Exploiting Protrusion Cues for Fast and Effective Shape Modeling via Ellipses

Alex Wong ${ }^{\dagger} \ddagger$
University of California, Los Angeles \dagger
Brian Taylor ${ }^{\dagger}$

http://ccvl.jhu.edu/

motivation

Ellipses provide a compact representation of complex objects and their structure, as most objects can be broken down rigid parts.
Given the ability of the state of the art semantic segmentation and motion boundary detection methods to produce reliable object masks, representing such as ellipse models becomes a natural next step for understanding the segmented objects' structures.

our contribution

We propose a novel ellipse fitting method based on psychology and cognitive science studies on shape decomposition and show that our shape coverage compares well with the state of the art methods, while significantly outperforming them in run-time by as much as 508 times in our evaluation of the methods on over 4000 2D shapes.

our approach

1. We leverage symmetry axis transform and protrusions as cues to partition the foreground pixels, joining regions whose protrusion strength (Eqn. 1) is less than a threshold τ.

$$
\begin{equation*}
f_{p}=\frac{\gamma\left(\mathbf{s}_{h}^{\mathbf{j}}\right)-r_{\mathbf{j}}}{\left|\mathbf{b}_{1}^{h}-\mathbf{b}_{2}^{h}\right|} \tag{1}
\end{equation*}
$$

2. We estimate a set of ellipses for each local region by minimizing Eqn. 2, which describes the coverage and complexity of the model.

$$
\begin{equation*}
C\left(\mathbf{R}^{j}, \mathbf{e}^{j}\right)=\left\|\mathbf{R}^{j}-\bigcup_{k=0}^{\kappa} I\left(\mathbf{e}_{k}^{j}\right)\right\|^{2}+\kappa \frac{\left\|\mathbf{R}^{j}\right\|}{\eta\left(\mathbf{s}^{j}\right)+1} \tag{2}
\end{equation*}
$$

3. We then minimize the cost of the entire model by comparing cost of pairs of adjacent ellipses to a single ellipse covering both region.

$$
\begin{equation*}
D_{u v}=C\left(\mathbf{Q}_{u}, \mathbf{E}_{u}\right)+C\left(\mathbf{Q}_{v}, \mathbf{E}_{v}\right)-C\left(\mathbf{U}_{u v}, \mathbf{E}_{u v}^{\prime}\right) \tag{3}
\end{equation*}
$$

4. We select and merge the pair that gives the highest reduction on the model cost via Eqn. 3 until the cost cannot be reduced.

$$
\begin{equation*}
(u, v)=\arg \max _{u, v}\left(D_{u, v}\right) \tag{4}
\end{equation*}
$$

experimental results

	Intersection-Over-Union			
Method	LEMS	MPEG-7	SiSHA	PASCAL Horses
Ours	0.9634	0.9597	0.9638	0.9507
DEFA	0.9623	0.9615	0.9629	0.9545
AEFA	0.9711	0.9600	0.9654	0.9527
EMAR	0.9326	0.9219	0.9600	0.9470
	Run-time (seconds)			
Method	LEMS	MPEG-7	SiSHA	PASCAL Horses
Ours	3.88 s	2.20 s	2.19 s	19.96 s
DEFA	211.44 s	255.87 s	125.28 s	2503.21 s
AEFA	745.45 s	1001.92 s	528.36 s	12088.02 s
EMAR	120.57 s	78.41 s	63.23 s	740.81 s

We compared our method against three others: Augmentative Ellipse Fitting Algorithm (AEFA) and Decremental Ellipse Fitting Algorithm (DEFA) from [1] and an EM ellipse fitting algorithm (EMAR) [2].
We ran each model on over 4000 shapes given by four 2D shape benchmarks: LEMS, MPEG-7, SiSHA, and PASCAL Horses.
We find that our model:

- performs comparably to DEFA and AEFA (where the maximal difference in mean IOU is less than 0.01) and outperforms EMAR
- gains a 109 -fold of mean run-time improvement over DEFA and 508-fold over AEFA

references

