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Abstract—Hierarchical scheduling of periodic resources has been
increasingly applied to a wide variety of real-time systemsdue
to its ability to accommodate various applications on a single
system through strong temporal isolation. This leads to thequestion
of how one can optimize over the resource parameters while
satisfying the timing requirements of real-time applications. A great
deal of research has been devoted to deriving the analytic model
for the bounds on the design parameter of a single resource as
well as its optimization. The optimization for multiple periodic
resources, however, requires a holistic approach due to theconflicting
requirements of the limited computational capacity of a system
among resources. Thus, this paper addresses a holistic optimization
of multiple periodic resources with regard to minimum system
utilization. We extend the existing analysis of a single resource
in order for the variable interferences among resources to be
captured in the resource bound, and then solve the problem with
Geometric Programming (GP). The experimental results showthat
the proposed method can find a solution very close to the one
optimized via an exhaustive search and that it can explore more
solutions than a known heuristic method.

I. I NTRODUCTION

As the processing power of processors has grown, there has
been an increasing trend toward integrating many real-timeap-
plications on a single system and thus efficiently utilizingthe
system by allowing the applications to share common hardware
devices. In such systems, temporally partitioned hierarchical
scheduling [1]–[5] has been widely adopted because of its strong
isolation among sets of real-time applications, which either are
independently developed or have different functionalities or crit-
icalities. For example, in IMA (Integrated Modular Avionics)
architecture [6], applications are often grouped into different
partitions according to their design-assurance levels in order to
protect high-criticality applications from the faulty behavior of
other applications and guarantee their timing requirements.

In such a partitioned hierarchical scheduling, one important
question is how much of the computational resource needs to be
allocated to each resource in order for the system to be optimized
for a certain metric. For instance, it is desirable in system
design to minimize the system utilization while guaranteeing the
timing requirements of both resources and their applications. This
is true since a lower-utilized system can be more utilized by
accommodating additional workload or, alternatively, thesame
workload can be implemented by a lower-speed system.
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For a single resource case, the optimizedresource design
parameters, that is,period andexecution length, can be obtained
by a method based either on an exact schedulability test [4],[5]
or on resource supply and demand functions [1]–[3]. However, it
is often intractable to find the optimal set of resource parameters
mainly because the local optimality of each resource does not
necessarily lead to the globally optimal solution [4], [5].Accord-
ingly, each design parameter cannot be chosen independently;
the optimal selection requires a brute-force search, whichis only
practical when some parameters are fixed and/or the number of
resources is small.

Thus, in this paper, we are interested in finding a sub-optimal
set of resource design parameters that minimizes the schedulable
system utilization; both resources and their tasks are schedulable.
Specifically, we consider the periodic resource model introduced
in [1]–[5]; each resourceR is periodically released at everyT
and supplies an execution amount ofL to its tasks. For global
and local scheduling, we consider fixed-priority scheduling with
the assumption that priorities are pre-assigned. The results on
the resource parameter bound in previous work were derived by
calculating the lower-bound on a resource supply that can satisfy
the worst-case demand of the workload. When other resource
parameters are unknown, however, a pessimistic assumptionon
the minimum supply needs to be made; each resource suffers
the maximum possible delay. We tackle this problem by pa-
rameterizing the worst-case resource supply with the unknown
parameters of other resources that can be holistically optimized
via Geometric Programming (GP)[7], [8]. GP is a non-linear
optimization method that can solve a specially formed non-
convex problem by transforming it into a convex one through
a logarithmic transformation, thus finding the optimal solution
efficiently. We present a GP formulation as the solution to the
design parameter optimization of multiple periodic resources. We
show that our method can find a solution that is close to the one
that can be found by an exhaustive search, and it can explore
more solutions than a known heuristic method [5].

II. PROBLEM DESCRIPTION

A. System Model

We consider a uniprocessor consisting of a set of independent
periodic resourcesR = {Ri|i = 1, . . . , NR}. Each Ri is
characterized by an unknown tuple of(Ti, Li), Ti, Li ∈ R

+,
whereTi andLi are the period and the execution length of the
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resource, respectively.1 In Ri, a setΓi = {τj|j = 1, . . . , NΓi}
of tasks run in a fixed-priority preemptive schedule such as Rate
Monotonic [10]. Eachτj is represented byτj := (ej , pj , dj),
where ej is the worst-case execution time,pj is the minimum
inter arrival time between successive releases, anddj is the
relative deadline.2 In this paper, we assume thatdj = pj. We then
further assume that there is no synchronization or precedence
constraints among tasks, and task releases are not bound to
resources [5].

The resources are also scheduled in a fixed-priority manner and
we assume their deadline,Di, is equal to the period. In addition,
we consider that resource priorities are given, assuming, for
example, the priorities are assigned according to criticalities. We
note that the optimization method in this paper cannot be applied
to cases when resource priorities are not given. Additionally, a
resource is idled if there is no task ready to execute. We also
assume that there is no resource release jitter.

B. Problem Description

Given a set of resources{Ri} and the corresponding task sets
{Γi}, our problem is to find the set of the resource parameters,
{(Ti, Li)} for i = 1, . . . , NR, which minimizes the overall
system utilization,Us, while guaranteeing the schedulabilities of
the resources and the tasks. Here,Us can be represented by

Us =

NR

∑

i=1

c1 · δ + c2 · Li

Ti

, (1)

whereδ is the resource context-switch overhead, andc1, c2 are
weights given by the system designer [3]. In this paper, we set
both c1 andc2 to 1 and assume that each resource will consume
a context-switch overhead ofδ at each release.

III. PARAMETER BOUNDS OFMULTIPLE RESOURCES

In this section, we present the analysis of multiple resource
bounds by extending those of the single resource bound in the
previous literature [1], [2], which is summarized in [9]. Ina parti-
tioned resource whose periodTi and lengthLi are unknown, we
can derive the lower-bound ofLi (or the upper-bound ofTi) with
respect toTi (or Li) that makesτj in Ri schedulable by using
the periodic resource model [1], [2]. Informally speaking,the
key idea of previous work is that a task can be schedulable if the
minimum resource supply (sbfΓ(t) [1] or A s(t) [2]) can match
the maximum workload demand generated byτj and its higher-
priority tasks during a time intervalt. In fixed-priority global
scheduling, the minimum supply of a resource is delivered toits
tasks when its(k− 1)th execution has just been finished at time
0 with minimum interferences from higher-priority resources,
and then the subsequent executions are maximally delayed by
higher-priority resources. When the parameters of higher-priority
resources are unknown, it is a safe assumption that the subsequent
executions from thekth release are delayed byTi − Li. This is
pessimistic, since, in reality, high priority resources would suffer
no or only a few preemptions. Thus, an exact method is required
[4], [5], which, however, is not useful for an optimization of

1When Ti, Li ∈ N, a branch-and-bound or a variable rounding heuristic is
required. We note that the choice of such method is orthogonal to the optimization
presented in this paper. In [9], we describe the effect of such constraints on the
considered optimization problem.

2More precisely, each task should be represented asτi,j if it belongs toRi.
For the simplicity of notations, however, we use the abbreviation τj .
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Fig. 1: The worst-case release pattern ofRi considering the
periods and execution lengths of higher-priority resources.

multiple resource parameters due to its high time complexity. This
necessitates holistic optimization of multiple resource parameters,
and thus in the following we present the analysis of multiple
resource bounds via a parameterization of unknown resource
parameters, which will be formulated and solved by Geometric
Programming in Sec. IV. The optimization of a single resource
has been extensively studied. Interested readers can referto [1]–
[5], [11]–[15].

A. Lower-bound Supply Function Considering Unknown Param-
eters of Higher-Priority Resources

We consider a worst-case release pattern ofRi occurring when
it suffers zero delay in the(k − 1)th release and the maximum
delay from higher-priority resources thereafter, i.e.,∆Ri

, as
depicted in Fig. 1. The worst-case busy period ofRi, denoted as
w

Ri
, is the maximum time duration thatRi can take to execute

Li when it is released simultaneously with its higher-priority
resources,hp(Ri), at thekth release, which can be obtained by
the traditional exact analysis:

wk+1
Ri

= Li +
∑

Rh∈hp(Ri)

⌈wk
Ri

Th

⌉

· Lh, (2)

wherew0
Ri

= Li andw
Ri

= wk
Ri

when it converges for some
k. Thus, the worst-case delay at thekth release and thereafter
(called initial latency in [2]) can be represented as

∆Ri
=

∑

Rh∈hp(Ri)

⌈w
Ri

Th

⌉

· Lh. (3)

However, the iterative method of (2) can only be applicable to
brute-force optimization. Thus, we approximate∆Ri

. During a
time interval ofTi, the maximum workload generated byRi and
hp(Ri) can be represented by:

wRi
= Li +

∑

Rh∈hp(Ri)

⌈ Ti

Th

⌉

· Lh.

We can avoid iterative calculation by assuming the number of
invocations of higher-priority resources duringTi, not during the
exact busy period. Note that it is a safe bound as long asRi meets
its deadline, i.e.,Di = Ti. Now, we linearizew

Ri
as follows:

wRi
= Li +

∑

Rh∈hp(Ri)

( Ti

Th

+ 1
)

· Lh,

because⌈x⌉ ≤ x + 1. Then, the worst-case linear lower-bound
supply function3 of Ri during a time intervalt parameterized

3It is identical toA
′

s(t) with ∆ = ∆Ri
andα = Li

Ti
in [2].



with ∆Ri
is derived as follows:

lsbfRi
(t) =

Li

Ti

· (t− (Ti − Li)−∆Ri
), (4)

where

∆Ri
=

∑

Rh∈hp(Ri)

( Ti

Th

+ 1
)

· Lh. (5)

B. Sufficient Resource Bound for Task Schedulability

Let us now considerτj in Ri whose periodTi is fixed. Then,
let us defineLmin

i (τj , Ti) as the minimum required length ofRi

that guarantees to scheduleτj . In order to deriveLmin
i (τj , Ti), we

can consider the situation in whichτj barely meets its deadline at
time t = dj with the worst-case interference from higher-priority
taskshp(τj). Since we make no assumption on task offsets, the
worst-case response time ofτj occurs when it andhp(τj) are
released simultaneously at the end ofRi’s (k − 1)th execution
and then suffers the worst-case preemptions fromhp(τj) in kth

release and thereafter, which we define asthe critical instant.4

Now, let us denoteIj as the worst-case workload generated by
τj and hp(τj) from the critical instant to the deadline ofτj as
follows:

Ij = ej +
∑

τh∈hp(τj)

⌈ dj
ph

⌉

· eh.

τj is guaranteed to be schedulable if the minimum supply
delivered by the resource is greater than or equal to the worst-case
workload generated during the time intervaldj . Thus,

lsbfRi
(dj) =

Li

Ti

· (dj − (Ti − Li)−∆Ri
) ≥ Ij . (6)

Accordingly, the minimum required resource length,
Lmin
i (τj , Ti), for τj with a given Ti can be obtained by

solving the quadratic inequality in (6), which result in

Lmin
i (τj , Ti) =

−(dj−Ti−∆Ri
)+

√

(dj−Ti−∆Ri
)2+4IjTi

2
.

(7)
Note that (7) is equivalent to Eq. (23) in [1] with∆Ri

= Ti−Li

and to Eq. (12) in [2] withβ = 1.
In order to find the minimum required length ofRi for a given

Ti, we take the maximum of the boundsLmin
i (τj , Ti) over all

tasks inΓi, which therefore can be defined as follows:

Lmin
i (Ti) = max

τj∈Γi

(

Lmin
i (τj , Ti)

)

. (8)

Thus, if we takeLi from [Lmin
i (Ti), Ti], all τj ∈ Γi are

guaranteed to meet their deadlines. It is now important to note
that (6) is only sufficient and not necessary condition;τj can
be schedulable if and only if there exists a time instantt ≤ dj
such thatlsbfRi

(t) ≥ Ij [1]. In this paper, however, we use
the sufficient condition in (6) because the presence of time in
the necessary condition makes the proposed optimization method
not applicable to the problem under consideration. Although the
bound is not exact and may incur approximation error, it enables
us to optimize multiple resources holistically with high efficiency,
as will be described in Sec. IV.

4In this paper, we do not consider task jitters. However, without loss of
generality, the presented analyses can be similarly applied to cases with jitters.
For example, the worst-case situation ofτj is when hp(τj) have experienced
their maximum jitters and are released at the same time withτj .
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Fig. 2: System utilization of two resources and its non-convexity.

C. Non-convexity of Multiple Resource Optimization

We present an example of two resources in order to show the
non-convexity of multiple resource optimization. Let us consider
Fig. 2, which shows the utilization functions,U1 and U2, of
two randomly generated resources,{R1,R2}, and the system
utilization function,Us = U1+U2, over the period in[1, 140]. In
this example, the resources have the same period for simplicity
of representation, andδ is set to1. R1 has a higher priority
thanR2, thus∆R1

= 0 and∆R2
= 2 · L1. From the graphs,

we can first see thatUs is not convex, which is shown by the
straight line drawn betweenT = 60 and120. Furthermore, while
the resources achieve minimum utilization atT1 = 20.3 and
T2 = 63.9, respectively, these do not lead to the global optimality,
which occurs atT = T1 = T2 = 23.1; this issue is addressed
also in [4]. In this example, the resources have the same period.
The optimization of multiple resource parameters will be harder
to solve once we consider a higher number of resources and
arbitrary resource periods.

IV. H OLISTIC OPTIMIZATION OF MULTIPLE RESOURCE
PARAMETERS VIA GEOMETRIC PROGRAMMING

In this section, we formulate the parameter optimization prob-
lem of multiple periodic resources with Geometric Programming
(GP) [7], [8]. GP can solve a non-linear, non-convex optimization
problem if it can be formulated in the following form:

Minimize f0(x)

Subject to fi(x) ≤ 1, i = 1, . . . , np,

gj(x) = 1, j = 1, . . . , nm,

wheref andg areposynomialandmonomialfunctions, respec-
tively, andx are the optimization variables. A functiongj(x) is
monomial if it can be represented as:

gj(x) = cj

nj
∏

k=1

xak

k ,

wherecj ∈ R
+ andak ∈ R. A posynomial function is a sum of

monomials, and thus can be expressed as:

fi(x) =

ni
∑

k=1

ckx
a1k

1 xa2k

2 · · ·xank
n ,

whereck ∈ R
+ andajk ∈ R. Also, f/g is a posynomial andfax

is also a posynomial ifax ∈ R
+. In summary, only the objective

function and the inequality constraints can be posynomial.
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We now formulate the optimization problem of the multiple
resource parameters in GP form. As stated in Sec. II-B, we are
given a set of periodic resources{Ri} with unknown parameters,
Ti andLi; their task sets{(ej, pj , dj)|∀τj ∈ Γi}, and the resource
context-switch overheadδ are known. Optimization variables are
T = (T1, . . . , TNR) andL = (L1, . . . , LNR).
Objective Function

The objective function (1) in Sec. II-B is already in a posyn-
omial form, thus it can be represented as follows:

fo(T,L) =

NR

∑

i=1

(c1δ + c2Li) · T
−1
i , (9)

wherec1, c2, δ ≥ 0.
Resource Bound Constraint

The resource bound for eachRi is constrained by (6) for each
τj ∈ Γi, which can be reexpressed as follows:

Ti · (Li + Ij) + ∆Ri
· Li

Li · (Li + dj)
≤ 1, (10)

wheredj and Ij are constants for a given input. However, the
inequality above does not conform to a posynomial form because
of the posynomial term in the denominator, i.e.,Li · (Li+ dj) =
L2
i + Li · dj (Recall that a denominator must be monomial).

Observe, however, thatLi + dj can be approximated with a
monomial by the following geometric mean approximation [16].
Let us first denote it asgi(Li) = u1(Li) + u2(Li) where
u1(Li) = Li andu2(Li) = dj . Then, we now approximategi(Li)
with

g̃i(Li) =
(

u1(Li)/γ1

)γ1

·
(

u2(Li)/γ2

)γ2

, (11)

whereγ1 = u1(x0)
gi(x0)

andγ2 = u2(x0)
gi(x0)

wherex0 ∈ R
+ is a constant

that satisfiesg̃i(x0) = gi(x0). The approximated monomial
g̃i(Li) then can be rewritten as:

g̃i(Li) =
(

Li/γ1

)γ1

·
(

dj/γ2

)γ2

,

with γ1 = x0

x0+dj
andγ2 =

dj

x0+dj
. Finally, (10) can be formulated

as the following posynomial constraint:

(Ti · (Li + Ij) + ∆Ri
· Li) · (Li · g̃i(Li))

−1 ≤ 1, (12)

where∆Ri
is
∑

Rh∈hp(Ri)

(

(Ti + Th) · T
−1
h · Lh

)

. Note that the
approximation quality ofg̃i(Li) depends on the choice ofx0,
as shown in Fig. 3. Thus, in the optimization procedure, we

iteratively approximatẽgi(Li) by updatingγ1 andγ2 according
to the intermediate solution ofLi; until the objective value
converges, we useLi at kth step asx0 at (k + 1)th step. The
objective value converges normally in 1 or 2 iterations.
Resource Schedulability Constraint

Each resource must be schedulable, that is,Li + ∆Ri
≤ Ti,

which corresponds to the following posynomial constraint:
(

Li +
∑

Rh∈hp(Ri)

(

(Ti + Th) · T
−1
h · Lh

)

)

· T−1
i ≤ 1. (13)

V. EVALUATION

A. Evaluation Method
Parameter Value
Number of resources,NR {2, 3, 4, 5}
Number of tasks per resource,NΓi [2, 8]
Task execution time,ej [1, 30]
Task period,pj [50, 2000]
Context-switch overhead,δ 1

The table above summarizes the experimental parameters used
for the evaluations. We consider the cases with2, 3, 4, and 5
resources, and for each case, we generated 100 random input sets
with the parameters. The number of tasks per resource, the task
execution time and period are uniformly randomly chosen in the
given range. For the simplicity of evaluations, the context-switch
overhead was fixed to1. With these parameters, we compare the
following methods:

• Exhaustive Search: From the highest priority resource to the
lowest one, we recursively assign each resource period from
1 to Tmax with a step size ofs. For each periodTi, Lmin

i is
determined by (8) and (7) with∆Ri

calculated by (3). Recall
that the system utilization obtained with this exhaustive
search is still not the exact globally optimal solution as
explained in Sec. III.

• GP with the upper-bound onTmax: The GP optimization
method with additional constraints on the upper-bound on
resource periods, that is,Ti · T

−1
max ≤ 1.

• GP without the upper-bound onTmax: Identical to the above
except that there is no upper-bound onTmax. Note that
in our GP-based optimization, the upper-bound on resource
period is unnecessary.

For the evaluation purpose only, the priority of each resource
is assigned according to the utilization sum of tasks in each
resource; the higher the utilization is, the higher its priority.
Readers interested in priority optimization can refer to [4], [5].
Task priorities in each resource are assigned by RM priority
assignment [10]. The GPs were solved using GGPLAB [17].

B. Evaluation Metric

We compare the methods above in terms of the minimum
system utilization, i.e., Eq (1). We denote the solution of each
method asUExh

s , UGP1

s , andUGP2

s , respectively. For each input,
we calculate the difference ofUExh

s from UGP1

s andUGP2

s , that
is, UGP1

s − UExh
s andUGP2

s − UExh
s , respectively, and then take

the average of 100 random input sets for each setting. It should be
noted that we do not compare the solving time of each method
because while GP can solve a problem within a few seconds,
the exhaustive search normally takes 10–60 minutes or more
depending on the problem size and the choices ofTmax ands.
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C. Evaluation Results

Fig. 4 compares the minimum system utilization found by the
exhaustive search and our GP methods increasing the number
of resources from 2 to 5.5 Tmax and s were set to100 and
0.5, respectively. As we can see from the result, the average
difference ofUGP1

s and UExh
s increases with the number of

resources. This is mainly because of the approximation error
in ∆Ri

(see Sec. III). Recall that while the exhaustive search
calculates the minimum supply of each resource by using the
iterative equation (Eq. (3)), our GP method approximately cal-
culates the interference from higher-priority resources during
the interval of its period (Eq. (5)). With two resources, the
error of the approximation is small; however as the number of
resources increases, the error accumulates from higher-priority
resources to lower-priority ones. Nevertheless, we can seethat the
differences between the two methods are quite small, indicating
that our method can find a solution that is close to the one
that can be found by the exhaustive search;0.007–0.027 average
difference compared to the exhaustive search. Another interesting
observation is thatGP2 can find better solutions thanGP1. This
result might be expected because of the limited search spaceof
GP1: when the workload of a resource is significantly lower than
the other resources, its optimal period may appear beyondTmax.
In fact, for some input sets,UGP2

s were lower thanUExh
s . One

can find better solutions with the exhaustive search by setting
Tmax higher, however, this can be limited by the input size.

With the same inputs, we evaluated the performance of our
GP method (GP2) with various base utilizations, i.e., the sum of
all task utilizations. From Fig. 5, we can see that the differences
increase with the base utilizations. A similar argument as above
can be used to explain this correlation. That is, a higher base uti-
lization implies that there exist resources with higher utilizations,
and thus those tend to have shorter periods and longer execution
lengths. We attribute this, again, to the approximation error of
∆Ri

in (5).
Lastly, we compared our GP method with the heuristic pro-

posed in [5]. The method finds the optimal parameters for each
resource in turn from the highest to the lowest resources; for
each resource, it iterates over a range of periods and for each

5The exhaustive search takes a longer time to solve cases withsix or more
resources, and thus we evaluated cases with 2, 3, 4, and 5 resources.
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period, it finds the optimal resource length by a binary search.
The same process is applied to the next priority resource. For the
comparison, we used the same inputs as above. In the heuristic,
eachTi is assigned from1 to 1000 with s of 0.1, and eachLi

was found at the granularity of0.1. Fig. 6 shows i) the numbers
of solutions found by each method and ii) the average difference
of the minimum system utilization between the methods. As can
be seen from the bars, our method finds more solutions than
the heuristic, and in the experiment, all input sets for which
a solution was found by the heuristic were also solved by our
method. We can also see that as the number of resources increase,
the gap also increases; with5 resources, our method found 49
solutions among 100 input sets, but only 7 solutions were found
by the heuristic.6 This follows from the greedy nature of the
heuristic; the parameters for a high-priority resource were locally
optimized without considering the feasibilities of lower-priority
resources. In contrast, although our method is not a global optimal
method either, it can explore more solutions due to its ability
to take into account the variable interferences among resources
simultaneously in the GP optimization process. However, the
qualities of the solutions found by our method are worse than
those found by the heuristic, as the line plot in Fig. 6 shows.
Each marker on the line is the average of the difference ofUGP2

s

andUHeu
s , for the input sets the heuristic found; with2, 3 and4

resources, the average differences are between0.055 and0.065,
and with 5 resources, the difference is0.108. The spike at5
resources could be explained by the low number of solutions
found. Although our method achieved lower system utilization
for some input sets, the heuristic could find better solutions in
most cases. Such differences mainly arise from the optimality of
the analysis used by the heuristic. That is, when the parameters
of higher-priority resources and the period of the resourceunder
analysis are fixed, the (local-)optimal resource length is found
by the binary search which is based on the exact analysis [5].
On the other hand, as explained Sec. III, our analysis considers
the worst-case scenarios that are sufficient but not necessary, and
it is also based on the approximation of∆Ri

, both of which

6The exact number of feasible solutions is unknown as this requires a true
optimal method. Among 100 input sets for each case, some input sets might be
infeasible in the first place. Also, the main reason that eachmethod finds fewer
number of solutions as the number of resources increase is because the base
system utilization also increases. For example, the average base utilizations of
100 input sets with2 and5 resources are0.281 and0.663, respectively.
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lead to schedulability loss. From this evaluation, we can conclude
that there is a trade-off between the solution feasibility (our GP
method) and the solution quality (the heuristic of [5]).

VI. RELATED WORK

Shin et al. [1] proposed the periodic resource model in a
hierarchical scheduling that facilitates the schedulability analysis
of the workload of tasks (child) under a periodic resource supply
(parent). The authors presented the exact schedulability analysis
of a workload set in a periodic resource under RM and EDF
scheduling and derived the utilization bounds. In [2], Almeida
et al. analyzed a similar periodic server model by introducing
the server availability function. They also developed a heuristic
algorithm for a server parameter optimization for the minimum
system utilization, in which the search space is reduced to aset of
deadline points. Lipari et al. [3] also considered the same problem
with a different approach of schedulability analysis usinga notion
of characteristic function. These three works all used linear
resource supply models. In contrast, Daviset al. [4], [5] pre-
sented the exact worst-case response time analysis of tasksunder
deferrable server, periodic server, and sporadic server. Through
an empirical investigation, the authors claimed that the optimal
parameter selection for multiple resources is a holistic problem
and provided a greedy algorithm, which we compare with our
GP-based method in Sec. V. Additionally, in [18], Saewonget
al. developed a response time analysis for real-time guarantees
of tasks under sporadic server and deferrable server. In [11],
Easwaran introduced a generalized periodic resource modelcalled
Explicit Deadline Periodic(EDP) resource, and proposed an exact
algorithm for determining the optimal resource parameter that
minimizes the ratio of length to period of an EDP resource. The
same problem for periodic resource model was addressed by Shin
et al. [13], in which the authors presented a polynomial-time
sufficient algorithm. Both problems were addressed by Dewan
et al. [15] and Fisher [14] by proposing fully-polynomial-time
approximation algorithms that improve both the optimalityand
time complexity. None of these papers, however, consider the
problem of optimizing the parameters of multiple resources.

Geometric Programming [7], [8] has been widely applied to
a broad range of non-linear, non-convex optimization problems
such as digital circuit gate sizing [19], resource allocation in

communication systems [16], information theory [20], etc.An
extensive discussion of GP can be found in [8].

VII. C ONCLUSION

In this paper we addressed the problem of design parame-
ter optimization of multiple periodic resources in hierarchical
scheduling. We extended the existing analysis on a single resource
in order for our resource supply model to be able to capture the
variable parameters of higher-priority resources. The presented
analysis on the resource bounds and the GP-based optimization
is not a globally optimal method due to the approximation
error of worst-case resource interference and task schedulability.
However, we believe that one can benefit from the presented
optimization method in designing a hierarchical system with a
large number of partitioned resources due to its ability to yield
a high-quality solution with a high scalability. For futurework,
we plan to apply the presented method to a hierarchical system
under non-preemptive global scheduling such IMA scheduling.
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