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VISION

Data-fidelity terms: L, photometric ( L) and illumination invariant SSIM (Lst)
Regularization: local smoothness (L, ) and bilateral cyclic consistency (L;,.)

L = wphﬁph =+ wstﬁst - wsmﬁsm 1 wbcﬁbc
—’_/ _,—/

data-fidelity regularization
L and L. are adaptively weighted by a spatially and training time varying (¢

Code available at:
https://tinyurl.com/yx93mylh
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Two-Branch Decoder

(v relies on data-fidelity residual. To ensure we
have the necessary features to satisfy D(d):

Introduction Loss Function

Dedicate one branch to minimizing just the
data-fidelity term

Goal: Learn a function d = f(I;w) to recover the scene from a single image [

_rconcat

Give its features and coarse prediction to a
second branch to minimize entire loss

idisp for minimizing : £, = Wyh, Lph + W Lot
. rdisp for minimizing : [

T FI:w) d
Recovering 3D geometry from a single image is an ill-posed problem
We must rely on a prior e.g. plecewise smoothness
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| rd?SE | We use rdisp as our final output

Adaptive Regularization

We formulate this as an energy minimization problem: D(d) + aR(d)
where ‘D denotes data fidelity, /R reqularization, and (¢ a static scalar

As R (d) biases the solution based on an assumption about d, Results

we should only impose regularity if D(d) is met; hence, we want (x to vary for:

Error Metrics Accuracy Metrics

Method AbsRel SaRel RMS  10oeRMS Dl-all 6 < 1.25 &< 1.252 § < 1.25°
=g ; : ph + st + ACsm + Ir [14] 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975
e each position ¢ € Q2 of d depending on the residual of D(d) : - —— _ _ -
ph + st + a7 sm + alr ([!+] w/ Our Adaptive Regularization) 0.120 1.367 6.013 0.211 30.132 0.849 0.942 0.975
® each time Step of traini ng Aleotti et al. [2] 0.119 1239 5998 0212 29864  0.846 0.940 0.976
cp(x)
a (x) — eXp ( - p ) ph + st + ALY sm + be (Ours w/o Adaptive Regularization) 0.117 1.264 5.874 0.207 29.793 0.851 0.944 09747
o ph + st + al¥ sm + alr (Ours w/o Bilateral Cyclic Consistency) 0.117 1.251 5.876 0.206 29.536 0.851 0.944 0.977
A 1 G —_— |
. L . N ph + st + aA™” sm + abc (Ours w/o Bidirectional Edge-Awareness) 0.115 1.211 5.743 0.203 28.942 0.852 0.945 0.977
for local residual p(x) = |I(x) — I (x)|and global residual o = : _
ph + st + aA™ sm + abc (Ours Full Model) 0.114 1.172 5.651 0.202 28.142 0.855 0.947 0.979

ph + st + adtsm + abe * (Ours Full Model w/ 2 Branch Decoder)

a(z) begins low, and a(z) — 1 as global residual decreases
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To better modulate the amount of regularity imposed: (X should be adaptive e 2 -ui o

Groundtruth

System Diagram

Exploiting stereo pairs and view synthesis loss for training
Given a single image we predict its left and right disparities

Godard et al. [14]

I°: left image

- A I'': right image
~1 _
' | [ : left reconstruction
dO’ dl — e — — —— ——— - AO

I : right reconstruction
d®: left disparities

d' : right disparities

s€{0,1} z2
where A*(z) = exp(—|V*I*(z)|)

I Disparity Network

e

L= 3 Y o (@)|d(2) — d* ()

s€{0,1} z€2

where dlp (:c) — dO (:E -+ d1 (m)) and cio (a:) — dlp (:B — dO (m))

/\

where the block In denotes a bilinear sampler and purple the loss layer
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