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ABSTRACT
In this paper, we introduce a novel mechanism that identifies
abnormal system-wide behaviors using the predictable nature
of real-time embedded applications. We introduce Memory
Heat Map (MHM) to characterize the memory behavior of
the operating system. Our machine learning algorithms au-
tomatically (a) summarize the information contained in the
MHMs and then (b) detect deviations from the normal mem-
ory behavior patterns. These methods are implemented on
top of a multicore processor architecture to aid in the process
of monitoring and detection. The techniques are evaluated
using multiple attack scenarios including kernel rootkits and
shellcode. To the best of our knowledge, this is the first work
that uses aggregated memory behavior for detecting system
anomalies especially the concept of memory heat maps.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords
Intrusion detection, memory heat map, real-time systems

1. INTRODUCTION
Real-time embedded systems are increasingly coming under

attack especially due to their increased complexity and con-
nectivity. Applying traditional security mechanisms in real-
time systems is much harder due to their limited resources
(CPU, memory, etc.). On the other hand, these systems are
also predictable by design. Hence, we use this property of
real-time embedded systems to improve security.

In this paper, we present techniques to detect system-wide
anomalies in the execution of real-time embedded systems
by monitoring the behavior of memory accesses for the oper-
ating system. While other behavioral properties have been
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explored in the past [17, 23, 22], memory access is an impor-
tant property since it is particularly hard to fake or hide (for
malicious tasks). We find that the memory profiles of many
real-time applications have a predictable nature and use this
property to detect malicious activity.

The memory behavior of a system can be defined in many
ways. For instance, one could track the exact sequence of
memory addresses that are accessed. However, it requires a
prohibitive amount of storage not to mention excessive com-
putation times for lookup, and is also highly sensitive to le-
gitimate variations. On the other hand, we could monitor the
amount of memory traffic. However, it could abstract away
from the detection of small, abnormal variations.

To avoid such problems we introduce the use of a novel
method to profile memory behavior, viz., the Memory Heat
Map (MHM). The MHM is a concise data structure that rep-
resents how many times a particular memory region was ac-
cessed (regardless of which component accessed it) during a
time interval. Figure 1 presents an example of one such heat
map. The key idea is that an MHM is a composition of dif-
ferent activities in a certain memory region. Each activity
will contribute differently in each MHM. The predictable na-
ture of real-time embedded systems enables us to learn the
patterns of usage in such MHMs especially when the system
is behaving in a normal, expected fashion. We then apply
techniques of image recognition algorithms [21] to transform
these memory profiles to a more efficient representation so
that analysis and detection become easier.

We demonstrate our techniques on a dual core processor
architecture where one core performs the analysis (at run
time) for anomaly detection [23]. The other core executes
the operating system and applications. The architecture is
embellished with certain hardware modifications to ensure
that (a) the information can be captured in an efficient fash-
ion without affecting the main flow of the system and (b) the
information obtained by the monitoring core can be trusted.
Experiments on a prototype show that our approach catches
various types of anomalies effectively in an efficient manner.

Hence, our main contributions of this paper are: (i) novel
monitoring model to characterize the memory behavior for
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Figure 1: An example memory heat map of Linux
kernel .text segment measured for 10ms.
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real-time embedded systems – in the form of memory heat
maps; (ii) the novel combination of the MHM and image
recognition algorithms to provide efficient representation and
analysis of MHMs that aids in the process of detecting anoma-
lies and (iii) a multicore-based architecture to perform the
profiling and run-time monitoring.

To the best of our knowledge, this is the first work that
uses aggregated memory behavior, especially the concept of
memory heat maps, for detecting system-wide anomalies.

2. THE MEMORY HEAT MAP
A memory heat map (MHM) is defined by the following

triple: the base address, AddrBase, the size, S and the gran-
ularity, δ. These parameters determine where and at what
detail we wish to monitor the memory behavior of the sys-
tem. Figure 1 shows an MHM example that was profiled from
an embedded Linux kernel’s .text segment for an interval of
10ms. Note: the 2-D plots of MHMs presented throughout
the paper are for illustrative purposes only. An MHM is in
reality a vector like the actual memory space is.

A memory region is divided into cells, each with a size, δ.
Each cell counts the number of accesses to a region of size δ
for a specified time interval. One can even consider it to be
the temperature of each cell. The temperature of each cell, on
its own, may not reveal useful information; due to variations
caused by numerous factors. However, the state of the entire
map may reveal important system activities.

An MHM represents a composition of memory accesses
from a variety of system activities due to applications and
OS. Thus, an MHM can be represented by a weighted combi-
nation of the primary activities; where the weights represent
their contributions to the MHM. A good analogy is that of a
Fourier analysis. The key ideas are that (i) normal memory
behaviors can be grouped into a finite number of sets accord-
ing to the weights of primary activities and (ii) abnormal
behavior can be detected by just looking at these weights.
The creation and use of MHMs can be quite efficient since it
is a vector of numerical counts. Also, MHMs depend only on
the size of the memory region that we observe and not on the
complexity of the OS and other applications.

Monitoring Kernel Memory Space: In this paper, we
focus on monitoring the memory space for the operating sys-
tem kernels. Observations of the kernel memory space provide
a good indicator of system-wide behavior since every appli-
cation has to use kernel services (e.g., system calls) for its
operations. From the kernel memory behavior, we can de-
tect certain types of anomalies e.g., unexpected application
launch/kill or even suspicious use of kernel services. Further-
more, the hardware design becomes much simpler when com-
pared to monitoring user-level processes. This is because (i)
the (base) kernel’s location in the memory space is fixed and
well known and (ii) it is contiguous in both the virtual and
physical memory spaces (the base kernel’s .text segment is in
the logical address space). Hence, we do not need a complex
hardware architecture to deal with the address translation
and also memory paging.
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Figure 3: The secure core architecture for memory-
behavior monitoring using Memometer.

Overall Process: As shown in Figure 2, our anomaly de-
tection framework periodically checks the MHM of the .text
region. At each interval, one MHM is created by an on-chip
hardware module. The anomaly detector analyzes the MHM
at the end of the interval. At that point, we calculate the
likelihood of this MHM being part of the normal executions.

Assumptions: We make the following assumptions with-
out loss of generality: (i) the system runs a set of real-time
applications that execute in a periodic fashion, (ii) most of
the possible execution contexts can be profiled. This can
be justified by the fact that real-time embedded applications
have a limited set of execution modes and input data fall
within fairly narrow ranges, (iii) the system is in its normal
(trustworthy) state while being profiled; also, the profiling is
done prior to system deployment, and (iv) we consider certain
types of anomalies that make changes in the memory regions
that are being monitored; our detection mechanism cannot
detect anomalies that access memory segments outside the
region under monitoring.

3. MONITORING MEMORY HEAT MAPS
The SecureCore architecture [23] provides the means for a

trusted on-chip entity, viz., a secure core, to monitor the run-
time behavior of another component, the monitored core. We
adopt and modify the SecureCore architecture to observe the
memory behavior of the monitored core through an on-chip
module Memometer. Figure 3 shows this new architecture.
The Memometer continuously snoops upon the memory re-
quests sent from the monitored core. Using this information,
the Memometer periodically creates heat maps, which are
then analyzed by the secure core to determine if the behavior
of the monitored core is normal or abnormal.

3.1 Memometer
The actual implementation of the Memometer depends on

the specific processor architecture especially the memory sub-
system. In this paper, the Memometer snoops on the address
line between the monitored core and L1 cache because other-
wise we would lose memory access information due to cache
hit. In addition, we monitor the virtual addresses. In fact,
we could monitor physical addresses if the target monitoring
region has a linear mapping from virtual to physical address,
e.g., kernel logical address. Monitoring the physical addresses
is in fact desirable since otherwise, for example, an attacker
could potentially execute a malicious code by modifying the
memory mappings while making MHMs look normal.

Figure 4 shows the internal structure of the Memometer;
we now elaborate on each of the components.

Memometer Controller: The secure core sets the moni-
toring parameters for the Memometer through control regis-
ters. The parameters are (a) the base address of the target
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Figure 4: The internal structure of Memometer.

monitoring region; (b) the size of the region; (c) the granular-
ity (a power of 2) and (d) the monitoring interval. Parameters
(a) – (c) are used to filter a snooped address and to calculate
the target cell location (explained below). One MHM is cre-
ated during each monitoring interval, for example, 10 ms. At
each interval boundary, the controller informs the secure core
of the creation of an MHM and of where it can be retrieved.

Address Filtering and Target Cell Calculation: Let
Addr∗ be the address that is being accessed by the moni-
tored core. Then, the following steps calculate the target
cell index in the current MHM: (i) calculate the offset, i.e.,
offset = Addr∗ −AddrBase. (ii) Check if it is within the target
region, that is, 0 ≤ offset < S where S is the region size. The
process stops if this is false. (iii) Logical right-shift offset by
g bits where g = log2 δ and δ is the MHM granularity. The
resultant is the target cell index, idx = b offset

2g
c = offset >> g.

The resulting idx is then used to increment the count of the
target cell. Note that the MHM memory size determines the
maximum number of cells an MHM can have and not neces-
sarily the maximum size of the target memory region. The
latter can be determined by the granularity parameter.

MHM Double Buffering: The Memometer includes a
fast on-chip memory for MHM storage that can only be ac-
cessed by the secure core. For uninterrupted monitoring, the
Memometer should be able to continue monitoring the mem-
ory accesses of the monitored core while a recently completed
MHM is being analyzed by the secure core. We achieve this
by use of a double buffering mechanism. For this purpose, the
Memometer has two identical on-chip memory units.

MHM Memory 0

MHM Memory 1
ith interval (i+1)th interval (i+2)th interval …

Active
Analysis Active

Active
Active

Analysis
Analysis

Analysis

The timing diagram above demonstrates how this double buffer-
ing mechanism works. At any time instant, a cell count up-
date is carried out on what we call the active on-chip memory
unit (say, ‘0’). Then, at a monitoring interval boundary, say,
between the ith and the (i+ 1)th intervals the second on-chip
memory unit (’1’) is tagged as being the active one and starts
storing the (i+ 1)th MHM. At the same time, the secure core
starts analyzing the ith MHM residing on the first on-chip
memory unit (‘0’). Once the secure core is done with the
analysis, the old MHM is reset.

4. LEARNING MEMORY HEAT MAPS
In this section, we show (i) how to learn the normal mem-

ory heat maps of untainted systems in an efficient, accurate
manner and (ii) how to detect anomalies using such profiles.

4.1 Definitions and Overall Learning Process
Let M = {M1,M2, . . . ,MN} be the (training) set of

memory heat maps we obtained during normal system ex-

Original MHMs Reduced MHMs MHM Clusters

Dimensionality !
Reduction! Clustering!

Figure 5: Learning normal MHM patterns.

ecutions. Each MHM is represented as Mn = [mn,1, mn,2,
. . ., mn,L]T , where L is the number of cells and mn,k is a
non-negative integer that represents the number of memory
accesses to the kth cell, [AddrBase + (k−1)δ,AddrBase +kδ).

When a new MHM is presented for classification, it is com-
putationally prohibitive to calculate the similarity against ev-
ery known MHM in the training set especially if N and L are
high. Hence, it is desirable to find patterns in the normal
MHMs and then calculate the statistical similarity for the
new MHM. This reduces the problem into a more tractable
scope. The challenges are (a) how to handle high dimen-
sionality of MHMs and (b) how to find representative MHM
patterns for efficient classification. Hence, we use a dimen-
sionality reduction method to make the anomaly detection
problem more tractable.

4.2 Eigenmemory
Memory heat maps are represented in a high dimensional

space especially if we monitor a large memory region at a
fine granularity. However, many cells of an MHM are in fact
correlated each other. In these cases, given a large set of
MHMs, we can represent each MHM by a sum of a small
number of components. For purposes of compressing the in-
formation contained in an MHM, we use a dimensionality
reduction/ feature extraction method, the Principle Com-
ponent Analysis (PCA) [14], which has widespread uses in
image analysis. The PCA transforms data with high dimen-
sionality (in L-dimensions) into low-dimensional features (in
L′-dimensions; L′ � L) which of those are called principal
components. These principal components can compactly rep-
resent the original data when many features/dimensions are
correlated each other. In the context of image recognition,
this is equivalent to the process of extracting a set of basic
images, called eigenfaces [21]. In our context, the primary
activities of the target memory region are mapped to what
we call eigenmemory.

The following steps transform a training setM intoM′ =
{M ′

1,M
′
2, . . . ,M

′
N}, where each M ′

n is an L′-dimensional
vector and L′ � L: (i) calculate the empirical mean MHM

of the training set, Ψ = 1
N

∑N
n=1Mn, (ii) obtain the mean-

shifted MHM, Φn = Mn − Ψ for all n, (iii) construct the

empirical covariance matrix, C = 1
N

∑N
n=1 ΦnΦT

n = AAT ,
where A = [Φ1Φ2 · · ·ΦN ] is an L by N matrix and the size
of C is L by L. Then, find the eigenvectors of C by the
Singular Value Decomposition [10]. The extracted eigenvec-
tors are the eigenmemories which of those represent the prin-
cipal components of the MHMs in the training set. Then,
(iv) order the eigenmemories according to their correspond-
ing eigenvalues in decreasing order. Then, pick the L′ best
eigenmemories, u = [u1u2 · · ·uL′ ], with largest eigenvalues.
(v) Finally, transform each MHMMn intoM ′

n by projecting
the mean-shifted MHM Φn onto the (L′-dimensional) eigen-
memory space, i.e.,

M ′
n = uTΦn = [wn,1, wn,2, . . . , wn,L′ ]T . (1)

It is important to note that the wn,i values, also called
weights, represent the contribution of the eigenmemory ui in
representing the original (mean-shifted) MHM, Φn of Mn.
We can view Φn being approximated using a linear combi-
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nation of eigenmemories, i.e., Φn ≈
∑L′

k=1 wn,kuk. Hence,
the more eigenmemories we use, the more accurate the ap-
proximation will be. When we use L eigenmemories, we can
exactly represent the original input MHMs. Therefore, the
best set of L′ eigenmemories is one that will retain the best
approximation for the original MHMs with regard to the prin-
cipal components.

Figure 6 shows an example where the above process is ap-
plied. Mn is an (original) MHM of length L = 1472. In this
example, we chose the best 16 eigenmemories. Each eigen-
memory represents a primary activity; in this case an activity
that touches upon the Linux kernel’s .text segment. Here,
u1 is the most significant activity, u2 is the next significant,
and so on. Then, the resulting M ′

n represents the contribu-
tion of each primary activity from the original memory heat
map Mn. Thus, different MHMs in the original space can be
represented by different combinations of the contributions.

These eigenmemories are stored in the secure core and used
to transform every newly obtained MHM M into M ′ (after
appropriate mean-shifting) using Eq. (1).

4.3 Finding MHM Patterns
With the reduced MHMs, M′ = {M ′

1,M
′
2, . . . ,M

′
N}, we

now find a small set of representative patterns that are sig-
nificant enough to cover most of the normal MHMs. When a
test sampleM is provided we check if it is statistically similar
to one of them. This is a cluster analysis. In this paper, we
use the Gaussian Mixture Models (GMMs) for this purpose.
GMMs have been widely used in image/signal processing in-
cluding image clustering, segmentation, retrieval, etc. [18, 3]
due to its ability to approximate various probability distribu-
tions and its computational efficiency. Note: in what follows,
we will useM, M and L instead ofM′, M ′ and L′ for nota-
tional convenience. Also, we will use the term memory heat
maps to denote the ones in the reduced dimensional space.

In GMMs, the probability density of a memory heat map is
represented as a weighted sum of J multivariate Gaussian,

Pr(M ; GMM parameters) =

J∑
j=1

λjf(M |µj ,Σj), (2)

where λj is a mixing parameter (
∑J

j=1 λj = 1 and 0 ≤
λj ≤ 1) and represents the prior probability that MHMs have
been generated from the jth Gaussian probability density,

f(M |µj ,Σj) =
√

(2π)L|Σj |
−1

exp{− 1
2

(M − µj)
TΣj(M −

µj)}, where µj and Σj are the mean vector and the covari-
ance matrix.

By modeling the normal memory heat maps as a GMM
we treat them as if they have been generated from a set of
significant patterns, each of which is modeled as a Gaussian
distribution (component). This is a valid model since if the

system shows deterministic memory behavior, it can gener-
ate only a limited number of patterns; each MHM is then a
result of small variations from one or more of these patterns.
Intuitively speaking, the MHMs generated from the same ba-
sis pattern (a multivariate Gaussian) have similar weights for
each eigenmemory (primary activity). Anomalies therefore
inherently result in low likelihood because some of their com-
ponents have not been seen in the normal memory behaviors.

For the estimation of µj , Σj and λj , we use the expectation-
maximization (EM) algorithm [6]. However, it requires that
the number of Gaussian densities, J , must be known. Since
these techniques are out of the scope of this work, we employ
the standard EM algorithm with a manually chosen J .1

In summary, given J and a training setM (in the reduced-
dimensional space), (i) we obtain the parameters by applying
the EM algorithm toM. (ii) When a test MHM is presented,
we calculate its probability density using Eq. (2). If it is below
a threshold θ, we consider it to be anomalous.

5. EVALUATION
5.1 Prototype Implementation

We implemented a prototype of the memory heat map mon-
itoring mechanism on the Simics full system simulation plat-
form [16] that allows microarchitectural modifications. We
used an ARM Cortex-A9 processor that consists of two cores.
Each core runs at 1000 MHz and has L1 instruction and data
caches each of size 32 KB. The cores share a unified L2 cache
of size 512 KB. The main memory is 512 MB.

The Memometer is implemented as an on-chip hardware
module in Simics as shown in Figure 3. The Memometer
monitors instruction fetches by snooping on the address bus.
The Memometer has two fast, on-chip, memories (Figure 4)
each of size 8 KB. Hence, it can support an MHM of at most
about 2, 000 cells, each of which counts up to 232. The mem-
ories can be only read by the secure core. The monitored core
runs embedded Linux kernel 3.4. The Memometer is config-
ured to monitor the kernel’s .text segment mapped between
0xC0008000 and 0xC02E7AA4 (about 2, 943 KB).

The following MiBench [12] applications run on the moni-
tored core where various kernel threads are running as well:2

Exec. Time Period Category

FFT 2 ms 10 ms telecomm
bitcount 3 ms 20 ms automotive
basicmath 9 ms 50 ms automotive
sha 25 ms 100 ms security

A longer hyper-period (i.e., the least common multiple of
periods) would require a more number of training samples,
eigenmemories, and/or GMM components. Due to the space
limitation, we leave for future work to evaluate the number
of proper training samples, eigenmemories, and GMM com-
ponents for different settings of application periods.

5.2 Training
To obtain a training set, we ran the system and collected

10 sets of normal MHMs each of which spans 3 seconds. We
set the monitoring interval to 10 ms and the granularity, δ, to
2 KB, both of which are arbitrarily chosen. These resulted in
a grand total of 3, 000 MHMs each of which has 1, 472 cells.

We then applied the learning method (Section 4.2) on the
training set to transform it into a low-dimensional space. We
used 9 eigenmemories, since they could account for more than
99.99% of the variances in the original training set. With

1Figueiredo et al. [8] present methods to deal with these problems.
2The applications were not picked for any specific reason other than the
fact that they are representative embedded benchmarks. The execution
times were measured on Simics. The periods are manually assigned
based on the execution times and the system load (78%).



these reduced MHMs, we learn the GMM parameters, {µj ,
Σj , λj |j = 1, 2, . . . , J}, using the EM algorithm [6]. For the
number of Gaussian densities, we arbitrarily chose J = 5.
Due to the local optimality of EM, we ran the algorithm 10
times and picked the one that resulted in the highest log-
likelihood of the training data, i.e.,

∑N
i=1 log Pr(M i). Again,

one can apply a deterministic learning method [8].
To find a proper threshold θ for legitimacy tests, we col-

lected another set of normal MHMs. Let P be the probability
densities of this new set calculated by Eq. (2). Then, we set
θ to the p-quantile of P where p can be 0.5%, 1%, and so
on. This means the expected false positive rate is p. As the
θ increases the false positive rate would also increase while
we would more likely detect abnormal MHMs. Hereafter, we
denote the threshold corresponding to p-quantile as θp.

5.3 Anomaly Detection
To demonstrate our method’s ability to detect a broad

range of anomalies, we tested the following three scenarios:
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Figure 7: The log probability density of MHMs when
qsort is launched and exited.

1. Application Addition/Deletion: While the MiBench
benchmark applications mentioned above are running, we
launched another application, qsort (exec time: 6ms, pe-
riod: 30ms). Figure 7 shows the log probability density of
the MHMs monitored over 500 intervals. The two horizontal
lines show θ0.5 and θ1. Until the 250th interval, our anomaly
detector determined that 0 and 2 MHMs are abnormal ac-
cording to θ0.5 and θ1, respectively; these values are the false
positive rates of 0% and 0.8%, respectively.

The qsort application was launched some moments after
the 250th interval. The figure shows that the probability den-
sities drop immediately and stays low afterward. In this par-
ticular situation, the abnormality is due to the use of kernel
facilities to launch a process. Notice that even after qsort is
launched some of the MHMs look normal according to thresh-
old θ1. This is valid since during those intervals qsort does
not execute. Nevertheless, they are low compared to normal
because the timings of the other tasks are affected by qsort.

2. Shellcode Execution: A shellcode is a small piece of
code that can be executed by exploiting certain vulnerabili-
ties, e.g., buffer overflows or format string vulnerabilites.
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Figure 8: The log probability density when a shell-
code disables ASLR.

In our evaluation, we injected a shellcode that disables the
address space layout randomization (ASLR) mechanism in

Linux/ARM [1] into the bitcount application. The result is
shown in Figure 8. The shellcode executed some moments
after the 250th interval. This shellcode was easily detectable
because the shellcode eventually kills its original host, i.e.,
bitcount. In fact, most shellcodes can be detected because
they typically kill the host process by spawning a shell.

3. Kernel Rootkit: Most existing kernel rootkits that are
publicly available do not work on our Linux kernel version
(3.4) for a variety of reasons. Thus, we created a simple load-
able kernel module (LKM) that resembles the most represen-
tative type of such rootkits, i.e., ones that perform system
call hijacking [19]. Our LKM redirects the read system call
by modifying the corresponding entry in the system call ta-
ble. The new, malicious, read just reads the buffer that is
returned by the original handler and nothing else. LKMs in
Linux are loaded onto the module memory space that is out-
side our target region (i.e., .text). Thus, the execution of
the new read handler does not change the MHMs.
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system call is hijacked by a rootkit.

Figure 9 shows the memory traffic volume of the moni-
tored region. The moment when the rootkit is being loaded
is distinguishable as expected. However, after the launch the
traffic does not show abnormalities in terms of the volume.
This is because the rootkit still calls the original read handler
which resides in the region being monitored.
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Figure 10: The log probability density when a rootkit
hijacks read system calls.

Nevertheless, even such stealthy activities (reading the buffer)
showed somewhat low probability densities, though not al-
ways statistically distinguishable, as shown in Figure 10. Given
that many MHMs are normal and the abnormal ones’ appear
synchronized with sha (whose period is 100 ms), it is likely
that the delays due to read system call hijacking have resulted
in timing changes to sha’s execution (which uses many read
system calls) and, as a result, its contributions to the MHMs.

5.4 Analysis Time
We measured the time to perform the analysis on a newly

observed MHM, i.e., how long it takes to decide whether it
is normal or not. For the parameters used in the evaluations
above (L = 1472, L′ = 9, J = 5), it took 358µs, on average,
on Simics. This time is very short compared to the interval
(10 ms). For a coarse cell granularity of 8 KB (results in
L = 368), it took 100µs on average. For a smaller number



of eigenmemories (L′ = 5), the average time is 216µs since
the information is less precise. Each number is based on
1, 000 samples of MHMs. The results show the computational
efficiency of our method. Note: These are the times spent on
the secure core. Our method does not impose any overheads
on the main system execution (i.e., the monitored core).

5.5 Limitation
For a processor with more than two cores, the proposed

architecture requires a hardware change. For AMP (Asym-
metric Multiprocessing) architectures on which multiple OSes
run, the Memometer should be replicated for each OS in-
stance. However, for SMP (Symmetric Multiprocessing) ar-
chitectures on which a single OS runs, the Memometer would
need only one set of MHM memories (Figure 4) as there is
only one OS running on the system. Nevertheless, the ad-
dress snoop and filtering logic needs to be replicated for each
core since the kernel can run at any core at any given time.

One solution to scale the architecture well could be placing
the Memometer at a lower part of the memory subsystem such
as the shared cache or bus. In this case, we would need only
a single Memometer, which much simplifies the architecture.
However, we could lose parts of memory access information
due to cache hits. Nevertheless, we believe that the accu-
racy drop would not be significant because of the predictable
nature of real-time application executions.

Some systems may exhibit highly unpredictable, but yet
legitimate, memory usage caused by, for example, network
activities or user interactions. In these cases, our current
model may alarm many false positives. To deal with such
problems, we plan to build a robust classification algorithm
by extracting local features from MHMs in an unsupervised
manner as in Deep Learning [13].

6. RELATED WORK
To the best of our knowledge, this is the first work that uses

aggregated memory behavior for detecting system anomalies
especially the concept of memory heat maps. Hence, we in-
stead present some lines of work that can be adopted to mem-
ory behavior monitoring. Barford et al. [2] detect abnormal
network traffic in terms of volume by using wavelet analysis.
Gu et al. [11] proposed a method to monitor packet class
distributions. One possible way to apply it to memory be-
havior monitoring is to look at the distributions of memory
access types – instruction/data or load/store, etc. There ex-
ists a line of work on kernel integrity checking such as [5] and
virtual machine introspection for intrusion detection [9].

There also exists other work in which a multicore processor
is employed as a security measure. Shi et al. [20] proposed an
architecture in which a monitoring core verifies functional be-
havior (such as function call/return) of applications on mon-
itored core through buffering of logs on an on-chip memory.
Chen et al. [4] also employ a hardware logging method that
captures program counter values, input/output operands and
memory access addresses of instructions that the monitored
application executes. There have also been coprocessor-based
approaches [15, 7]. Mohan et al. [17] use the timing proper-
ties of real-time applications as a side-channel monitored by
an FPGA-based trusted hardware.

7. CONCLUSION
We showed that the use of memory heat maps can be effec-

tive in detecting anomalous system-wide behavior of real-time
embedded systems. We demonstrated a novel use of image
recognition algorithm and a multicore-based architecture to
make the process of detecting anomalous behavior more effi-
cient. Our evaluation using a prototype showed that we are
able to detect a wide variety of attacks.

We plan to demonstrate these methods on a real platform
that includes a real-time operating system (RTOS). RTOSes
have a more deterministic memory usage; hence our tech-
niques will be even more effective when applied to such a
context. We also plan to extend the architecture to sup-
port more than two cores and evaluate the required hardware
changes, and to explore Deep Learning-based [13] technique
to deal with more complex embedded systems.
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