
A concrete memory model for CompCert

Frédéric Besson Sandrine Blazy Pierre Wilke

Rennes, France

P. Wilke A concrete memory model for CompCert 1 / 28

CompCert

• real-world C to ASM compiler used in industry (commercialised by AbsInt)

• proven correct in Coq: it does not introduce bugs!

C Clight Cminor RTL ASM

Memory model

Each language has a Formal Semantics
i.e. a mathematical meaning for programs

Proof of semantic preservation

For every source program S that has a defined semantics,
If the compiler succeeds to generate a target program T ,

Then T has the same behavior as S.

P. Wilke A concrete memory model for CompCert 2 / 28

CompCert

• real-world C to ASM compiler used in industry (commercialised by AbsInt)

• proven correct in Coq: it does not introduce bugs!

C Clight Cminor RTL ASM

Memory model

Each language has a Formal Semantics
i.e. a mathematical meaning for programs

Proof of semantic preservation

For every source program S that has a defined semantics,
If the compiler succeeds to generate a target program T ,

Then T has the same behavior as S.

P. Wilke A concrete memory model for CompCert 2 / 28

CompCert

• real-world C to ASM compiler used in industry (commercialised by AbsInt)

• proven correct in Coq: it does not introduce bugs!

C Clight Cminor RTL ASM

Memory model

Each language has a Formal Semantics
i.e. a mathematical meaning for programs

Proof of semantic preservation

For every source program S that has a defined semantics,
If the compiler succeeds to generate a target program T ,

Then T has the same behavior as S.

P. Wilke A concrete memory model for CompCert 2 / 28

CompCert

• real-world C to ASM compiler used in industry (commercialised by AbsInt)

• proven correct in Coq: it does not introduce bugs!

C Clight Cminor RTL ASM

Memory model

Each language has a Formal Semantics
i.e. a mathematical meaning for programs

Proof of semantic preservation

For every source program S that has a defined semantics,
If the compiler succeeds to generate a target program T ,

Then T has the same behavior as S.

P. Wilke A concrete memory model for CompCert 2 / 28

CompCert

• real-world C to ASM compiler used in industry (commercialised by AbsInt)

• proven correct in Coq: it does not introduce bugs!

C Clight Cminor RTL ASM

Memory model

Each language has a Formal Semantics
i.e. a mathematical meaning for programs

Proof of semantic preservation

For every source program S that has a defined semantics,
If the compiler succeeds to generate a target program T ,

Then T has the same behavior as S.

P. Wilke A concrete memory model for CompCert 2 / 28

Goal: Make the semantics of C more defined

Why did C leave some behaviors undefined?

• Portability

• Performance

Why do we want to make it more defined?

• real-life programs use features that are undefined, according to C

• the compilation theorem will be more useful

What kind of undefined behaviors do we aim at?

• undefined pointer arithmetic, i.e. bitwise operators

• use of uninitialised memory

Our starting point: CompCert

P. Wilke A concrete memory model for CompCert 3 / 28

An example of low-level C program in CompCert
int main(){
int * p = (int *) malloc (sizeof (int));
*p = 42;
int * q = p | 5;
int * r = (q » 3) « 3;
return *r;

}

bp

bq

br

b

Bitwise operators on pointers are
undefined behavior!

CompCert [JAR’09], KCC [POPL’12], Krebbers [POPL’14], Norrish [PhD’98]:
undefined behavior
Kang et al. [PLDI’15]: don’t model bitwise operators

P. Wilke A concrete memory model for CompCert 4 / 28

An example of low-level C program in CompCert
int main(){
int * p = (int *) malloc (sizeof (int));
*p = 42;
int * q = p | 5;
int * r = (q » 3) « 3;
return *r;

}

(b,0)

bp

bq

br

b

Bitwise operators on pointers are
undefined behavior!

CompCert [JAR’09], KCC [POPL’12], Krebbers [POPL’14], Norrish [PhD’98]:
undefined behavior
Kang et al. [PLDI’15]: don’t model bitwise operators

P. Wilke A concrete memory model for CompCert 4 / 28

An example of low-level C program in CompCert
int main(){
int * p = (int *) malloc (sizeof (int));
*p = 42;
int * q = p | 5;
int * r = (q » 3) « 3;
return *r;

}

(b,0)

bp

bq

br

42

b

Bitwise operators on pointers are
undefined behavior!

CompCert [JAR’09], KCC [POPL’12], Krebbers [POPL’14], Norrish [PhD’98]:
undefined behavior
Kang et al. [PLDI’15]: don’t model bitwise operators

P. Wilke A concrete memory model for CompCert 4 / 28

An example of low-level C program in CompCert
int main(){
int * p = (int *) malloc (sizeof (int));
*p = 42;
int * q = p | 5;
int * r = (q » 3) « 3;
return *r;

}

(b,0)

bp

bq

br

42

b

Bitwise operators on pointers are
undefined behavior!

CompCert [JAR’09], KCC [POPL’12], Krebbers [POPL’14], Norrish [PhD’98]:
undefined behavior
Kang et al. [PLDI’15]: don’t model bitwise operators

P. Wilke A concrete memory model for CompCert 4 / 28

Contributions

• Previous work [APLAS’14]:
A memory model for low-level programs

• This work:

• integration of the memory model inside CompCert
• correctness proofs of the memory model
• correctness proofs of the transformations of the frontend (up to Cminor)

P. Wilke A concrete memory model for CompCert 5 / 28

Outline

1 CompCert’s memory model

2 New features of the memory model

3 Consistency of the memory models

4 CompCert proof: Overview

5 Conclusion

P. Wilke A concrete memory model for CompCert 6 / 28

Outline

1 CompCert’s memory model

2 New features of the memory model

3 Consistency of the memory models

4 CompCert proof: Overview

5 Conclusion

P. Wilke A concrete memory model for CompCert 7 / 28

New features of the memory model

Symbolic expressions
val ::= i | (b,o) not expressive enough
We change the semantic domain to:

expr ::= val | op1 expr | expr op2 expr

Alignment constraints
We need information about some bits of the concrete address of a pointer
The alloc primitive takes an extra parameter mask , such that:

A(b) & mask = A(b)

P. Wilke A concrete memory model for CompCert 8 / 28

New features of the memory model

Symbolic expressions
val ::= i | (b,o) not expressive enough
We change the semantic domain to:

expr ::= val | op1 expr | expr op2 expr

Alignment constraints
We need information about some bits of the concrete address of a pointer
The alloc primitive takes an extra parameter mask , such that:

A(b) & mask = A(b)

P. Wilke A concrete memory model for CompCert 8 / 28

Interaction with the memory model

What is the semantics of reading from memory: *p ?

In CompCert, p is evaluated into a pointer (b, i), then we can use load(M,b, i)

In our model, p is a symbolic expression. It needs to be transformed into a pointer
so that we can use load .

normalise : mem → expr → bvalc

We need to modify the semantics to include calls to normalise

• memory accesses (load and store)

• conditionnal branches

P. Wilke A concrete memory model for CompCert 9 / 28

Back to the example

int main(){
int * p = (int *) malloc (sizeof (int));
*p = 42;
int * q = p | 5;
int * r = (q » 3) « 3;
return *r;

}

(b,0)

bp

bq

br

42
b8

(b,0)
normalise

P. Wilke A concrete memory model for CompCert 10 / 28

Back to the example

int main(){
int * p = (int *) malloc (sizeof (int));
*p = 42;
int * q = p | 5;
int * r = (q » 3) « 3;
return *r;

}

(b,0)

bp

(b,0) | 5

bq

br

42
b8

(b,0)
normalise

P. Wilke A concrete memory model for CompCert 10 / 28

Back to the example

int main(){
int * p = (int *) malloc (sizeof (int));
*p = 42;
int * q = p | 5;
int * r = (q » 3) « 3;
return *r;

}

(b,0)

bp

(b,0) | 5

bq

((
(b,0) | 5

)
� 3

)
� 3

br

42
b8

(b,0)
normalise

P. Wilke A concrete memory model for CompCert 10 / 28

Back to the example

int main(){
int * p = (int *) malloc (sizeof (int));
*p = 42;
int * q = p | 5;
int * r = (q » 3) « 3;
return *r;

}

(b,0)

bp

(b,0) | 5

bq

((
(b,0) | 5

)
� 3

)
� 3

br

42
b8

(b,0)
normalise

P. Wilke A concrete memory model for CompCert 10 / 28

Back to the example

int main(){
int * p = (int *) malloc (sizeof (int));
*p = 42;
int * q = p | 5;
int * r = (q » 3) « 3;
return *r;

}

(b,0)

bp

(b,0) | 5

bq

((
(b,0) | 5

)
� 3

)
� 3

br

42
b8

(b,0)
normalise

P. Wilke A concrete memory model for CompCert 10 / 28

Normalisation specification: concrete memories

Abstract memory m
(b2,2)

5

cm1

cm2

cm3

cm4

cm5

cm6

0 8 16 24 32 40 48 56

Concrete memories of m

cmi ` m

• range :]0;55[

• no overlap

• alignment

P. Wilke A concrete memory model for CompCert 11 / 28

Normalisation: example 1

e = (((b ,0) | 5)� 3)�3

cm1 8 = J(b,o)Kcm1

cm2 8 = J(b,o)Kcm2

cm3 16 = J(b,o)Kcm3

cm4 24 = J(b,o)Kcm4

cm5 32 = J(b,o)Kcm5

cm6 32 = J(b,o)Kcm6

0 8 16 24 32 40 48 56
JeKcm1 = (((cm1(b)+0) | 5)� 3) = ((8 | 5)� 3)

= ((0b1000 | 5)� 3)�3 = (0b1101 � 3)�3
= 0b0001�3 = 0b1000 = 8 = cm1(b)

∀i,JeKcmi = cmi(b), hence e normalises into (b,0)

P. Wilke A concrete memory model for CompCert 12 / 28

Normalisation: example 2

e = (b ,0)> (b′ ,0)

cm1 true

cm2 true

cm3 true

cm4 false
cm5 false
cm6 false

0 8 16 24 32 40 48 56

There is no v such that ∀i,JeKcmi = JvKcmi , hence e doesn’t normalise

P. Wilke A concrete memory model for CompCert 13 / 28

CompCert with symbolic expressions

C Clight Cminor RTL ASM

Memory model

(b2,2)

5

0

5

7

(b,o) | 5

b1

b3

b2

expr ::= val | op1 expr | expr op2 expr

S S S S S

P. Wilke A concrete memory model for CompCert 14 / 28

Outline

1 CompCert’s memory model

2 New features of the memory model

3 Consistency of the memory models

4 CompCert proof: Overview

5 Conclusion

P. Wilke A concrete memory model for CompCert 15 / 28

How does our model compare to CompCert?

t

x(t)

t

x(t)

Behaviors in CompCert Behaviors with symbolic expressions

We are an extension of CompCert

P. Wilke A concrete memory model for CompCert 16 / 28

How does our model compare to CompCert?

Formally,

Lemma expr_add_ok : ∀ v1 v2 m v ,
sem_add v1 v2 m = bvc →
∃ e , sem_add_expr v1 v2 m = bec ∧

normalise m e = v .

If the addition of v1 and v2 succeeds in CompCert,
Then it should succeed in our model as well,
And the expression we compute should normalise into the same value.

P. Wilke A concrete memory model for CompCert 17 / 28

Discovery of bugs

2 cases where our model disagrees with CompCert

• Bug in CompCert 2.4: Pointer comparison to NULL
(fixed in CompCert 2.5)

• Bug in our model: incorrect handling of pointers one past the end

P. Wilke A concrete memory model for CompCert 18 / 28

Incorrect pointer comparison to NULL

In CompCert:

• pointers are pairs (b,o)

• the NULL pointer is represented as the integer 0

p == 0 was incorrectly defined to always evaluate to false when p is a pointer.

0 8 16 24 32 40 48 56

b

But we need to check that o is a valid offset of b

• J(b,o)Kcm = cm(b)+o is not zero only in that case

• otherwise (b,−8) evaluates to zero

P. Wilke A concrete memory model for CompCert 19 / 28

Outline

1 CompCert’s memory model

2 New features of the memory model

3 Consistency of the memory models

4 CompCert proof: Overview

5 Conclusion

P. Wilke A concrete memory model for CompCert 20 / 28

Overview of CompCert architecture

C Clight C]minor Cminor

frontend
backend

CminorSelRTLLTLLinear

Mach ASM
: conserves the memory layout
: modifies the memory layout

P. Wilke A concrete memory model for CompCert 21 / 28

Memory injections: a generic memory transformation
In CompCert C, each local variable has its own block.
During the compilation these variables are merged into a stack frame.

mem_inject f m m′

m m′

1

(b3,o)

37

b1

b2

b3

1

b′

(b′,o+δ2)

37

δ1

δ2

f

f

f

Adapting to symbolic expressions:
• generalization of the injection over values
• lots of proofs to adapt (relation with normalisation)

P. Wilke A concrete memory model for CompCert 22 / 28

Memory injections - Central theorem

Theorem norm_inject : ∀ f m m ’ e e ’
(Minj : inject f m m ’) (Einj : expr_inject f e e ’),

val_inject f (normalise m e) (normalise m ’ e ’).

• We can show that: ∃v ,val_inject f (normalise m e) v

• Let’s now prove that: normalise m′ e′ = v

• ∀cm′ ` m′,Je′Kcm′ = JvKcm′

• From the specification of the normalisation of e in m we know:

∀cm ` m,JeKcm = Jnormalise m eKcm

• We need a theorem relating evaluations in cm and cm′!

P. Wilke A concrete memory model for CompCert 23 / 28

Memory injections - Evaluation
mem_inject f m m’

8 16 24 32 40 48

Concrete memories of m

8 16 24 32 40 48

Concrete memories of m′

pre_cm(f,cm’) : recovers a concrete memory as it was before injection

Definition pre_cm f cm ’ := fun (b : block) ⇒
let (b ’, delta) := f b in cm ’ b ’ + delta .

Theorem expr_inject_eval : ∀ f cm ’ e e ’
(Einj : expr_inject f e e ’),
J e ’K cm ′ = J eK pre_cm(f,cm ′).

P. Wilke A concrete memory model for CompCert 24 / 28

Memory injections - Central theorem
Theorem norm_inject : ∀ f m m ’ e e ’

(Minj : inject f m m ’) (Einj : expr_inject f e e ’),
val_inject f (normalise m e) (normalise m ’ e ’).

Concrete memories of m Concrete memories of m′

expr_inject_eval :
expr_inject f e e′ ⇒
Je′Kcm′ = JeKpre_cm(f ,cm′)

• We are left to prove:

∀cm′ ` m′,Je′Kcm′ = JvKcm′

• We rewrite both sides using expr_inject_eval , the goal becomes:

∀cm′ ` m′,JeKpre_cm(f ,cm′) = Jnormalise m eKpre_cm(f ,cm′)

• From the specification of the normalisation of e in m we know:

∀cm ` m,JeKcm = Jnormalise m eKcm

which solves our goal.

P. Wilke A concrete memory model for CompCert 25 / 28

Outline

1 CompCert’s memory model

2 New features of the memory model

3 Consistency of the memory models

4 CompCert proof: Overview

5 Conclusion

P. Wilke A concrete memory model for CompCert 26 / 28

Conclusion

A semantics for C

• more precise than CompCert’s

• compatible with CompCert

• nearly as proven correct as CompCert

Future directions

• finish the proof by adapting the last remaining unproven pass

• add a more concrete assembly language to the certified compilation chain

• plug back in optimizations at RTL level (precision improvement?, still
sound?)

P. Wilke A concrete memory model for CompCert 27 / 28

Questions?

P. Wilke A concrete memory model for CompCert 28 / 28

	CompCert's memory model
	New features of the memory model
	Consistency of the memory models
	CompCert proof: Overview
	Conclusion

