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Abstract
Phones today carry sensitive information and have a great
number of ways to communicate that data. As a result,
malware that steal money, information, or simply disable
functionality have hit the app stores. Current security so-
lutions for preventing undesirable data leaks are mostly
high-overhead and have not been practical enough for smart-
phones. In this paper, we show that simply monitoring just
some instructions (only memory loads and stores) it is pos-
sible to achieve low overhead, highly accurate information
flow tracking. Our method achieves 98% accuracy (0% false
positive and 2% false negative) over DroidBench and was
able to successfully catch seven real-world malware in-
stances that steal phone number, location, and device ID
using SMS messages and HTTP connections.

Categories and Subject Descriptors K.6.5 [Management
of Computing and Information Systems]: Security and Pro-
tection

Keywords Security; information flow tracking

1. Introduction
Information-flow control (IFC) is a fundamental technique
in computer security and privacy, allowing fine-grained con-
trol over information as it is routed between running pro-
grams and processed by them. Information-flow tracking [9,
14, 16] is the underlying mechanism that enables IFC to
make decisions. With a robust tracking system, IFC can be
used to prevent privacy leaks, ensure the integrity of infor-
mation by verifying its provenance, and minimize the attack
surface of a system by restricting the data accessible to any
one program in that system. An information-flow tracking
system that supports these goals has to be accurate, scalable,
and efficient.
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Today there is a large number of information-flow track-
ing techniques, from static [5] to dynamic [9] and from
hardware-based [16] to hybrid [19] to software-only [14].
Static analysis of program code is often constrained to par-
ticular languages and particular runtime environments, thus
making it inadequate in a real system consisting of pro-
grams written in diverse languages. Dynamic information-
flow tracking modifies the program, the runtime environ-
ment, or the hardware to associate supporting information
(called taint state or taint flags) to relevant program data
and to propagate this supporting information as the program
copies, manipulates, and transforms the data. The dynamic
approach is broadly applicable to many programming lan-
guages and runtimes, making it attractive in practice, but
comes with the implicit overhead of doing additional work
per program instruction. Rewriting the program or the run-
time to add dynamic information-flow tracking introduces
large overheads, which translate to increased power con-
sumption, and is thus impractical for all but strictest security-
and privacy-conscious uses. Hardware solutions usually in-
troduce less than 1% overhead, but require re-architecting
the system to supplement each storage element (e.g., regis-
ters, cache blocks at all levels, main memory) with the stor-
age for the associate taint state. Such re-architecting is un-
desirable from an engineering perspective.

We approach the challenges of information-flow tracking
from the position of simplifying the mechanics of tracking
while carefully trading off perfect accuracy for sufficient ac-
curacy. In other words, the question we try to answer is how
much performance and simplicity of implementation we can
gain by reducing tracking accuracy without endangering the
task at hand (qualitative information-flow control). We make
the observation that information flows have distinguishable
characteristics in terms of their structure (e.g., length, du-
ration, instruction distribution). This fact (which we support
with empirical evidence and analytical reasoning later in this
paper) allows us to discard the requirement that every in-
struction be analyzed (statically or dynamically). Further-
more, this allows us to design the tracking mechanism in
terms of inexpensive syntactic elements of the program, in-
stead of expensive semantic ones.

We discuss the use of statistics over the instruction
stream, in particular with respect to memory loads and mem-



ory stores, to determine whether a data value from a source
reaches a sink. While in general it might be possible to pre-
dict whether a memory operation that reaches a sink (e.g., a
memory store to a parameter for a sink function call) oper-
ates on data read much earlier from a source, the accuracy
of the resulting information-flow would be low if all inter-
mediate execution between source and sink are ignored. We
take a more refined view, where an information flow from
a source to a sink is divided into segments consisting of a
memory-load operation (where sensitive data is loaded into
the CPU), a number of manipulations of the data in CPU
registers, and one or more memory-store operations (where
the derived data, still sensitive, is sent from CPU to mem-
ory). The structural characteristics of information flows can
predict which memory stores in an instruction stream are re-
lated via a CPU-only flow to which memory loads. In other
words, we treat the CPU as a black box, where sensitive data
goes in via loads, and then we can tell which of the outgo-
ing data is also sensitive based on the characteristics of the
stores. Repeating this prediction process creates a chain of
load–store operations that deal with sensitive data, eventu-
ally establishing whether an information flow from a source
to a sink exists.

The benefits of this approach is to reduce the amount of
data to be processed (load–store operations are at least an
order of magnitude less frequent than arbitrary CPU opera-
tions) and to allow for a non-intrusive design (as monitor-
ing memory loads and stores is easier than monitoring the
CPU pipeline). Beyond performance improvements, the re-
duction in the amount of data means it is possible to move
information-flow tracking off the critical path in the architec-
ture, such that the load–store stream is buffered for delayed
processing at a more convenient time (while trading preven-
tion for detection, of course).

To evaluate our observation on the structural character-
istics of information flows and our design for a predictive
tracking mechanism, we consider mobile operating environ-
ments such as Google Android on smartphone devices. Mo-
bile devices, though becoming more powerful every year,
are significantly constrained in terms of performance and
power. Each component either in hardware or software is
carefully analyzed for impact on performance and on battery
use. In our discussions with engineers from companies in the
mobile ecosystem, any overhead over 5% (together with its
associated battery impact) is considered unacceptable. Mo-
bile devices commonly suffer from privacy-intruding apps,
which collect sensitive data about the user and ship it over
the network to a remote service. This combination of factors
(strict performance constraints, prevalent well-defined pri-
vacy challenges) led us to focus on mobile devices for our
evaluation.

In this paper we make the following contributions:

• We observe that information flows in programs have
structural characteristics that makes them amenable to
analysis and detection using predictive heuristics over

the instruction stream. We propose the use of such infor-
mation in a new information-flow tracking mechanism
that can be easily deployed in high-performance hard-
ware.
• We design and implement a lightweight and effective

heuristic (called PIFT) for information-flow tracking,
which relies only on the memory loads and stores issued
by the CPU during program execution.
• We present a detailed evaluation on an ARM SoC running

Google Android, showing 98% accuracy with limited
impact on performance and on added CPU complexity.

2. Overview
The problem of information-flow tracking consists of deter-
mining whether sensitive data, once read at program points
called sources, reaches program points called sinks. In the
simplest case, a source is a program point where a sensitive
data is introduced into the program memory (e.g., a pass-
word is read from user input) and a sink is a program point
where some data (possibly derived from the sensitive data
originated at the source) is sent out of the system.

Threat Model: Since information-flow tracking is useful in
security contexts, we define here the type of attacker we con-
sider. Our assumption is that the attacker creates a program
to steal sensitive data from a user’s device, and convinces
the user to run this program on the device. The attacker can
design and develop the program in any way they wish, using
any programming language, and any supporting runtime li-
braries they deem suitable. The program is installed on the
user’s device using standard means for that environment. We
make no assumptions about the exact time during execution
to access sensitive data or to communicate it. The flow of
data from source to sink is of the direct kind, without any in-
direct, conditional, or control flow-based information flows.

We are interested in mobile environments, and we con-
sider a RISC-style load/store architecture (e.g., ARM), run-
ning a software stack designed for interactivity with a single
user (e.g., Android OS). It is possible that the techniques in
this paper would be applicable to web server, cloud, or scien-
tific workloads, but we have not investigated these options.

Example: Let us consider the following program fragment:

String msgX = "type=sms";

...

msgY = msgX + "&imei=" + telMan.getDeviceId();

...

msgZ = msgY + "&dummy";

...

sms.sendTextMessage(phNum, null, msgZ, ...);

This code sends out an SMS message that contains the
IMEI (International Mobile Equipment Identity) number,
a sensitive ID of the mobile device. If we are interested in
getDeviceId() as a source and sendTextMessage() as



a sink, the problem is how to determine most efficiently
that msgZ is sensitive because it was derived from the return
value of getDeviceId().

Approach: All information-flow tracking techniques ap-
plied to the above example rely on establishing the following
relationships:

getDeviceId() −→ msgY

msgY −→ msgZ
where a −→ b denotes an information flow from mem-
ory location a to memory location b. Together with the
information about sources and sinks, these relationships
are sufficient to determine that there is an information
flow from getDeviceId() to sendTextMessage(). Typ-
ically the problem is solved through expensive statement-
or instruction-level tracking, where an additional bit of in-
formation (called taint) is associated with memory loca-
tions and registers to indicate the presence of sensitive data
in those locations and where execution of any instruction
is supplemented to propagate these bits from the source
operands to destination operands.

We explore an alternate design where not all instructions
are tracked for taint propagation. In particular we are in-
terested in computing taints for memory locations, so we
consider the feasibility of propagating taints from load in-
structions to store instructions, irrespective of the interced-
ing data manipulation done via registers. Our intuition be-
hind this goal of avoiding full register-level tracking of pre-
vious work [8, 14, 16] is that code for Android-on-ARM
platforms exhibits data flows of predictable lengths, not ar-
bitrarily long, and thus the starting and ending memory op-
erations of these data flows likely have temporal locality.
This temporal locality is induced by the choice of Java as
programming language (e.g., prevalence of heap-allocated
data), by the Java virtual machine (e.g., register pressure),
and by the architectural characteristics of ARM processors
(e.g., load–store instruction set architecture).

To test our hypothesis of temporal locality for load–store
data flows, we analyzed the native code corresponding to
our Java example. During execution, the strings are copied
between the character arrays of the String instances. For
example, suppose the application has just executed msgX

+ "&imei=" and mem[addr1,addr2] denotes the corre-
sponding memory address range. The application then ex-
ecutes telMan.getDeviceId() which returns the IMEI
string located at, say, mem[addr3,addr4]. Now, the con-
catenation of the two strings is carried out by appending the
character array of the second string (i.e., the IMEI string)
to the end of the array of the first string (which is now stor-
ing "type=sms&imei="). The final string is then stored
at mem[addr1,addr2+L] where L=addr4-addr3+1 is the
length of the IMEI string.1 Assuming that it is sensitive data
and its corresponding memory location (mem[addr3,addr4])

1 In fact, L is the twice of the length of the IMEI string because in Java, each
character consumes two bytes.

//r6<-mem[addrs,addrs+1]

//r6->mem[addrd,addrd+1]

0x4004c114: ldrh r6, [r1, r4] 
0x4004c116: adds r3, r3, #1 
0x4004c118: strh r6, [r0, r4] 
004004c11a: adds r4, r4, #4 
0x4004c11c: cmps r3, r5
0x4004c11e: b
0x4004c114: ldrh r6, [r1, r4] 
0x4004c116: adds r3, r3, #1 
0x4004c118: strh r6, [r0, r4] 
004004c11a: adds r4, r4, #4 
0x4004c11c: cmps r3, r5
0x4004c11e: b 
... 

//r6<-mem[addrs,addrs+1]

//r6->mem[addrd,addrd+1]

Figure 1: The native code for Java string copy. Each charac-
ter is loaded into a register and then stored to its destination.

has already been tainted, the goal is to propagate the taint to
the corresponding part of the new string, i.e., mem[addr2+1,
addr2+L]. To achieve this goal, we need to know when the
characters are stored into the new location.

Figure 1 shows the stream of ARM instructions that ap-
pends a Java string to another one by copying two bytes at
a time. Each character of the string is first loaded from the
source address into a register (r6 in this example), and then
later it is stored to the destination address. The full-tracking
techniques would propagate the taint associated with the
source address to register r6 and then to the destination ad-
dress. Albeit the taint tracking accuracy is high, this register-
level tracking requires a significant modification of the pro-
cessor hardware architecture, not to mention high perfor-
mance overhead due to the tracking operation for (almost)
every instruction (such as add, mov, etc.).

Empirical Study of Load–Store Distances: To better un-
derstand how loads and stores are distributed in the instruc-
tion stream of a program’s execution, we instrumented the
gem5 simulator system [2, 6] to obtain instruction level ex-
ecution traces of Android apps running on an ARM proces-
sor. While it is possible for loads and stores to appear any-
where in an instruction stream, we are interested in under-
standing their distribution in regular Android apps, running
in the Android environment. Here, we highlight the statistics
for a real-world malicious Android app (known as LGRoot),
however, we also analyzed a number of app executions (Sec-
tion 5).

The first metric we consider is the distance between loads
and their subsequent stores. In Figure 2a load–store dis-
tances from a trace with 2.2 million memory loads and 768
thousand memory stores are plotted as a probability distri-
bution. It is noticeable that the bulk of load–store distance
values cluster in the range 0–5, meaning that most stores
follow closely after a load. The distribution tapers off past
a distance of 10, such that the range 0–10 captures 99% of
all loads and stores. This indicates that it is feasible to track
loads and related stores with a small window size.

The second metric is the number of stores following a
load, i.e., the number of stores that could potentially be
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(c) Distance between consecutive loads

Figure 2: Memory operations exhibit predictable patterns, as shown by the probability and cumulative distributions for various
metrics over memory loads and memory stores in an LGRoot malware execution trace. (distance = number of instructions)

tainted from the previous load. If such a number is high, then
a heuristic that considers all of these stores as candidates
for tainting would result in over-tainting and a large false-
positive rate. As Figure 2b shows, the number of stores
between consecutive loads is small and thus naturally limits
the taint propagation.

The third metric is the distance between consecutive
loads. Figure 2c indicates that loads are fairly uniformly
spread throughout the program execution, and thus more
amenable to tracking over time.

Together Figure 2 show that most computations in an An-
droid program on ARM consists of short-lived, possibly in-
terleaved, load–process–store sequences, where the process
step is strictly local to the CPU and has no memory opera-
tions.

Designing a Load–Store Taint Tracker: Given this struc-
tural characteristic of information flows, the tracking mech-
anism would identify stores that are within the correct dis-
tance of a load of sensitive data and taint the destination
addresses as sensitive. It is important to note that our ap-
proach has to handle a certain amount of imprecision due to
the fact that it ignores the actual instructions between loads
and stores (i.e., process step).

3. PIFT Architecture
In this section, we discuss the system architecture, PIFT al-
gorithm, and hardware design for PIFT. We especially con-
sider a hardware-based approach because of the needs for
fast processing of low-level events and for an OS/application-
independent solution.

3.1 System Architecture
PIFT architecture (Figure 3) consists of three main compo-
nents in different levels of Android software hierarchy.

1. PIFT Manager: We instrument each type of sensitive
data source (such as LocationManager) so that the data
being fetched by an application are registered with our
tracking. Similarly, at a sink (such as SmsManager) the
data being sent out is passed down to the lower level to
check if any part of it has been tainted. The registration

PIFT	Hardware	Module

PIFT	Module

PIFT	Native
(Address	Translation)

PIFT	Manager

Source Sink

Register(data) Check(data)

Register(addr)
Check(addr)

Android
Framework

Result

Register(data) Check(data)

Check(addr)Register(addr)

Linux 
Kernel

Android 
Runtime

Hardware

Applications

Figure 3: PIFT architecture allows for registering sources
and sinks and monitoring data flows.

and check of data are handled by PIFT Manager in the
Android Framework level as in [9].

2. PIFT Native: The data is passed down to PIFT Native
in the Android runtime layer for address translation. For
an object-type data such as IMEI string, it simply obtains
the pointer to the data using Java Native Interface (JNI).
For a primitive data type such as the GPS location, PIFT
Manager passes the object instance that owns the field in
addition to the field’s name, and then PIFT Native finds
the byte offset of the field in the object instance, which is
the address of the primitive-type data.

3. PIFT Module: The address is passed down to PIFT
Module in the Linux kernel layer. It interacts with the
PIFT Hardware Module to register sensitive data’s ad-
dress ranges and make taint queries for check requests.
Upon detecting any taint associated with the given ad-
dress range, it may generate an event to the upper layer
to inform of the potential leakage.

3.2 PIFT Taint-Propagation Algorithm
Our taint propagation heuristic works based on memory load
and store events. Conceptually speaking, upon loading of
a piece of sensitive data from a tainted address range, the



Algorithm 1 TAINT PROPAGATION HEURISTIC

1: {ri = [si, ei]: address range}
2: {R = {ri|1 ≤ i ≤ n}: tainted address ranges}
3: {Instk : the kth CPU instruction}
4: {NI : tainting window (TW) size}
5: {NT : the maximum number of propagation per TW}
6: {LTLT : the last tainted-load time (in CPU inst. seq)}
7: {nt : the number of taint propagations}

8: LTLT← −∞, nt ← 0
9: for each CPU instruction Instk do

10: if Instk is a memory load from rL then
11: if ∃ri ∈ R that overlaps rL then
12: {Starts Tainting Window}
13: LTLT← k
14: nt ← 0
15: end if
16: else if Instk is a memory store to rS then
17: if k ≤ LTLT+ NI and nt < NT then
18: Taint: Add rS to R

19: nt ← nt + 1
20: else
21: Untaint (if enabled): Remove rS from R

22: end if
23: end if
24: end for

algorithm starts a window of instructions called Tainting
Window (TW). Then, it taints the target addresses of the next
few (but upper-bounded) store instructions in that window.

We formalize our taint propagation heuristic algorithm as
follows: Let R be the set of memory address ranges that have
been tainted, R = {r1, r2, . . . , rn}. Each range is defined by
ri = [si, ei] where si and ei are the start and end addresses
of the range. Given R, the algorithm works as follows as the
CPU executes instructions (see Algorithm 1 and an example
in Figure 4):

1. [LINE 10–15] For a memory load instruction (e.g., ldr,
ldrd, ldmia) that loads a data from rL = [sL, eL], the
algorithm queries if there exists any range ri ∈ R such
that

max(si, sL) ≤ min(ei, eL).

That is, ri overlaps rL iff this condition is true. If there
exists such an ri, the algorithm starts (or starts over) the
Tainting Window (TW). Its size is measured in the num-
ber of instructions from the last tainted-load instruction.

2. [LINE 16–23] For a memory store instruction (e.g., str,
strh, stmdb) that stores a data to rS = [sS, eS],

(a) [LINE 17–19] If in the Tainting Window and have
not exceeded the maximum number of propagations
of the current TW, taint rS by adding it to R.

(b) [LINE 20–22] Otherwise, do nothing or, if enabled,
untaint rS by removing it from R.

[k+0] ldr  rega, addrL1
non-memory instructions 

[k+p] str  regb, addrS1
non-memory instructions 

[k+q] strd regc, addrS2
non-memory instructions 

[k+r] str  regd, addrS3
non-memory instructions 

[k+s] strh rege, addrS4
non-memory instructions 

[k+t] ldrd regf, addrL2
non-memory instructions 

[k+u] str  regg, addrS5

Time Instruction

NI

Tainted load

Taint

Taint

Untaint (if enabled)

Untaint (if enabled)

Non-tainted load

Untaint (if enabled)

Event

NT=2

Figure 4: Upon reading of a tainted load (the first line), the
Taint Window (TW) of size NI starts. Within this window,
the target address ranges (1, 2, 4, > 4 byte-long, depending
on the specific store instruction) of the next NT store instruc-
tions become tainted. The store instruction at [k+ r] is not
tainted because the maximum number of propagations have
completed. The store instructions at [k+ s] and [k+ u] are
not tainted because they are outside of the TW. If NI > t

and if the load instruction at [k+ t] was a tainted load, then
the Tainting Window starts over at [k+ t].

This window-based taint propagation tries to achieve both
accuracy and efficiency. Since we avoid register-level track-
ing, we do not know which store instruction(s) write back the
processed data to the memory, or even whether this would
ever happen or not. For example, in Figure 4, a sensitive data
loaded to rega could be written to (after some processing)
addrS1 or addrS2 or neither of them. Hence, the propaga-
tion algorithm taints multiple ranges (i.e., overtaints) and
increase the chances of tracking sensitive data flow. How-
ever, we limit the number of propagations in a TW in order
to prevent the tainted regions in the memory from explod-
ing. We further reduce the tainted regions by untainting the
target addresses of the store instructions, which have been
tainted, that do not fall within a TW because they are likely
overwritten by a non-sensitive data. It is, however, possible
that they actually contain sensitive data, in which case we
might create a false negative. However, our experimental re-
sults in Section 5 indicate that untaintings do not degrade the
detection accuracy while significantly reducing the tainted
regions.

3.3 PIFT Hardware Module
The high-level architecture that illustrates how the on-chip
PIFT hardware module (PIFT HW) interacts with the CPU
is shown in Figure 5. The PIFT front-end logic, added in
the CPU, performs two operations: it 1) tracks the instruc-
tions executed by the CPU’s instruction unit and 2) gener-
ates events to PIFT HW upon observing memory access in-
structions. It also maintains the instruction counter for each
process (indexed by a process-specific ID such as Process
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Figure 5: PIFT hardware architecture.

ID (PID) or Translation Table Base Register (TTBR)). For
each memory access instruction, PIFT HW receives from
the front-end logic 1) the process-specific ID, 2) the process-
specific instruction counter, 3) memory access type (load
or store), and 4) the read or write address range. Then the
PIFT HW controller performs the taint propagation heuris-
tic using the given information and the attached taint stor-
age while the memory sub-system is handling the memory
access. For a software-level registration at source (i.e., taint-
ing a new address range), a query at sink (i.e., checking a
range’s taint), and configuration (parameter setting NT and
NI), PIFT software module sends commands and receives re-
sponses through an array of memory-mapped ports of PIFT
HW. Note that the SW module does not interact with the
HW module most of the time; taint lookup and propagation
operations are transparent to the software side.

The most frequent operation of the taint tracking is the
taint lookup operation, which is carried out on every mem-
ory load instruction. Thus, the taint storage is desired to have
a very fast lookup-time. One possible option is a cache-like
on-chip memory as the taint storage as used in [16, 17, 19].
In our architecture, we use a cache of ranges in which each
entry stores arbitrary-length tainted ranges, similar to [17].
Figure 6 shows the structure of our taint storage and illus-
trates the lookup procedure. Each entry holds the start and
end addresses of each tainted range, the associated process-
specific ID, and a valid bit. A lookup is a parallel operation;
it is hit if any entry 1) has the same process ID, 2) is valid,
and 3) contains a range that overlaps (irrespective of being
fully/partially) with the one being queried. If hit, the PIFT
HW controller starts a new tainting window. The same pro-
cedure is carried out for software-level query.

Because of this cache-like taint storage, a query can be
very fast and thus take a constant time, provided that the
storage is large enough. As will be shown in Section 5.2,
the number of ranges created during tracking is sufficiently
small so that an on-chip memory with a reasonable size can
handle tainted ranges without a secondary storage at, for
example, a part of the main memory. To be more specific,
each range takes up 12 bytes (excluding the valid bit) - 4
byte for start and end addresses, respectively, and additional
4 bytes for PID value. Accordingly, a small on-chip mem-
ory, for example, of 32KB can accommodate approximately
2730 ranges at the same time. If a secondary storage is al-
located on the main memory and the entire range entries

14 0x3f8510b4 0x3f8510bb 1

201 0x408e1000 0x408e1010 1

8 0x7103a0a4 0x7103a0c0 0

Start EndProcess ID Valid

53 0xc30890a0 0xc30890a4 1

106 0x0080ed00 0x0080ed12 0

201 0x4093e10b 0x4093e114 1

Entry 1

Entry 2

Entry 3

Entry n-2

Entry n-1

Entry n

… … … …
606 0x430012b0 0x430012b8 1Entry i

… … … …

Lookup 
Hit/Miss

=
Range	Hit/Miss

Process ID
Start Address

End Address

1/0

1/0

1/0 1/0

Figure 6: Taint storage and lookup operation.

are written back when a context switch occurs, we can re-
move the process-specific identification for each entry and
thus can store 4096 entries in the 32KB memory. If, how-
ever, the storage is not sufficient, one may evict some of the
existing entries to the main memory using a replacement al-
gorithm such as LRU (Least Recently Used) as in [17] or
may simply drop it. The former case resembles the ordinary
data/instruction caches, and hence it may experience delays
when there is a ‘cache miss’. The latter case does not exhibit
a performance overhead, however it may increase the pos-
sibility of false negative because it may lose some sensitive
data flow.

Another possible option is to taint addresses at a fixed
granularity such as a word. That is, instead of keeping track
of ranges of arbitrary lengths, we can taint a block as a whole
if any part of the block is being tainted. This can be done by
storing the (32 − r) most significant bits of the tainted ad-
dresses if the granularity is 2r bytes. This can reduce the
size per entry of the taint memory to 4 bytes (or 8 bytes if
each entry is tagged with process-specific ID), and also sim-
plify the hardware logic and make queries faster due to the
fewer comparisons. However, this may lead to overtaintings.
The consequence could be more propagations, hence pos-
sibly more entries might be needed than was the case with
arbitrary range sizes, and also false positives might be in-
troduced. Witchel et al. [20] presents a multi-level address
space partitioning method that can associate an arbitrary
range with a tag by a series of power-of-two sized ranges.

4. Technical Analysis
The existence of a predictable distance between related loads
and stores, empirically measured in Section 2, allowed us
to design an end-to-end system as described in Section 3.
We have yet to explain analytically why this predictable
distance exists for Java applications running on top of the
Android-on-ARM platform. This analysis is the purpose of
this section.



...
move v5, v1
const/16 v6, #int 456
invoke-direct {v4, v5, v6}, MainActivity;.bar
move-result v4
invoke-virtual {v3, v4}, StringBuilder;.append
move-result-object v3
invoke-virtual {v3}, StringBuilder;.toString
move-result-object v3 
...

const/4 v3, #int 2
move v4, v1
mul-int/2addr v3, v4
move v4, v2
add-int/2addr v3, v4
move v0, v3
return v0

int bar(int x /*v1*/, int y /*v2*/) {
return 2*x + y;

}

void foo() {
…
int key = 123; //v1
String msg = “2*key+456=“ + bar(key,456);
…

}

Java

Java

Bytecode

Bytecode

Figure 7: Java code and corresponding Dalvik bytecode.

/* mul-int/2addr vA, vB */ !
!
1: mov     r3, rINST, lsr #12     @ r3<- B !
2: ubfx    r9, rINST, #8, #4      @ r9<- A !
3: GET_VREG(r1, r3)               @ r1<- vB!
4: GET_VREG(r0, r9)               @ r0<- vA!
5: FETCH_ADVANCE_INST(1)          @ advance rPC, load rINST!
6: mul     r0, r1, r0             @ r0 <- op, r0-r3 changed!
7: GET_INST_OPCODE(ip)            @ extract opcode from rINST!
8: SET_VREG(r0, r9)               @ vAA<- r0 !
9: GOTO_OPCODE(ip)                @ jump to next instruction !

Figure 8: Dalvik bytecode mul-int/2addr to native code
translation.

4.1 Load–Store Distances in Native Code
Android applications are executed by Dalvik virtual machine
(VM) that translates each Dalvik bytecode to a sequence
of native instructions [3]. Two examples of Java code and
their corresponding bytecodes are shown in Figure 7 and
the translation rule of bytecode mul-int/2addr is shown
in Figure 8.

Dalvik is a register-based VM in which the operands of
bytecode are virtual registers. For example, ‘mul-int/2addr
v3, v4’ multiplies the value in virtual register v3 by the one
in v4 and then writes the result back to v3. Our taint track-
ing heuristic method takes advantage of the property that
virtual registers reside on the memory. Hence, each byte-
code involves loading operands from the memory and stor-
ing the resultant to the memory, if produced. In Figure 8,
these correspond to ‘GET/SET VREG( reg, vreg)’ which
are macros defined as

ldr reg, [rFP, vreg, lsl #2],
str reg, [rFP, vreg, lsl #2],

0x407c7c40: mov   r3, r7, LSR #12
0x407c7c44: ubfx r9, r7, #8, #4
0x407c7c48: ldr r1, [r5, r3 LSL #2]
0x407c7c4c: ldr r0, [r5, r9 LSL #2]
0x407c7c50: ldrh r7, [r4, #2]!
0x407c7c54: mul   r0, r1, r0 
0x407c7c58: and   r12, r7, #255 
0x407c7c5c: str r0, [r5, r9 LSL #2]
0x407c7c60: add pc, r8, r12, LSL #6

0x407c5000: mov   r1, r7, LSR #12
0x407c5004: ubfx r0, r7, #8, #4
0x407c5008: ldrh r7, [r4, #2]!     
0x407c500c: ldr r2, [r5, r1 LSL #2]
0x407c5010: and   r12, r7, #255
0x407c5014: str r2, [r5, r0 LSL #2]
0x407c5018: add pc, r8, r12, LSL #6

0x407c7bc0: mov   r3, r7, LSR #12    
0x407c7bc4: ubfx r9, r7, #8, #11   
0x407c7bc8: ldr r1, [r5, r3 LSL #2]
0x407c7bcc: ldr r0, [r5, r9 LSL #2]
0x407c7bd0: ldrh r7, [r4, #2]!     
0x407c7bd4: add   r0, r0, r1        
0x407c7bd8: and   r12, r7, #255     
0x407c7bdc: str r0, [r5, r9 LSL #2]
0x407c7be0: add pc, r8, r12, LSL #6

r1çv4
r0çv3

r0èv3

r2çv2

r2èv4

r1çv4
r0çv3

r0èv3

Tainting

Tainting

Untainting

Tainted Load

Tainted Load

Non-tainted Load

Non-tainted Load

Non-tainted Load

Figure 9: Native codes translated from mul-int/2addr,
move, and add-int/2addr in Figure 7.

respectively. Thus, if there is a data movement (with or with-
out processing) from a virtual register to another within a
bytecode, we can find a pair (or more) of load and store in-
structions associated with them. More importantly, because
of the pre-defined translation rules, the distance between the
loads and stores cannot be arbitrary. For instance, if one of
the operands of ‘mul-int/2addr v3, v4’, loaded at line 3
and 4 in Figure 8, were tainted, a tainting window of size 5
could propagate the taint correctly to the resultant (line 8).

Accordingly, the data movement over a sequence of byte-
codes can be tracked by matching such load and store in-
structions. Figure 9 shows a gem5 trace of native codes that
are translated from the sequence of bytecodes mul-int/

2addr, move, and add-int/2addr used in Figure 7. Sup-
pose the sensitive data, key, has been tainted. It has been
placed in virtual register v4 (which is copied from v1, the
first argument of function bar, by move bytecode). By our
heuristic, the taint of v4 is propagated to v3 if the TW size
was set to at least 5. The next bytecode, move, overwrites v4
with the value in v2 which in fact is the argument y. This
store instruction is outside of the TW started by the load of
v4, and thus becomes untainted. In the last block of native
codes (translation of add-int/2addr), the load of v3 starts
a new TW which then propagates the taint to itself.

The proper window size varies with bytecode as we can
see from the example above; for add-int/2addr, the TW
size should be at least 5 while move needs a size of 2. To ex-
amine the adequate sizes for Dalvik bytecodes, we first cat-
egorized the total 256 bytecodes into the ones that can move
data around in memory and the others (e.g., method invo-
cations, constants, and if-statements). The latter includes 74
bytecodes, of which 10 are unused (based on armv7-a ar-
chitecture). Then, we examined each of the bytecode in the
former group, and measured the longest distance between



Load-Store
Distance

Cnt Example Bytecodes

1 3 return, return-wide, return-object

2 26 move-result, move/16, aget, aput,

sput,iput-quick

3 19 move-object, sget-object,

long-to-int, sget

4 11 iput-iput, neg-double, iget-quick,

sget-volatile

5 46 iget, iget-object, int-to-long,

add-int/lit8

6 21 int-to-char, sub-long,

shl-int/lit8, iget-volatile

9–12 9 mul-long/2addr, aput-object,

mul-long, shr-long

Unknown 47 double-to-int, rem-float,

div-int/lit16

Table 1: Native load & store distances within Dalvik byte-
codes.

the loads of actual data and the store instruction. The re-
sults summarized in Table 1 show that most of the bytecodes
have a short load-store distance. There exist 47 bytecodes of
which load-store distances were not measured. Those are the
ones for floating-point arithmetic and call ARM’s runtime
ABI (Application Binary Interface) helper-functions such as
aeabi fadd [1]. Thus, their required window sizes are un-

known.
We have also measured how frequently each bytecode is

used by analyzing the dex files of the Android system li-
braries (Core, Framework, and Services) and those of the
stock applications (Browser, Contacts, Email, KeyChain,
Music, Calculator, Gallery, Phone, Calendar, Dialer, HTM-
LViewer, Mms, SpeechRecorder). The tables in Figure 10
show the top 30 bytecodes in the number of appearances
in applications as well as the system libraries. Most of the
frequently appearing bytecodes have a short load-store dis-
tance. One exception is aput-object bytecode, which puts
an object reference into an array of object, that appears more
frequently in applications. The relatively long load-store dis-
tance is due to type checking. Most of the bytecodes that
have long or unknown load-store distances take a very small
percentage of the examined lines (less than 0.1% or 0.01%)
or even did not appear in the collected dex files. These results
indicate the effectiveness of our taint propagation heuristic
specifically in Android.

Impact of Dalvik JIT and ART AOT Compilation: While
we have run all of our experiments with the default Dalvik
optimization settings and the optimization has not impacted
our algorithm accuracy, we are interested to investigate the
effect of more aggressive optimization on PIFT accuracy.
More aggressive optimizations might eliminate or reorder
some of the load and store instructions and potentially make
it more difficult to predict data tracking. Our initial testing of
running apps with and without JIT (Just-In-Time) optimiza-
tion has shown little impact on the distribution of load and

Dalvik Bytecode % L-S 
Distance

invoke-virtual 11.06%
move-result-object 8.98% 2
iget-object 7.10% 5
const/4 5.19%
const-string 4.85%
invoke-static 4.45%
move-result 4.42% 2
invoke-direct 4.31%
return-void 3.19%
goto 3.10%
invoke-interface 3.04%
const/16 2.82%
if-eqz 2.82%
return-object 2.79% 1
aput-object 2.50% 10
new-instance 2.36%
iput-object 1.97% 5
move-object/from16 1.84% 2
return 1.68% 1
iget 1.46% 5
if-nez 1.40%
check-cast 1.31%
sget-object 1.09% 3
add-int/lit8 0.80% 5
iput 0.74% 4
move 0.68% 3
move/from16 0.65% 2
throw 0.64%
const 0.60%
move-object 0.53% 3

Dalvik Bytecode % L-S 
Distance

invoke-virtual 12.57%
iget-object 7.51% 5
move-result-object 7.46% 2
const/4 5.64%
invoke-direct 4.57%
move-result 4.16% 2
const-string 3.84%
invoke-static 3.59%
goto 3.30%
if-eqz 3.26%
move-object/from16 3.22% 2
return-void 2.83%
iget 2.60% 5
new-instance 2.57%
iput-object 1.76% 5
if-nez 1.61%
invoke-interface 1.57%
const/16 1.50%
return-object 1.44% 1
throw 1.30%
iput 1.27% 4
return 1.17% 1
move/from16 1.13% 2
move-exception 1.12%
add-int/lit8 0.96% 5
check-cast 0.95%
sget-object 0.91% 3
monitor-exit 0.82%
invoke-virtual/range 0.74%
move 0.74% 3

(a) Applications (1.2M lines) (b) System libraries (1.3M lines)

Figure 10: The distribution of the top 30 Dalvik bytecodes in
the number of appearances in Google stock applications and
Android libraries dex files. The bytecodes in the highlighted
cells are the ones that can move data, irrespective of being a
real data or a reference to it. The third column of each table
is the load-store distance of such bytecodes.

store distances. For example, we profiled the memory oper-
ation profile as in Figure 2 without JIT, but the patterns were
identical.

ART (Android RunTime) is an ahead-of-time compiler
for Dalvik bytecode and has become the preferred platform
for the most recent Android versions. ART compiles the
bytecode of individual Java methods into native versions
and provides the linking environment to route calls between
the compiled methods. The optimizations applied by ART
are a limited subset of Dalvik’s JIT optimizations and thus
ART does not impact the accuracy of our taint-propagation
algorithm.

4.2 Limitations
Native code obfuscation: If an attacker can insert an arbi-
trarily long, dummy block of native codes between a load of
sensitive data and a store using JNI (Java Native Interface),
PIFT can be circumvented. For example, one may pass the
IMEI String instance to the JNI level, obtain the pointer to
the character array, load each character onto a register, using
ldr instruction, do a series of dummy computations, then
store the register (i.e., an IMEI character) to the memory.
If the extra dummy code is not optimized out by the native
code compiler, this could copy the IMEI string to another
without any taint propagation.



Implicit flows: A sensitive information flow can be created
through control flows [12], which PIFT does not directly ad-
dress. However, some types of implicit flows are detected by
PIFT due to their temporal locality. As an example, a de-
tected case in one of the tested DroidBench applications,
ImplicitFlows ImplicitFlow1 [4] works by obfuscat-
ing the IMEI and then leaking it:

for(char c : imei.toCharArray()){
switch(c){

case ’0’ : result += ’a’; break;

case ’1’ : result += ’b’; break;

case ’2’ : result += ’c’; break;

...

The imei string is already tainted, hence each character load
starts a tainting window. Then, since a writing to the result
string (i.e., each case statement) is close enough to the
tainted load (in terms of the number of native instructions),
the obfuscated string, result, gets tainted.

5. Evaluation
The two major goals of a data leak detection algorithm are
1) maximum accuracy and 2) minimum overhead, especially
if the system is resource-constrained (e.g., mobile devices).
For the evaluation of PIFT, we used DroidBench 1.1 [4] as
well as seven real-world malware apps. The test set is repre-
sentative of real-world apps and their challenges, as it moves
data through arrays, lists, callbacks, exceptions, intents, and
obfuscates control flow through method overriding, reflec-
tion, and object inheritance. In our experience of manually
analyzing hundreds of malicious and benign Android apps,
the vast majority of information flows are direct. Thus we
focus on optimizing the common case, and we consciously
choose to leave implicit flows and obfuscated apps for future
work.

We used the DroidBench apps (a total of 41 leaky and
16 benign apps that ran on gem5 simulator [2]) as-is except
for minor modifications for the purposes of automation (so
that they can run without user interaction). The sources used
in DroidBench are device ID (IMEI), serial number, phone
number, and location. The sinks are SMS messages, HTTP
queries, and logging functions. We used Android 4.2 Jelly
Bean (the highest Android version supported by gem5 sim-
ulator), with the Dalvik JIT enabled. In our experiments, the
PIFT Native (Figure 3) just prints out the address ranges of
source and sink, which then are fed into the PIFT analysis
code along with the CPU instruction stream trace obtained
by gem5 simulator.

5.1 Accuracy Evaluation
We tested the 57 DroidBench apps and investigated the im-
pact of window size on accuracy. We tried 200 combinations
of NI = [1, 20] and NT = [1, 10]. Figure 11 shows the ac-
curacy heatmap, i.e., (true positive + true negative)/total, of
DroidBench apps. When NI < 10, PIFT was not able to de-
tect an app that sends out GPS location, which requires float-
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Figure 11: Accuracy of a subset of DroidBench apps for all
possible window sizes of NI = [1, 20] and NT = [1, 10]. For
the window size of NI = 13 and NT = 3 the accuracy reaches
97.9%.

ing point-to-string transformation through an ARM runtime
ABI. NI had to be at least 10 for PIFT to detect such a case.
Using a window size of NI = 13 and NT = 3, PIFT was able
to achieve 98% accuracy, 0% False Positive (0 out of 16)
and 2% False Negative (1 out of 41). The one app we did
not detect has an implicit data flow which makes it difficult
(but not impossible) to detect. To achieve a 100% accuracy,
the windows size should be set to NI = 18 and NT = 3. We
believe there is a proper upper-bound on the window size
for each leakage type, which could be found from a future
large-scale experiment.

In all experiments, no false positive occurred. False posi-
tive is not likely to occur because the tainting window should
be so large that it can span across multiple Java statements.
Note that one Java statement is expanded into multiple byte-
codes and each bytecode is translated into multiple native
instructions, therefore the distance between Java statements
will be large in terms of the number of native instructions
and with high probability out of the window size. Further-
more, a mis-tainting does not necessarily lead to a false pos-
itive because a mis-tainted range should be sent out through
a sink to cause a false positive. This, however, is not likely
to happen.

We have also tested seven real-life malware samples,
which target Android mobile devices and send out various
data, such as phone number, location, and device ID, over
HTTP connections and SMS messages. The malware sam-
ples include four rootkits and three CPU over-clocking apps
from a Chinese app store. PIFT successfully detected all the
malware given a very small window size of NI = 3 and
NT = 2. This result shows our algorithm is very effective
for most of current data leaking apps. Here we present the
micro-benchmark results for one of the tested rootkits to give
insight into the detection rate of PIFT.
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Figure 12: Probability distributions of number of stores in
window of size NI = 5, 10, 15, 20, 40, 60, 80, 100 (LGRoot
trace).
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Figure 13: The average distance to the 1st, 2nd, and 3rd

stores within an window of size NI = 5, 10, 15, 20 (LGRoot
trace).

Load–store distance: For every load instruction, we counted
the number of stores in the next NI instruction, and calcu-
lated the probability distribution for different window sizes.
As Figure 12 indicates, small window size is acceptable be-
cause of the diminishing returns; increasing the window size
above 10 or 15 does not capture more stores.

Load–store extended distances: We extended the previous
experiment by measuring the distances to the first, the sec-
ond, and the third stores in the window. Figure 13 shows that
the stores are in close proximity of loads, and as a result, we
can taint all the three stores after a load without taint explo-
sion.

5.2 Overhead Evaluation
We have analyzed the runtime overhead of a real-world
malware—known as LGRoot—with respect to the tainting
window parameters and the effects of untainting. Due to
the intrinsic limitation of cycle-inaccurate simulation, we
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Figure 14: Maximum size of tainted addresses for different
tainting window size parameters (NI and NT).

performed detailed analyses on factors affecting runtime
overhead, e.g., the number of operations, and the size and
number of tainted regions.

Figure 14 shows the maximum size (in bytes) of tainted
addresses over time with varying size of tainting window de-
fined by NI and NT. The heatmap clearly shows the increasing
trend of tainted regions with tainting window parameters.
Also, NT (the maximum number of propagations in a win-
dow) outweighs NI (the tainting window size) in its effect on
the tainted region size. This is because a larger NI increases
the chance of a propagation, whereas a larger NT increases
that of overtainting. When the window size is small, NT does
not affect much since we would likely not see the additional
store instructions in such a small window. Due to the similar
reason, NT becomes a critical factor for long windows.

Figure 15 shows how the tainted region grows as time
progresses, for different window parameters (NI = {5, 10
, 15, 20}, NT = {1, 2, 3}). The sensitive data (i.e., IMEI) is
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Figure 16: Number of operations (tainting + untainting) for
different tainting window size parameters (NI and NT) as time
progresses.

5
0
0

5
0
0

500

1
0
0
0

1
0
0
0

1000

1
5
0
0

1
5
0
0

2
0
0
0

2
0
0
0

2000

2
5
0
0

2
5
0
0

2500

3
0
0
0

3
0
0
0

N
I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
T

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

0

500

1000

1500

2000

2500

3000

Figure 17: Number of distinct ranges for different tainting
window size parameters (NI and NT).

fetched at the beginning and then used to compose a mes-
sage. It is sent out at the end of the trace. Here, notice the flat
lines corresponding to (NI, NT) = ({5, 10, 15, 20}, {1, 2})
and (5, 3) between them. It is a period when the taints do not
propagate because of inactivity on the sensitive data. This
can be checked from Figure 16 that shows the number of
tainting and untainting operations over time.

The case of (10, 3) is a bit different. The tainted re-
gions do not grow during the period, whereas the taint-
ing/untainting operations keep occurring. This can be ex-
plained by situations where some small regions are repeat-
edly mistainted and then untainted or retainted. If the level
of overtaintings exceeds a certain level, those produce a far
more overtaintings, which eventually expands the tainted re-
gions exponentially as evidenced by the cases of (15, 3) and
(20, 3) in Figure 15. If the parameters are selected properly,
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tainted addresses.
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Figure 19: Effect of untainting on the number of distinct
ranges.

the tainted regions can be kept reasonably small while not
missing sensitive data flows as previously seen.

The number of distinct ranges maintained by PIFT is an-
other important metric to measure the performance over-
heads since the operations (i.e., query, tainting, untainting)
are performed on address ranges. Hence we measured the
maximum number of distinct ranges over time for different
tainting window size parameters as shown in Figure 17. The
trend is similar to that in Figure 14.

For window sizes not larger than NI = 10, there were less
than 100 distinct ranges at any time instant over the trace.
This result implies that the memory required to store the
ranges can be kept very small, which in turn make it possi-
ble to make taint queries very fast by removing the need for
a secondary storage.

Effects of untainting: The untainting technique can remove
possibly-mistainted, non-sensitive data from the tainted
ranges and thus can reduce the possibility of tainted re-
gion explosion which may introduce significant performance
overheads. Hence we evaluate how much untainting can help
reduce the performance-related metrics.

Figure 18 compares the maximum sizes of tainted regions
when untainting is enabled or disabled. The results show sig-



nificant reductions in the size of tainted regions due to the
untaintings; for the case of NI = 5 and NT = 3, untainting
resulted in 26 times smaller tainted regions. Without untaint-
ing, the varying window size does not make a considerable
difference, whereas with untainting enabled, shorter window
could significantly reduce the tainted regions.

The reduction in tainted regions led to fewer number of
distinct ranges as shown in Figure 19 which compares the
maximum number of distinct address ranges when untaint-
ing is enabled or disabled. For the case of NI = 5 and NT = 3,
more than 60 times fewer number of distinct ranges were
kept when untainting was enabled.

6. Related Work
Information-flow tracking techniques can be dynamic, where
a program’s execution is monitored and analyzed, or static,
where a program’s code is analyzed ahead of execution.

Hardware-based instrumentation: Hardware-based tech-
niques extend the processor architectures to facilitate taint
propagation in a fine-grained, software-transparent manner.
Suh et al. [16] introduced a hardware mechanism in which
data coming through network I/O channels are tainted and
the CPU is prevented from executing such tainted addresses.
The taint propagation is carried out at every register- and
memory byte-level by adding taint tags to caches, TLBs,
and register blocks. Raksha [8] follows a similar hardware
mechanism with additional flexibility by making the propa-
gation and check rules programmable via multi-bit tags that
represent different security policies. Flexitaint [19] provides
full flexibility in specifying the taint propagation and check
rules by allowing software to handle instructions with dif-
ferent rules. Tiwari et al. [18] proposed a processor architec-
tural technique that can track complete information flow at
the logic gate-level.

Software-based instrumentation: Software-based tech-
niques such as TaintCheck [14] and Panorama [22] use
emulation environments or virtualization techniques to en-
able program instrumentation, where every CPU instruction
is checked and therefore incurs a huge overhead. A line
of work has focused on efficient taint tracking. LIFT [15],
built on top of a binary translator, eliminates unnecessary
flow tracking when programs executes computations that
involve safe data. It also reduces the number of checks
by considering spatial and temporal localities of memory
references. Ho et al. [11] reduces the overhead associated
with hardware emulation by dynamically switching between
emulated execution (by Qemu) and virtualized execution.
TaintEraser [23] performs an application-level taint track-
ing to reduce overhead due to system-wide instrumentation.
It tracks object-level taints at the kernel level and in cer-
tain highly utilized functions and turns off tracking to avoid
huge overhead. TaintDroid [9] detects data leakage of mobile
malware by instrumenting the Dalvik VM interpreter at vari-

able granularity. The Dalvik bytecode translations rules are
patched to include taint propagation logic. For native code,
TaintDroid does not track taints but apply a heuristic that
propagates the taint of input arguments to that of the return
value of functions in native code. DroidScope [21] modi-
fies the Android emulator to instrument native and Dalvik
instruction traces, API calls, and also to track taints.

Static analysis: AndroidLeaks [10] uses a call graph ex-
tracted from an application under test. It applies a reachabil-
ity analysis to find if there is any path from a sensitive data
source to a network sink. Since the analysis is restricted at
the Java code-level, flows that involve native code executions
cannot be tracked. FlowDroid [5] uses not only the source
code but also auxiliary information obtained from applica-
tion manifest and layout files. Such information are used to
identify the application’s lifecycle, sensitive data source and
sink, which helps reduce both false positives and negatives.
FlowDroid does not track native code either. AAPL [13] im-
proves the accuracy by identifying conditional sources and
sinks which depend on the input arguments to them, and
joint data flow which could potentially be a sensitive data
flow when multiple, non-sensitive flows become connected
during run-time. EdgeMiner [7] deals with imprecision due
to implicit sensitive data flows (especially by callback func-
tions) by analyzing the Android framework and identifying
all implicit flows (that is, pairs of callback and registration
methods) within the framework.

7. Conclusions
We hypothesized and empirically verified that information
flows in programs have stable structural characteristics.
Based on these characteristics we introduced in this paper
a new lightweight and effective information-flow tracking
system called PIFT. PIFT monitors memory accesses (loads
and stores) and propagates taint tags across them in a predic-
tive fashion, achieving 98% accuracy on a simulated ARM
processor running Google Android, with limited overhead
and limited added hardware complexity.

As discussed in Section 4.2, PIFT could be circumvented
if the load-store distances are controlled using native-level
instructions. A compiler support for PIFT could address
such attacks. For example, the compiler could eliminate
dummy code inserted between related load/store instruc-
tions and could relocate such instructions to be closer to
each other (although in general the problem of statically
identifying dummy code is undecidable). This necessitates a
follow-up study.
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