Hashing, Contention, and Cell-Probe Proofs

Yitong Yin
Advisor: James Aspnes

Department of Computer Science
Yale University

June 28, 2009
Hashing, Contention, and Cell-Probe Proofs

Yitong Yin

Mission: Searching

The Art of Computer Programming

Volume 3
Sorting and Searching
Second Edition

Donald E. Knuth
Hashing, Contention, and Cell-Probe Proofs

Yitong Yin

Preliminary
Data structure problems
Cell-probe model

New challenges
Cell-probe-proofs
Nondeterministic complexity
Locally checkable data structures

Low-contention data structures
Upper bounds
A Lower bound

Ranged hash functions
Lower bounds for the monotone case
Non-monotone case

Summary
Searching in the 21st Century

What does searching become?
Searching in the 21st Century

What does searching become?
Outline

Preliminary
 Data structure problems
 Cell-probe model

New challenges

Cell-probe-proofs
 Nondeterministic complexity
 Locally checkable data structures

Low-contention data structures
 Upper bounds
 A Lower bound

Ranged hash functions
 Lower bounds for the monotone case
 Non-monotone case

Summary
Outline

Preliminary
 Data structure problems
 Cell-probe model

New challenges

Cell-probe-proofs
 Nondeterministic complexity
 Locally checkable data structures

Low-contention data structures
 Upper bounds
 A Lower bound

Ranged hash functions
 Lower bounds for the monotone case
 Non-monotone case

Summary
The problems of searching

Data structure problems.
The problems of searching

Data structure problems.
Definition (Elias and Flower, 1975)

A data structure problem is a function \(f : X \times Y \rightarrow Z \). For each query \(x \in X \) and each data set \(y \in Y \), \(f(x, y) \) defines the answer to the query \(x \) on data \(y \).

Decision version

\(f : X \times Y \rightarrow \{0, 1\} \).
Examples: “basic” searching problems

Membership query
Each query \(x \) is an element of universe \([N]\), and each data set is a set \(S \in \binom{[N]}{n} \). The query answers the question of “Is \(x \in S \)?”.

\[
f(x, S) := \begin{cases}
1 & x \in S \\
0 & \text{o.w.}
\end{cases}
\]

Predecessor search
\[
f(x, S) := \max\{z \in S \mid z \leq x\}.
\]
Examples: “advanced” searching problems

Nearest neighbor search (Hamming space)
$X = \{0, 1\}^d$ and $Y = \binom{X}{n}$, for every $(x, y) \in X \times Y$, $f(x, y)$ is the point in y which is closest to x (Hamming distance).

Partial match
$X = \{0, 1, \ast\}^d$ and $Y = \binom{\{0, 1\}^d}{n}$, for every $(x, y) \in X \times Y$, $f(x, y) := 1$ iff x matches some $z \in y$.

- “Curse of dimensionality”: if $d = \omega(\log n)$, the above two problems are hard.
Examples: more general problems

Polynomial evaluation

X is a finite field, and Y is the set of all d-degree polynomial over X. For every $x \in X$ and $y \in Y$,

$$f(x, y) := y(x).$$

Random problem

For every $(x, y) \in X \times Y$,

$$f(x, y) := \text{random value}.$$
Outline

Preliminary
Data structure problems
Cell-probe model

New challenges

Cell-probe-proofs
Nondeterministic complexity
Locally checkable data structures

Low-contention data structures
Upper bounds
A Lower bound

Ranged hash functions
Lower bounds for the monotone case
Non-monotone case

Summary
Cell-probe model [Yao, 1981]

Cell-probing scheme:
- The data set y is encoded to a **table of cells**.
- For each query x, the result $f(x, y)$ is decided by **adaptive probes**.

![Data diagram](image)
Cell-probe model [Yao, 1981]

Cell-probing scheme:

- The data set \(y \) is encoded to a table of cells.
- For each query \(x \), the result \(f(x, y) \) is decided by adaptive probes.
Cell-probe model [Yao, 1981]

Cell-probing scheme:
- The data set y is encoded to a **table of cells**.
- For each query x, the result $f(x, y)$ is decided by adaptive probes.

<table>
<thead>
<tr>
<th>12</th>
<th>19</th>
<th>23</th>
<th>24</th>
<th>28</th>
<th>37</th>
<th>42</th>
<th>45</th>
<th>53</th>
<th>60</th>
<th>67</th>
<th>68</th>
<th>79</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>
Cell-probe model [Yao, 1981]

Cell-probing scheme:

- The data set y is encoded to a table of cells.
- For each query x, the result $f(x, y)$ is decided by adaptive probes.

<table>
<thead>
<tr>
<th>12</th>
<th>19</th>
<th>23</th>
<th>24</th>
<th>28</th>
<th>37</th>
<th>42</th>
<th>45</th>
<th>53</th>
<th>60</th>
<th>67</th>
<th>68</th>
<th>79</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

query 21

Probing
Two views of cell-probe model

- An encoding scheme and a decision tree.

- A communication protocol between an adaptive player and an oblivious player.

\[f(x,y) \]

- An encoding scheme and a decision tree.

- A communication protocol between an adaptive player and an oblivious player.
Space/time tradeoff

For any f, there are two naïve solutions:

- **Bit vector**: store $f(x, y)$ for every x.
- **Read the raw data y every time.**
New Challenges

- **Locality**: the information for answering searches is locally accessible.
- **Contention**: the same resource is requested by multiple processors at the same time.
- **Churn**: the set of participants changes.

Our approach: Lower bounds. (What cannot be done?)
“Love Thy Neighbor.”
Local verifications

The data structure is implemented by a distributed system.

An important property of distributed systems is locality.
Local verifications

- In a distributed hash table (DHT), answering a query consists of two actions: routing, and **local verification**.

```
Routing-Verification Paradigm
loop
    if f(x, y) can be decided locally from P then
        return f(x, y);
    end if
    P ← next(P, x);
end loop
```

- Generalizing the scheme, we get a **routing-verification paradigm** for any problem f.

Question
What cannot be verified locally?
In a distributed hash table (DHT), answering a query consists of two actions: routing, and local verification.

Routing-Verification Paradigm

```
loop
  if f(x, y) can be decided locally from P then
    return f(x, y);
  end if
  P ← next(P, x);
end loop
```

Generalizing the scheme, we get a routing-verification paradigm for any problem f.

Question
What cannot be verified locally?
Outline

Preliminary
- Data structure problems
- Cell-probe model

New challenges

Cell-probe-proofs
- Nondeterministic complexity
- Locally checkable data structures

Low-contention data structures
- Upper bounds
- A Lower bound

Ranged hash functions
- Lower bounds for the monotone case
- Non-monotone case

Summary
Nondeterminism and verification

- **Nondeterministic cell-probes**: information to decide the query result.
- **Example**: membership query over a sorted table.

Query $x = 7$. Is $x \in S$?
Nondeterminism and verification

- **Nondeterministic cell-probes**: information to decide the query result.
- **Example**: membership query over a sorted table.

Query $x = 7$. Prove that $x \in S$.
Nondeterminism and verification

- **Nondeterministic cell-probes:** information to decide the query result.
- **Example:** membership query over a sorted table.

Query $x = 8$. Prove that $x \notin S$.
Nondeterminism and verification

- **Nondeterministic cell-probes**: information to decide the query result.
- **Example**: membership query over a sorted table.

Query $x = 8$. Cannot prove anything.
Cell-probe proofs.

The prover and the verifier communicate via the table.

Completeness
\(\forall (x, y), \exists \text{ a proof } P, \text{ verify}(x, P) = f(x, y) \)

Soundness
\(\forall (x, y), \forall \text{ proof } P, \text{ verify}(x, P) = \begin{cases} f(x, y) \\ \bot \end{cases} \)

\((s, b, t)\)-CPP: s cells, each of b bits, t-cell proof for \(\forall (x, y) \).
Cell-probe proofs.

The prover and the verifier communicate via the table.

\[\forall (x, y), \exists \text{ a proof } P, \text{ verify}(x, P) = f(x, y) \]

Completeness

Soundness

\[\forall (x, y), \forall \text{ proof } P, \text{ verify}(x, P) = \begin{cases} f(x, y) \\ \bot \end{cases} \]

\((s, b, t)\text{-CPP}: \) s cells, each of b bits, t-cell proof for \(\forall (x, y)\).
Cell-probe proofs.

The prover and the verifier communicate via the table.

Completeness
∀(x, y),
∃ a proof P,
\textbf{verify}(x, P) = f(x, y)

Soundness
∀(x, y),
∀ proof P,
\textbf{verify}(x, P) = \begin{cases} f(x, y) \\ \bot \end{cases}

\textbf{(s, b, t)-CPP}: s cells, each of b bits, t-cell proof for ∀(x, y).
Cell-probe proofs.

The prover and the verifier communicate via the table.

\[\forall (x, y), \exists \text{ a proof } P, \text{ verify}(x, P) = f(x, y) \]

Completeness

\[\forall (x, y), \forall \text{ proof } P, \text{ verify}(x, P) = \begin{cases} f(x, y) \\ \bot \end{cases} \]

Soundness

\((s, b, t)\)-CPP: \(s\) cells, each of \(b\) bits, \(t\)-cell proof for \(\forall (x, y)\).
A combinatorial characterization of CPP

Definition
\(\mathcal{F} \) is an \(s \times k \)-partition of set \(Y \), if \(\mathcal{F} = \bigcup_{i=1}^{s} G_i \) where each \(G_i \) is a partition of \(Y \) and \(|G_i| \leq k \).

Example
A \(3 \times 2 \)-partition of \(\{1, 2, 3, 4\} \).

\[\mathcal{F} = \{ \{1, 2\}, \{3, 4\}, \{1, 2, 4\}, \{3\}, \{1, 2, 3, 4\} \} \]

Theorem (Characterization)
There exists an \((s, b, t)\)-CPP for the data structure problem \(f : X \times Y \rightarrow Z \) if and only if there exists an \(s \times 2^b \)-partition \(\mathcal{F} \) of \(Y \) such that for every \((x, y) \in X \times Y \), there exists an \(A \in \mathcal{F} \) such that \(y \in A \) and \(|f(x, A)| = 1 \).
Nondeterministic cell-probe complexity

For uniformly random \(f : \{0, 1\}^m \times \{0, 1\}^n \rightarrow \{0, 1\} \):

Theorem

If the space complexity is:
 - \(2^m - 1 \) cells;
 - 1 bit in each cell;

then the nondeterministic time complexity is \(\Omega(\frac{n}{m}) \).
Nondeterministic cell-probe complexity

For the nearest neighbor search problem or the partial match problem with \(n \) points in \(d \)-dimensional Hamming space where \(d = \omega(\log n) \):

Theorem

If the space complexity is:

- \(\text{Poly}(n) \) cells;
- \(O(n^{1-C}) \) bits in each cell for some \(C > 0 \);

then the nondeterministic time complexity is \(\Omega(\log(\frac{d}{\log n})) \).

Remark

The current deterministic lower bound for the problem is \(\Omega(\frac{d}{\log n}) \).
Nondeterministic cell-probe complexity

For the d-degree polynomial evaluation problem defined over the finite field $GF(2^k)$:

Theorem

If the space complexity is:

- s cells;
- k bits in each cell;

*then the nondeterministic time complexity is $\min(d, \frac{k - \log d}{\log s})$.***

Remark

This nondeterministic lower bound matches the asymptotically tight deterministic lower bound $\min(d + 1, \frac{k - \log d}{\log s})$.***
Outline

Preliminary

Data structure problems
Cell-probe model

New challenges

Cell-probe-proofs

Nondeterministic complexity
Locally checkable data structures

Low-contention data structures

Upper bounds
A Lower bound

Ranged hash functions

Lower bounds for the monotone case
Non-monotone case

Summary
Locally checkable data structure

- The data set y is encoded to:
 - a set of cells;
 - and a network.
- For every query x, there exists a cell P, such that $f(x, y)$ can be decided locally from P.
- (s, b, δ)-locally checkable data structure: s cells, each of b bits, with maximum degree δ.

- preprocessing
- query: x
- verification
- $f(x, y)$

Data structure problems
Cell-probe model
New challenges
Cell-probe-proofs
Nondeterministic complexity
Locally checkable data structures
Low-contention data structures
Upper bounds
A Lower bound
Ranged hash functions
Lower bounds for the monotone case
Non-monotone case
Summary
Locally checkable data structure as cell-probe proofs

A **locally checkable data structure** is a data structure with local cell-probe proofs.

Lemma

\[(s, b, \delta)\text{-locally checkable data structure} \implies (s, \delta(b + \log s), 1)\text{-CPP}.

Proof

- The local decision maker is the verifier of the CPP.
- Each cell contains its entire neighborhood.
Lower bounds for locally checkable data structures

For the following problems:

- high-dimensional nearest neighbor search;
- high-dimensional partial match;
- polynomial evaluation;

let $n = \log |Y|$ be the size of the raw data, and $\epsilon = o(1)$:

Theorem

There does not exist a $(\text{Poly}(n), n^\epsilon, n^\epsilon)$-locally checkable data structure for these problems.
“Spread the table and contention will cease.”
A spellchecker example

- A spell-checker queries in a dictionary.
- “Multi-core!”
- Memory contention!
A spellchecker example

- A spell-checker queries in a dictionary.
- “Multi-core!”
- Memory contention!
A spellchecker example

- A spell-checker queries in a dictionary.
- “Multi-core!”
- Memory contention!
Most data structures fail to address contention: Binary search, BST, hashing, indexing, ...:(

Contention depends on query distribution.

Information of query distribution can be used for data structure construction.
Balanced cell-probing scheme

- **x: query; y: data; q: query distribution.**
 - The table is constructed from y and q.
 - x is generated by q.
 - The cell-probing algorithm does not know q.
 - At any step, the **contention** of a cell is defined as the probability that it is probed.
Balanced cell-probing scheme

Definition

\((s, b, t, \phi)\)-balanced cell-probing scheme:

- \(s\) cells, each of \(b\) bits;
- worst-case time complexity \(t\);
- the maximum contention in each step is at most \(\phi\).

Ideally, \(\phi = \frac{1}{s}\).
Outline

Preliminary
 Data structure problems
 Cell-probe model

New challenges

Cell-probe-proofs
 Nondeterministic complexity
 Locally checkable data structures

Low-contention data structures
 Upper bounds
 A Lower bound

Ranged hash functions
 Lower bounds for the monotone case
 Non-monotone case

Summary
Uniform membership query

Theorem
For the membership query,

- if the query distribution is uniform over both positive and negative queries,
- there exists an \(O(n), O(\log n), O(1), O(\frac{1}{n}) \)-balanced cell-probing scheme.

Remark

- The construction takes linear time.
- Based on Fredman, Komlos, and Szemeredi, 1984. (FKS perfect hashing)
- Based on Dietzfelbinger and auf der Heide, 1990. (de-amortized dynamic perfect hashing)
A general reduction

Theorem

\((s, b, t)\)-cell-probing scheme

\[\Rightarrow (O\left(\frac{st \cdot \log s}{\log \log s}\right), b, O\left(\frac{t \cdot \log s}{\log \log s}\right), O\left(\frac{1}{s}\right)) \]-balanced cell-probing scheme.

Proof

The core of the reduction is a low-contention data structure for the prefix-sum problem.

Definition

The prefix-sum problem \(f : X \times Y \rightarrow Z \):

- \(X := \{1, 2, \ldots, s\} \).
- \(Y := \{y \in [s + 1]^s \mid \sum_{i=1}^{s} y_i = s\} \).
- \(f(x, y) := \sum_{i<x} y_i \).
- Query distribution \(q(x) := \frac{y_x}{s} \).
A general reduction

Lemma

There exists an $(O(\frac{s \cdot \log s}{\log \log s}), b, O(\frac{\log s}{\log \log s}), O(\frac{1}{s}))$-balanced cell-probing scheme for the prefix-sum problem.

The reduction

With prefix-sum, each original cell-probe is simulated by $O(\frac{\log s}{\log \log s})$ balanced cell-probes on a new table of size $O(\frac{s \log s}{\log \log s})$. Repeat this for every one of the t cell-probes.
Application

Corollary

There exists an
\(O\left(\frac{n \cdot \log n}{\log \log n} \right) , O(\log n) , O\left(\frac{\log n}{\log \log n} \right) , O\left(\frac{1}{n} \right) \)-balanced cell-probing scheme for the membership query.

Back to the spell-checker

\(M \)-word document; sufficiently many cores; zero tolerance of memory contention.

- Before: sequential queries,
 \(O(M) \) total time, \(O(n) \) space.

- After: parallel queries,
 \(O\left(\frac{M}{\sqrt{n}} \right) \) total time, \(O\left(\frac{n \log n}{\log \log n} \right) \) space.

\(n \) is the number of English words.
Outline

Preliminary
 Data structure problems
 Cell-probe model

New challenges

Cell-probe-proofs
 Nondeterministic complexity
 Locally checkable data structures

Low-contention data structures
 Upper bounds
 A Lower bound

Ranged hash functions
 Lower bounds for the monotone case
 Non-monotone case

Summary
An interesting class of algorithms

Independent probes

A randomized cell-probing algorithm, such that:

- given a query and a table,
 the probing sequence I_1, I_2, \ldots, I_t are independent.

Remark

- Cell-probes are still adaptive.
- All our upper bounds have the property.
- All deterministic cell-probing schemes have the property.
- Randomization is used only for balancing the contention.
An $\Omega(\log \log n)$ lower bound

For the cell-probing algorithms defined in the last slide:

Theorem

If there exists an $(s, \text{Polylog}(n), t, \frac{\text{Polylog}(n)}{s})$-balanced cell-probing scheme for the membership query, then $t = \Omega(\log \log n)$.

Remark

- The theorem is a time-contention tradeoff.
- If the contention is within poly-logarithmic to the optimal, the time complexity is $\Omega(\log \log n)$.
- The tradeoff works for unbounded space.

Generality

The tradeoff holds for a general class of problems.
Proof to the lower bound

- Run n instances in parallel.
- Alice for the algorithm, with inputs x_1, x_2, \ldots, x_n; Bob for the table, with inputs y and q.
- In each round, Alice sends “balanced” parallel probes P_1, P_2, \ldots, P_n.
- Alice gets n bits information in t rounds.
Proof to the lower bound

- Parallel probes are simulated by a joint distribution S of $\{P_1, P_2, \ldots, P_n\}$.
- The marginal distributions are the same as before.
- $|\{P_1, P_2, \ldots, P_n\}|$, the total number of cells probed by Alice in a round, is minimized by S.
Proof to the lower bound

A recursion is built:

- Alice knows little about q
- P_i is oblivious
- Alice gets little information
- $|\{P_i\}|$ is small

The total information is $\geq n$ bits.
“Churn!”
Idea of hashing

- A hash function $h : [N] \rightarrow [m]$; $[N]$ for items; $[m]$ for buckets.
- For an $S \subset [N]$, the load of bucket i:
 \[\ell(i, S) := |\{ j \in S \mid h(j) = i \}|. \]
- The idea of hashing:
 Balance the unknown S with a consistent h.
- A fundamental flaw: for any h, \exists a bad S.
- Randomization: the OPT is the balls-into-bins bound.

\[
\max_{S \in \binom{[N]}{n}} \max_{i \in [m]} \ell(i, S) = \begin{cases}
\Theta \left(\frac{\log n}{\log \log n} \right) & n = \Theta(m) \\
\Theta \left(\frac{n}{m} \right) & n = \Omega(m \log m)
\end{cases}
\]

The “price of unknown data”!
Churn

A hash function is implemented by a distributed system.

- Buckets: machines in a system.
- Buckets may become available or unavailable.
- Churn!
Ranged hash functions

- Basis for many DHTs.
- Consistent hashing \in ranged hash functions.
Definition

A ranged hash function $h : 2^{|M|} \times [n] \rightarrow [M]$,
- for each set $S \subseteq [M]$ of available buckets,
- h_S specifies a mapping from $[n]$ to S.

Remark

- n fixed items are mapped to M unreliable buckets.
- State: the set S of available buckets.
- The load of bucket i at state S:

$$\ell(i, S) := |h_S(i)^{-1}|.$$

- The “price of churn”:

$$\ell_h := \max_{S \in \binom{[M]}{m}} \max_{i \in S} \ell(i, S).$$
Performance measures

Two performance measures for a ranged hash function h:

- **Worst-case maximum load:**
 \[\ell_h = \max_{S \in \binom{[M]}{m}} \max_{i \in S} \ell(i, S). \]

- **Reassignment costs:**
 $h_S, h_T \in S^n$, the reassignment costs from S to T:
 \[h_S \Delta h_T. \]

- **Consistent hashing:** $O\left(\frac{n}{m} \log m\right)$ maximum load with minimal reassignment costs.
Outline

Preliminary
 Data structure problems
 Cell-probe model

New challenges

Cell-probe-proofs
 Nondeterministic complexity
 Locally checkable data structures

Low-contention data structures
 Upper bounds
 A Lower bound

Ranged hash functions
 Lower bounds for the monotone case
 Non-monotone case

Summary
Monotonicity

Definition

h is monotone if for all $S \subset T \subset [M]$, $h_T(i) \in S$ implies that $h_S(i) = h_T(i)$.

Being monotone:
Items are reassigned only if necessary.

Lemma (Karger et al.)

h is monotone iff each item is always assigned to the first available bucket in its preference list.

- Consistent hashing is monotone.
Load balance vs. monotonicity

Theorem

If a randomized ranged hash function \(h : 2^{[M]} \times [n] \rightarrow [M] \) is monotone, then w.h.p., the maximum load for the worst-case \(S \in \binom{[M]}{m} \) is

\[
\ell_h = \begin{cases}
\Omega \left(\sqrt{\frac{n}{m} \log m} \right) & n = o(m \log m) \\
\Omega \left(\frac{n}{m} \right) & n = \Omega(m \log m)
\end{cases}
\]

The lower bound is tight.

Perturbed cube

All items and buckets are uniformly embedded into a hypercube with a random perturbation.
Load balance vs. expansion

Generalize consistent hashing:

Hashing via metric embedding

- All items \([n]\) and all buckets \([M]\) are embedded into a metric space.
- Each item is assigned to the nearest available bucket.

Expansion rate

The expansion rate or the KR-dimension of a metric embedding is \(d\) if the volume of any ball expands at most \(2^d\) times by doubling the radius.
Load balance vs. expansion

Theorem

If the expansion rate of the embedding is d, it holds w.h.p. that the maximum load is

$$\ell_h = \Omega \left(4^{-d} \cdot \frac{n}{m} \log m \right).$$

Corollary

If the metric embedding is growth-restricted, i.e. with $O(1)$ expansion rate, the maximum load is

$$\ell_h = \Omega \left(\frac{n}{m} \log m \right).$$

- Worse than balls-into-bins!
Outline

Preliminary
 Data structure problems
 Cell-probe model

New challenges

Cell-probe-proofs
 Nondeterministic complexity
 Locally checkable data structures

Low-contention data structures
 Upper bounds
 A Lower bound

Ranged hash functions
 Lower bounds for the monotone case
 Non-monotone case

Summary
Being non-monotone

- n items are hashed to m available buckets from $[M]$.
- **BinHash:**
 1. Binning: $[n]$ items are packed into $\frac{m}{2}$ bins $[\frac{m}{2}]$. Item i is put into bin j if j is the maximal suffix of i (in binary).
 2. Hashing: assign bins to buckets by *uniform hashing*.
- BinHash achieves both asymptotically optimal maximum load and reassignment costs.
- BinHash works for *weighted* items.
Summary

- Most data structure problems are hard nondeterministically.
- For problems such as high-dimensional nearest neighbor search, partial match, and polynomial evaluation, the answers cannot be verified locally.
- Low contention can be traded for a price of time and space, but even with unbounded space, there is always a price of time to pay.
- Although dimensionality ruins the locality of verification, it actually helps load balancing.
- In a metric space with bounded expansion rate, which is the case for Internet, the unreliability of machines costs more than the uncertainty of data.
Publication list

Hashing, Contention, and Cell-Probe Proofs

Yitong Yin

Preliminary
- Data structure problems
- Cell-probe model

New challenges
- Cell-probe-proofs
- Nondeterministic complexity
- Locally checkable data structures

Low-contention data structures
- Upper bounds
- A Lower bound

Ranged hash functions
- Lower bounds for the monotone case
- Non-monotone case

Summary