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Sampling Problem

Goal: Sample from a distribution ν = e−f on Euclidean space Rn.
Simple case: when ν is log-concave (f is convex), analogous to convex
optimization. But many distributions in practice are not log-concave
(e.g., can be multimodal).

We study sampling under isoperimetry: log-Sobolev inequality (LSI)
or Poincaré inequality. Isoperimetry is a natural relaxation of log-
concavity; it is more stable (preserved under Lipschitz mapping and
bounded perturbation), and allows fast sampling in continuous time.

Unadjusted Langevin Algorithm
We study the Unadjusted Langevin Algorithm (ULA):

xk+1 = xk − ε∇f(xk) +
√

2εzk

where ε > 0 is step size and zk ∼ N (0, I) is independent Gaussian.

ULA is a discretization of Langevin dynamics in continuous time:

dXt = −∇f(Xt) dt+
√

2 dWt

where (Wt)t≥0 is the standard Brownian motion in Rn.

Log-Sobolev Inequality
We say ν satisfies log-Sobolev inequality (LSI) with constant α > 0
if for all probability distribution ρ:

Hν(ρ) ≤ 1
2αJν(ρ).

Here Hν(ρ) is the KL divergence (relative entropy):

Hν(ρ) =
∫
Rn ρ(x) log ρ(x)

ν(x) dx

and Jν(ρ) is the relative Fisher information:

Jν(ρ) =
∫
Rn ρ(x)

∥∥∇ log ρ(x)
ν(x)

∥∥2 dx.
If ν = e−f is α-strongly log-concave (f is α-strongly convex), then ν
satisfies α-LSI. But LSI is more general than strong log-concavity.

Convergence of KL Divergence
We recall that when ν satisfies α-LSI, along the Langevin dynam-
ics in continuous time, KL divergence converges exponentially fast:
Hν(ρt) ≤ e−2αtHν(ρ0).

We prove a similar convergence guarantee along ULA in discrete time
up to the biased limit, when ν satisfies LSI and smoothness.

We say ν = e−f is L-smooth if ∇f is L-Lipschitz (−LI � ∇2f � LI).
But note we do not assume f is convex.

Theorem: Assume ν satisfies α-LSI and is L-smooth. Then ULA
with step size 0 < ε ≤ α

L2 satisfies:

Hν(ρk) ≤ e−αεkHν(ρ0) + εnL2

α .

Suppose we start from x0 ∼ ρ0 = N (x∗, 1
LI) where x∗ is a stationary

point for f (∇f(x∗) = 0), so Hν(ρ0) = Õ(n). The theorem above
implies the following iteration complexity for ULA.

Corollary: Assume ν satisfies α-LSI and is L-smooth. For δ > 0,
to reach Hν(ρk) ≤ δ, it suffices to run ULA with step size ε =
Θ( αδ

nL2 ) for the following number of iterations:

k = Õ

(
nL2

α2δ

)
.

This is the same complexity as previous results for ULA under strong
log-concavity, but our result holds under more general condition (LSI).

Analysis
We show KL divergence decreases by a constant factor in each step of
ULA, with an additional O(ε2) error term. Iterating this bound yields
the result above with O(ε) bias.

Lemma: Assume ν satisfies α-LSI and is L-smooth. Then ULA
with step size 0 < ε ≤ α

L2 satisfies

Hν(ρk+1) ≤ e−αεHν(ρk) + ε2nL2.

Proof idea:

1. We compare one step of ULA
with the Langevin dynamics.

2. We use Talagrand’s inequality to
bound the difference. ρk

ρ̃k+ 1
ρk+ 1

ν

(a)

(b)

H
e−αϵH

e−αϵH + O(ϵ2nL2)

Rényi Divergence
Rényi divergence of order q > 0 (q 6= 1) of ρ with respect to ν is:

Rq,ν(ρ) =
1

q − 1
log

∫
Rn

ρ(x)q

ν(x)q−1
dx

The case q = 1 recovers KL divergence: limq→1Rq,ν(ρ) = Hν(ρ).

Rényi divergence is a family of generalization of KL divergence which
is stronger (q 7→ Rq,ν is increasing). It has fundamental applications
in statistics, physics, computer science (e.g., for differential privacy).

Convergence of Rényi Divergence
We can show when ν satisfies α-LSI, Rényi divergence converges expo-
nentially fast along the Langevin dynamics: Rq,ν(ρt) ≤ e−

2α
q tRq,ν(ρ0).

Theorem: Assume ν is L-smooth, the biased limit νε of ULA
satisfies β-LSI, and 0 < ε ≤ min{ 1

L ,
1
β }. For q > 1, ULA satisfies:

Rq,ν(ρk) ≤
( q − 1

2

q − 1

)
R2q,νε(ρ0)e−

βεk
2q +R2q−1,ν(νε).

Iteration complexity is determined by the bias R2q−1,ν(νε).

Proof idea:

1. We show Rényi divergence con-
verges exponentially fast along
ULA to the biased limit νε.

2. We use a decomposition result
for Rényi divergence (triangle in-
equality with increasing q).

ρk ρ̃k

νϵ ν̃ϵ

ρk+1

(a)

(a)

(b)

(b)

R R
e− βϵ

q R

Poincaré inequality

We prove similar convergence guarantee for Rényi divergence under
Poincaré inequality (weaker than LSI). The convergence is initially
linear before becoming exponential. The iteration complexity for ULA
under Poincaré is a factor of n larger than the complexity under LSI.
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