→ ζ(a) := E
[| ‖Z1 + u Z2‖2 − a| − | ‖Z1‖2 − a|]

is non-increasing in a ≥ 0.
We return to prove this lemma at the end of the section.
With the intermediate results above, we can complete our

proof of Lemma 5. In view of Lemma 10, we only need to
bound E[�u(Z1)

k], where �u(θ) = E[h(θ + u Z2)] − h(θ).
Recall that �u(θ) ≥ 0 since h is convex. Moreover, since
h is 1-Lipschitz,

�u(θ) ≤ E
[∣∣h(θ + u Z2)− h(θ)

∣∣]
≤ E

[‖u Z2‖2
] ≤ uE

[‖Z2‖2
2

]1/2 = u
√

d,

where the last equality follows from the choices of Z2 in
Assumption F. Therefore, we have the crude but useful bound

E[�u(Z1)
k] ≤ uk−1d

k−1
2 E[�u(Z1)]

= uk−1d
k−1

2 E[h(Z1 + u Z2)− h(Z1)], (42)

where the last expectation is over both Z1 and Z2. Since
Z1 and Z2 both have rotationally invariant distributions,
Lemmas 11 and 12 imply that the expectation in
expression (42) is bounded by

E[h(Z1 + u Z2)− h(Z1)] ≤ E
[‖Z1 + u Z2‖2 − ‖Z1‖2

]
.

Lemma 5 then follows by bounding the norm difference
in the preceding display for each choice of the smoothing
distributions in Assumption F. We claim that

E
[‖Z1 + u Z2‖2 − ‖Z1‖2

] ≤ 1√
2

u2
√

d. (43)

To see this inequality, we consider the possible distributions
for the pair Z1, Z2 under Assumption F.

(1): Let Td have χ2-distribution with d degrees of
freedom. Then for Z1, Z2 independent and N(0, Id×d )-
distributed, we have the distributional identities
‖Z1 + u Z2‖2

d= √
1 + u2

√
Td and ‖Z1‖2

d= √
Td . Using the

inequalities
√

1 + u2 ≤ 1+ 1
2 u2 and E[√Td ] ≤ E[Td ] 1

2 = √
d ,

we obtain

E
[‖Z1 + u Z2‖2 − ‖Z1‖2

] =
(√

1 + u2 − 1
)

E[√Td ]
≤ 1

2
u2

√
d.

(2): By Assumption F, if Z1 is uniform on
√

d + 2 B
d

then Z2 has either Uniform(
√

d + 2 B
d ) or Uniform(

√
d S

d−1)
distribution. Using the inequality

√
a + b − √

a ≤ b/(2
√

a),
valid for a ≥ 0 and b ≥ −a, we may write

‖Z1 + u Z2‖2 − ‖Z1‖2

=
√

‖Z1‖2
2 + 2u 〈Z1, Z2〉 + u2 ‖Z2‖2

2 −
√

‖Z1‖2
2

≤ 2u 〈Z1, Z2〉 + u2 ‖Z2‖2
2

2 ‖Z1‖2
= u

〈
Z1

‖Z1‖2
, Z2

〉
+ 1

2
u2 ‖Z2‖2

2

‖Z1‖2
.

Since Z1 and Z2 are independent and E[Z2] = 0, the
expectation of the first term on the right hand side above
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vanishes. For the second term, the independence of Z1 and Z2
and moment calculation (39) imply

E
[‖Z1 + u Z2‖2 − ‖Z1‖2

] ≤ 1

2
u2

E

[
1

‖Z1‖2

]
E

[
‖Z2‖2

2

]

= 1

2
u2 · 1√

d + 2

d

(d − 1)
· d ≤ 1√

2
u2

√
d,

where the last inequality holds for d ≥ 2.
We thus obtain the claim (43), and applying inequality (43)

to our earlier computation (42) yields

E[�u(Z1)
k] ≤ 1√

2
uk+1d

k
2 .

Plugging in this bound on �u to Lemma 10, we obtain the
result

E

[
|h(Z1 + u Z2)− h(Z1)|k

]

≤ 2k− 3
2 uk+1d

k
2 + c− k

2 2k−1k
k
2 uk log

k
2 (d + 2k)+ √

2uk

≤ ckuk
[
ud

k
2 + 1 + log

k
2 (d + 2k)

]
,

where ck is a constant that only depends on k. This is the
desired statement of Lemma 5.

We now return to prove the remaining intermediate lemma.
Proof of Lemma 12: Since the quantity ‖Z1 + u Z2‖2 has

a density with respect to Lebesgue measure, standard results
on differentiating through an expectation [38] imply

d

da
E
[|‖Z1 + u Z2‖2 − a|] = E[sign(a − ‖Z1 + u Z2‖2)]

= P(‖Z1 + u Z2‖2 ≤ a)− P(‖Z1 + u Z2‖2 > a),

where we used that the subdifferential of a �→ |v − a| is
sign(a − v). As a consequence, we find that

d

da
ζ(a) = P(‖Z1 + u Z2‖2 ≤ a)− P(‖Z1 + u Z2‖2 > a)

−P(‖Z1‖2 ≤ a)+ P(‖Z1‖2 > a)

= 2
[
P (‖Z1 + u Z2‖2 ≤ a)− P (‖Z1‖2 ≤ a)

]
. (44)

If we can show the quantity (44) is non-positive for all a,
we obtain our desired result. It thus remains to prove that
‖Z1 + u Z2‖2 stochastically dominates ‖Z1‖2 for each choice
of μ1, μ2 satisfying Assumption F. We enumerate each of the
cases below.

(1): Let Td have χ2-distribution with d degrees of
freedom and Z1, Z2 ∼ N(0, Id×d ). Then by definition we have

‖Z1 + u Z2‖2
d= √

1 + u2
√

Td and ‖Z1‖2
d= √

Td , and

P (‖Z1 + u Z2‖2 ≤ a) = P

(√
Td ≤ a√

1 + u2

)

≤ P

(√
Td ≤ a

)
= P (‖Z1‖2 ≤ a)

as desired.
(2): Now suppose Z1, Z2 are independent and distributed

as Uniform(r B
d ); our desired result will follow by setting r =√

d + 2. Let p0(t) and pu(t) denote the densities of ‖Z1‖2 and
‖Z1 + u Z2‖2, respectively, with respect to Lebesgue measure
on R. We now compute them explicitly. For p0, for 0 ≤ t ≤ r
we have

p0(t) = d

dt
P(‖Z1‖2 ≤ t) = d

dt

(
t

r

)d

= d td−1

rd
,

and p0(t) = 0 otherwise. For pu , let λ denote the Lebesgue
measure in R

d and σ denote the (d − 1)-dimensional surface
area in R

d . The random variables Z1 and u Z2 have densities,
respectively,

q1(x) = 1

λ(r Bd )
= 1

rdλ(Bd )
for x ∈ rB

d

and

qu(x) = 1

λ(ur Bd)
= 1

udrdλ(Bd )
for x ∈ urB

d ,

and q1(x) = qu(x) = 0 otherwise. The density of Z1 + u Z2
is given by the convolution

q̃(z) =
∫

Rd
q1(x)qu(z − x) λ(dx)

=
∫

E(z)

1

rdλ(Bd )
· 1

udrdλ(Bd )
λ(dx) = λ(E(z))

ud r2dλ(Bd )2
.

Here E(z) := B
d (0, r)∩B

d (z, ur) is the domain of integration,
in which the densities q1(x) and qu(z − x) are nonzero. The
volume λ(E(z))—and hence also q̃(z)—depend on z only via
its norm ‖z‖2. Therefore, the density pu of ‖Z1 + u Z2‖2 is

pu(t) = q̃(te1) σ (tS
d−1) = λ(E(te1)) td−1 σ(Sd−1)

ud r2d λ(Bd )2

= d
λ(E(te1)) td−1

ud r2d λ(Bd )
,

where the last equality above follows from the relation
σ(Sd−1) = dλ(Bd ). Since E(te1) ⊆ B

d (te1, ur) by definition,

λ(E(te1)) ≤ λ
(
B

d(te1, ur)
)

= udrd λ(Bd ),

so for all 0 ≤ t ≤ (1 + u)r we have

pu(t) = d
λ(E(te1)) td−1

ud r2d λ(Bd )
≤ d td−1

rd
,

and clearly pu(t) = 0 for t > (1 + u)r . In particular, pu(t) ≤
p1(t) for 0 ≤ t ≤ r , which gives us our desired stochastic
dominance inequality (44): for a ∈ [0, r ],

P(‖Z1 + u Z2‖2 ≤ a) =
∫ a

0
pu(t) dt

≤
∫ a

0
p0(t) dt = P(‖Z1‖2 ≤ a),

and for a > r we have P(‖Z1 + u Z2‖2 ≤ a) ≤ 1 =
P(‖Z1‖2 ≤ a).

(3): Finally, consider the case when Z1 ∼
Uniform(

√
d + 2 B

d ) and Z2 ∼ Uniform(
√

d S
d−1). As in

the previous case, we will show that p0(t) ≤ pu(t) for
0 ≤ t ≤ √

d + 2, where p0(t) and pu(t) are the densities
of ‖Z1‖2 and ‖Z1 + u Z2‖2, respectively. We know that the
density of ‖Z1‖2 is

p0(t) = d td−1

(d + 2)
d
2

for 0 ≤ t ≤ √
d + 2,

and p0(t) = 0 otherwise. To compute pu , we first determine
the density q̃(z) of the random variable Z1 +u Z2 with respect
to the Lebesgue measure λ on R

d . The usual convolution
formula does not directly apply as Z1 and Z2 have densities
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with respect to different base measures (λ and σ , respectively).
However, as Z1 and Z2 are both uniform, we can argue as
follows. Integrating over the surface u

√
dS

d−1 (essentially per-
forming a convolution), each point uy ∈ u

√
d S

d−1 contributes
the amount

1

σ(u
√

d Sd−1)
· 1

λ(
√

d + 2 Bd )

= 1

ud−1 d
d−1

2 (d + 2)
d
2 σ(Sd−1) λ(Bd )

to the density q̃(z), provided ‖z − uy‖2 ≤ √
d + 2. For fixed

z ∈ (
√

d + 2 + u
√

d)Bd , the set of such contributing points
uy can be written as E(z) = B

d (z,
√

d + 2) ∩ S
d−1(0, u

√
d).

Therefore, the density of Z1 + u Z2 is given by

q̃(z) = σ(E(z))

ud−1 d
d−1

2 (d + 2)
d
2 σ(Sd−1) λ(Bd )

.

Since q̃(z) only depends on z via its norm ‖z‖2, the formula
above also gives us the density pu(t) of ‖Z1 + u Z2‖2:

pu(t) = q̃(te1) σ (tS
d−1) = σ(E(z)) td−1

ud−1 d
d−1

2 (d + 2)
d
2 λ(Bd )

.

Noting that E(z) ⊆ S
d−1(0, u

√
d) gives us

pu(t) ≤ σ(u
√

d S
d−1) td−1

ud−1 d
d−1

2 (d + 2)
d
2 λ(Bd )

= d td−1

(d + 2)
d
2

.

In particular, we have pu(t) ≤ p0(t) for 0 ≤ t ≤ √
d + 2,

which, as we saw in the previous case, gives us the desired
stochastic dominance inequality (44).

In this section, we prove the technical results necessary for
the proofs of Propositions 1 and 2.

C. Proof of Lemma 6

First, note that the optimal vector θ A = −d−1/q
� with

optimal value −d1−1/q , and θ B = −(d − i)−1/q
�i+1:d ,

where �i+1:d denotes the vector with 0 entries in its first
i coordinates and 1 elsewhere. As a consequence, we have〈
θ B,�

〉 = −(d−i)1−1/q. Now we use the fact that by convexity
of the function x �→ −x1−1/q for q ∈ [1,∞],

−d1−1/q ≤ −(d − i)1−1/q − 1 − 1/q

d1/q i,

since the derivative of x �→ −x1−1/q at x = d is given by
−(1 − 1/q)/d1/q and the quantity −x1−1/q is non-increasing
in x for q ∈ [1,∞].
D. Proof of Lemma 7

For notational convenience, let the distribution Pv,+ j be
identical to the distribution Pv but with the j th coordinate
v j forced to be +1 and similarly for Pv,− j . Using Pinsker’s
inequality and the joint convexity of the KL-divergence, we
have∥∥P+ j − P− j

∥∥2
TV

≤ 1

4

[
Dkl

(
P+ j ||P− j

) + Dkl
(
P− j ||P+ j

)]

≤ 1

2d+2

∑
v∈V

[
Dkl

(
Pv,+ j ||Pv,− j

) + Dkl
(
Pv,− j ||Pv,+ j

)]
.

If we define Pt
v (· | y) to be the distribution of the

t th observation Y t conditional on v and Y 1:t−1 = y, the
chain-rule for KL-divergences [39] yields

Dkl
(
Pv,+ j ||Pv,− j

)

=
k∑

t=1

∫
Y t−1

Dkl

(
Pt
v,+ j (· | y)||Pt

v,− j (· | y)
)

d Pv,+ j (y).

We show how to bound the preceding sequence of
KL-divergences for the observational scheme based on
function-evaluations we allow. Let W = [θ τ ] ∈ R

d×2 denote
the pair of query points, so we have by construction that the
observation Y = W� X where X | V = v ∼ N(δv, σ 2 Id×d).
In particular, given v and the pair W , the vector Y ∈ R

d

is normally distributed with mean δW�v and covariance
σ 2W�W = �, where the covariance � is defined in
equation (32). The KL divergence between normal distri-
butions is Dkl (N(μ1,�)||N(μ2,�)) = 1

2 (μ1 − μ2)
��−1

(μ1 − μ2). Note that if v and w differ in only coordinate j ,
then 〈v − w, θ〉 = (v j −w j )θ j . We thus obtain

Dkl

(
Pt
v,+ j (· | y1:t−1)||Pt

v,− j (· | y1:t−1)
)

≤ 2δ2
[
θ t

j
τ t

j

]�
(�t )−1

[
θ t

j
τ t

j

]
,

where we have used our w.l.o.g. assumption that the pair
(θ t , τ t ) is measurable Y 1:t−1. We obtain an identical bound
for Dkl(Pt

v,− j (· | y1:t−1)||Pt
v,+ j (· | y1:t−1)). Combining the

sequence of inequalities from the preceding paragraph, we thus
obtain

∥∥P+ j − P− j
∥∥2

TV ≤ δ2

2d

k∑
t=1

∑
v∈V

E

[[
θ t

j
τ t

j

]�
(�t )−1

[
θ t

j
τ t

j

]]

= δ2
k∑

t=1

E

[[
θ t

j
τ t

j

]�
(�t )−1

[
θ t

j
τ t

j

]]

where for the equality we used the definitions of the
distributions Pv,± j and P± j . This is the claimed
inequality (33).
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