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Abstract—Hierarchical scheduling of periodic resources has been  For a single resource case, the optimizedource design
increasingly applied to a wide variety of real-time systemsdue parametersthat is,period andexecution lengthcan be obtained
to its ability to accommodate various applications on a sinle 5 method based either on an exact schedulability tesfFH],
system through strong temporal isolation. This leads to thejuestion . -
of how one can optimize over the resource parameters while pr on re_source supply gnd demar_ld functions [1]-[3]. However
satisfying the timing requirements of real-time applications. A great IS often intractable to find the optimal set of resource patans
deal of research has been devoted to deriving the analytic del mainly because the local optimality of each resource doés no
for the bounds on the design parameter of a single resource as necessarily lead to the globally optimal solution [4], [BEcord-
well as its optimization. The optimization for multiple per_lo_dlc ingly, each design parameter cannot be chosen indepepgentl
resources, however, requires a holistic approach due to theonflicting . . . .
requirements of the limited computational capacity of a syeem the optlmal selection requires a erte'erce search, wisicmly
among resources. Thus, this paper addresses a holistic opiization ~Practical when some parameters are fixed and/or the number of

of multiple periodic resources with regard to minimum systen resources is small.

utilization. We extend the existing analysis of a single remirce  ypyg i this paper, we are interested in finding a sub-optima
in order for the variable interferences among resources to b . L

captured in the resource bound, and then solve the problem h set of resc_)_urcg design parameters that m'_n'm'zes the skztielu
Geometric Programming (GP). The experimental results showthat ~ System utilization; both resources and their tasks aredsdable.
the proposed method can find a solution very close to the one Specifically, we consider the periodic resource model thioed
optimized via an exhaustive search and that it can explore me in [1]-[5]; each resourc&R is periodically released at evefly
solutions than a known heuristic method. and supplies an execution amount bfto its tasks. For global

. INTRODUCTION and local scheduling, we consider fixed-priority schedulvith

As the processing power of processors has grown, there HA¥& assumption that priorities are pre-assigned. The teesul
been an increasing trend toward integrating many real-ame the resource parameter bound in previous work were d_erlyed b
plications on a single system and thus efficiently utilizitng calculating the lower-bound on a resource supply that cisfga
system by allowing the applications to share common harelwdP® worst-case demand of the workload. When other resource
devices. In such systems, temporally partitioned hieiaath Parameters are unknown, however, a pessimistic assumgtion
scheduling [1]-[5] has been widely adopted because ofrits1gt the minimum suppI)_/ needs to be made; ea_ch resource suffers
isolation among sets of real-time applications, which eitare € maximum possible delay. We tackle this problem by pa-
independently developed or have different functionaitie crit- "ameterizing the worst-case resource supply with the uwkno
icalities. For example, in IMA (Integrated Modular Aviosjc Parameters of other resources that can be holisticallyrupsd
architecture [6], applications are often grouped into edight Vi@ Geometric Programming (GPJ7], [8]. GP is a non-linear
partitions according to their design-assurance levelsrifeoto OPtimization method that can solve a specially formed non-
protect high-criticality applications from the faulty kmfior of CONVex problem by transforming it into a convex one through
other applications and guarantee their timing requirement & logarithmic transformation, thus finding the optimal $iolu

In such a partitioned hierarchical scheduling, one impurta®fficiently. We present a GP formulation as the solution t® th
question is how much of the computational resource needs to4£Si9n parameter optimization of multiple periodic resesr We
allocated to each resource in order for the system to be et Show that our method can find a solution that is close to the one
for a certain metric. For instance, it is desirable in systefjat can be found by an exhaustive search, and it can explore
design to minimize the system utilization while guarameehe MOre solutions than a known heuristic method [S].
timing requirements of both resources and their applicatid his
is true since a lower-utilized system can be more utilized by [I. PROBLEM DESCRIPTION
accommodating additional workload or, alternatively, g@me
workload can be implemented by a lower-speed system. A. System Model

This work is supported in part by Rockwell Collins under RBS¥#5038, by We consider a uniprocessor consisting of a set of indepeénden
Lockheed Martin under 2009-00524, by NSF under A17321, an@KR under periodic resourcesi — {Rz|l = 1,..., Ni“}. Each R; is

N00014-12-1-0046. Any opinions, findings, and conclusionsecommendations . +
expressed in this publication are those of the authors ambtinecessarily reflect characterized by an unknown tUpIe (jnv Li)v Ti,L; € RT,

the views of sponsors. whereT; and L; are the period and the execution length of the
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resource, respectivelyln R;, a setl; = {r;|j = 1,...,NTi} (k=1)"
of tasks run in a fixed-priority preemptive schedule such agR R |
Monotonic [10]. Eachr; is represented by; := (e;,p;,d;),
wheree; is the worst-case execution timg; is the minimum
inter arrival time between successive releases, @nds the
relative deadliné.In this paper, we assume that= p;. We then
further assume that there is no synchronization or preacsden
constraints among tasks, and task releases are not bound to
resources [5].

The resources are also scheduled in a fixed-priority maner a
we assume their deadlin®),, is equal to the period. In addition,
we consider that resource priorities are given, assumiog, f
example, the priorities are assigned according to critieal We Fig. 1: The worst-case release pattern ®f considering the
note that the optimization method in this paper cannot béiepp periods and execution lengths of higher-priority resosirce
to cases \.Nh.en resource p_r|or|t|e5 are not given. Additignal multiple resource parameters due to its high time complexkitis
resource is idled if there is no task ready to execute. We also : S T ;
assume that there is no resource release jtter. necessnatgs holistic opF|m|zat|on of multiple resourgeameters.,

and thus in the following we present the analysis of multiple

B. Problem Description resource bounds via a parameterization of unknown resource

Given a set of resourcesR; } and the corresponding task setparameters, which will be formulated and solved by Geometri
{I;}, our problem is to find the set of the resource parametef§ogramming in Sec. IV. The optimization of a single reseurc
{(T;, L;)} for i = 1,...,N®, which minimizes the overall has been extensively studied. Interested readers cantoefe}-
system utilization//,, while guaranteeing the schedulabilities of2], [11]-[15].

the resources and the tasks. Helg,can be represented by A [ ower-bound Supply Function Considering Unknown Param-
- eters of Higher-Priority Resources

U — c1-0+co- Ly 1
s Z T; ’ 1) We consider a worst-case release patterRpbccurring when

_ =1 . it suffers zero delay in thék — 1) release and the maximum
whered is the resource context-switch overhead, ang; are delay from higher-priority resources thereafter, i.AAz,, as

weights given by the system designer [3]. In this paper, vte %"epicted in Fig. 1. The worst-case busy periodf denoted as

bothes andcz. to 1 and assume that each resource will consu%%, is the maximum time duration th&,; can take to execute
a context-switch overhead ofat each release. i

L; when it is released simultaneously with its higher-priorit

I~ Resource Supply

. PARAMETER BOUNDS OFMULTIPLE RESOURCES resourceshp(R;), at thek'™ release, which can be obtained by
In this section, we present the analysis of multiple respurthe traditional exact analysis: .
bounds by extending those of the single resource bound in the e Z wRﬂ L @)
previous literature [1], [2], which is summarized in [9]. &rparti- Ri ¢ T, ’

. X Rn€hp(Rs)
tioned resource whose peridd and lengthZ; are unknown, we "

[0 . ok i
can derive the lower-bound df; (or the upper-bound df;) with Whe€réwr, = L; andwyp = wy, when it converges for some
respect tol; (or L;) that makesr; in R; schedulable by using k. Thu_s,_t_he Worst-c_ase delay at th& release and thereafter
the periodic resource model [1], [2]. Informally speakirige (Calledinitial latencyin [2]) can be represented as
key idea of previous work is that a task can be schedulableeif t Ag. = Z szW Ly, (3)

i

minimum resource supplysbfr(t) [1] or A 4(¢) [2]) can match R chp(R:) Th

the maximum workload demand generatedryand its higher- However, the iterative method of (2) can only be applicable t
priority tasks during a time interval. In fixed-priority global pyte-force optimization. Thus, we approximale;,. During a

scheduling, the minimum supply of a resource is delivereisto {jme interval of7;, the maximum workload generated ®; and
tasks when itk — 1)!" execution has just been finished at tim%p(R ) can be represented by:

7

0 with minimum interferences from higher-priority resousce T,
and then the subsequent executions are maximally delayed by wg, = Li + Z [T—J - L.
higher-priority resources. When the parameters of higinierity Ry €hp(Ri)

resources are unknown, it is a safe assumption that thegudise We can avoid iterative calculation by assuming the number of
executions from thé*" release are delayed B — L,. This is invocations of higher-priority resources duriiiy not during the
pessimistic, since, in reality, high priority resourcesudbsuffer exact busy period. Note that it is a safe bound as lorig aseets

no or only a few preemptions. Thus, an exact method is requirés deadline, i.e.D; = T;. Now, we linearizewy, as follows:

4], [5], which, however, is not useful for an optimizatiorf o T;

4] 15 P =Lt Y (Bn)m,

lwhenT;, L; € N, a branch-and-bound or a variable rounding heuristic is Rn€hp(R:) h

required. We note that the choice of such_method is orthdgorthe op_timization because(x} < z + 1. Then, the worst-case linear lower-bound

presented in this paper. In [9], we describe the effect ohsanstraints on the - . . . .

considered optimization problem. supply functiod of R; during a time intervalt parameterized
2More precisely, each task should be represented; asif it belongs toR;. ,

For the simplicity of notations, however, we use the ablatéwn 7;. 8It is identical to A, (t) with A = A, anda = % in [2].



with A, is derived as follows: 1

Iebfr, (1) = 2 (t— (T~ L)~ Ar). (@)
where ‘ £ % U_= U, + U, (System Utilizatio
=075
Ar, = Z (& + 1) - Lp. ) s = T
Ry €hp(R:) T > N =
h&np £ 05 L
g 04 ,»“"U.’(Utilization of Resource 1)
B. Sufficient Resource Bound for Task Schedulability g’m os N, - P A ]
Let us now consider; in R; whose periodl; is fixed. Then, N U, (Utilization of Resource 2)
let us defineL ™ (r;, T;) as the minimum required length &, oLy [ S Y SR crire ST St T S
that guarantees to scheduie In order to derivel.™" (1;, T;), we % 10 20 30 40 50 60 70 80 90 100 110 120 130 140

. . . . . . . T=T, =T, (Resource Period
can consider the situation in whieh barely meets its deadline at T2 )

time ¢ = d; with the worst-case interference from higher-priorityig. 2: System utilization of two resources and its non-exity.
taskshp(7;). Since we make no assumption on task offsets, the ) . o
worst-case response time of occurs when it andhp(r;) are C. Non-convexity of Multiple Resource Optimization
released simultaneously at the end®fs (k — 1) execution  \We present an example of two resources in order to show the
and then suffers the worst-case preemptions ftgrtr;) in k"  non-convexity of multiple resource optimization. Let usisigler
release and thereafter, which we definettas critical instant*  Fig. 2, which shows the utilization functiong]; and Us, of
Now, let us denotd; as the worst-case workload generated byvo randomly generated resourcg$k;, R»}, and the system
7; and hp(7;) from the critical instant to the deadline of as utilization function,U, = U, + Us, over the period iff1, 140]. In
follows: this example, the resources have the same period for sityplic

I=e;+ Z ﬁw Cen. of representation, and is set tol. Ry has a higher priority

' ehn(rs) than R, _thus Ar, =0 _and Ar, = 2- Ll_. Frpm the graphs,
7; is guaranteed to be schedulable if the minimum supp&e can f'rSt see thall, is not convex, which is shown by _the
delivered by the resource is greater than or equal to thetvgase raight line drawn _betvvee_ﬁ . 60 an(_JI_120_. Furthermore, while
workload generated during the time interdgl Thus, the resources achleve minimum utilization ‘Bt = 20.3 a_md .

i T, = 63.9, respectively, these do not lead to the global optimality,
Isbfr, (d;) = T (dj = (Ti — Li) = Ar,) 2 I;.  (6) \hich occurs atl’ = T, = T, = 23.1: this issue is addressed
Accordingly, the minimum required resource lengtHISO in [4]. In this example, the resources have the samegeri
Lmin(7; T;), for r; with a given T, can be obtained by The optimization of multiple resource parameters will bedea
solving the quadratic inequality in (6), which result in to solve once we consider a higher number of resources and
arbitrary resource periods.

L (15, Th) = - \/2J —. IV. HOLISTIC OPTIMIZATION OF MULTIPLE RESOURCE
@) PARAMETERS VIA GEOMETRIC PROGRAMMING

No(';e thgt (7)1i23 gqui;/ale_nt to_Elq. (23) in [1] withg, = T; — L; In this section, we formulate the parameter optimizatioobpr
and to Eq. ( .) in [2] W'thﬁ - ] lem of multiple periodic resources with Geometric Prograngn
In order to find the minimum required length &f; for a given (GP) [7], [8]. GP can solve a non-linear, non-convex optatian

Ti, we take the maximum of the bounwm(fﬁTi) over all  proplem if it can be formulated in the following form:
tasks inIy, which therefore can be defined as follows:

in in 8 Minimize fo(x)
L) = max (Li (Tj’Ti))‘ ®) Subject to filx) <1, i=1,... n,,
Thus, if we takeL; from [L7"(T;),T;], all 7; € T; are gix)=1,7=1,...,np,

guaranteed to meet their deadlines. It is now important te n?/vheref and o are posvnomialand monomialfunctions. respec-
that (6) is only sufficient and not necessary conditien;can g posy ' P

be schedulable if and only if there exists a time instant d, tively, andx are the optimization variables. A functian(x) is

such thatlsbfr,(t) > I; [1]. In this paper, however, we usemonomlal if it can be representg? as.
the sufficient condition in (6) because the presence of time i 9;(x) = ¢; [ =,
the necessary condition makes the proposed optimizatidhade ' i)
not applicable to the problem under consideration. Althotlge
bound is not exact and may incur approximation error, it é&agb
us to optimize multiple resources holistically with higfi@ency, ;
as will be described in Sec. IV. fi(x) = Z & R SRR A
k=1

4In this paper, we do not consider task jitters. However, eithloss of . i i o

generality, ?hep presented analyses can be sirJniIarIy appdiecases with jitters. Y;/h;;icg Eoz;nzrrﬁgr%f ?RAJS?;]J;/[J irﬁni&?iﬂ??wl:loabr}gctive

For example, the worst-case situation 1f is when hp(7;) have experienced ! ) ) : -
their maximum jitters and are released at the same time #with function and the inequality constraints can be posynomial.

wherec; € R* anday, € R. A posynomial function is a sum of
monomials, and thus can be expressed as:
g



55 ‘ ‘ iteratively approximatej;(L;) by updatingy; and~-. according
to the intermediate solution of;; until the objective value
converges, we usé; at k" step asro at (k + 1) step. The
objective value converges normally in 1 or 2 iterations.
Resource Schedulability Constraint

Each resource must be schedulable, thatis;- Ar, < T,
which corresponds to the following posynomial constraint:

: (LH— 3 ((Ti+Th)-T,j1-Lh))-T[lgl. (13)
s | Rpchp(R:)

g.(L.) and approximate value

25k 7
ZOE,{' ‘ ‘ V. EVALUATION
! ° lL? A. Evaluation Method
_ Parameter Value
Fig. 3:9i(Li) = L; +30 andg;(L;) atzo = 1,5, and10. g;(xo) Number of resourcesy™ {2,3,4,5}
is tangent tog;(L;) at L; = . Number of tasks per resourca]": 2,8
o ) Task execution timeg; 1, 30]
We now formulate the optimization problem of the multiple Task periodp; [50 2000]

resource parameters in GP form. As stated in Sec. II-B, we are  _Context-switch overhead,
given a set of periodic resourcé®; } with unknown parameters, The table above summarizes the experimental parametats use

T; andL;; their task setg (e;, p;, d;)|V7; € T'i}, and the resource for the evaluations. We consider the cases V@ith,4, and 5
context-switch overheadl are known. Optimization variables ar€resources, and for each case, we genera‘[ed 100 random ﬂ-ﬂﬂut IS

T=(T1,...,Ty») andL = (L1, ..., Ly=). with the parameters. The number of tasks per resource, she ta
Objective Function execution time and period are uniformly randomly choserhn t
The objective function (1) in Sec. II-B is already in a posyngiven range. For the simplicity of evaluations, the contanitch
omial form, thus it can be represented as follows: overhead was fixed td. With these parameters, we compare the
N%® following methods:
fo(T,L) = Z (c16 + coLy) - T, 9) « Exhaustive Search: From the highest priority resourceeo th
i=1 lowest one, we recursively assign each resource period from
wherecy, ¢2,6 = 0. 1 to T}.q, With a step size of. For each period;, L™ is
Resource Bound Constraint determined by (8) and (7) with, calculated by (3). Recall
The resource bound for ea@; is constrained by (6) for each  that the system utilization obtained with this exhaustive
7; € Ty, which can be reexpressed as follows: search is still not the exact globally optimal solution as
T (Li + ;) + Ag, - L - 10 explai_ned in Sec. Ill. -
L (Li+d)) <1, (10) « GP with the upper-bound offl,,,,,: The GP optimization

method with additional constraints on the upper-bound on
resource periods, that i} - 7,1 <

o GP without the upper-bound daf,, .: Identical to the above
except that there is no upper-bound @h,,.. Note that

in our GP-based optimization, the upper-bound on resource

whered; and I; are constants for a given input. However, the
inequality above does not conform to a posynomial form bseau
of the posynomial term in the denominator, i.8;,- (L; +d;) =

L? + L; - d; (Recall that a denominator must be monomial).
Observe, however, that; + d; can be approximated with a

; . . e period is unnecessary.
monomial by the following geometric mean apprOX|mat|on][16F th luati v, th ority of h
Let us first denote it ag;(L;) = wui(L;) + u2(L;) where ror the evda ua |ondpur|f103(tehon %I' ?. priority ofetack reseur h
u1(L;) = L; andus(L;) = dj;. Then, we now approximatg(L;) IS a53|gn.e according to the utilization sum ot tasks in €ac
with resource; the higher the utilization is, the higher its ptyo
SN _ o _ 72 Readers interested in priority optimization can refer t [8].
gi(Ls) = (ul(LZ)/’h) (UQ(LZ)/W) ’ (11) Task priorities in each resource are assigned by RM priority

Wherexo c R+ is a constant assignment [10]. The GPs were solved using GGPLAB [17].

wherey; = (IO) andw

i
that SatISerSgZ(xo) = gl(IOS The approximated monomialg Eyaluation Metric

gi(L;) then can be rewritten as: ) o
We compare the methods above in terms of the minimum

gi(L;) = (Li/yl)71 . (dj/yg)w, system utilization, i.e., Eq (1). We denote the solution atte
method ad/P=h, UG andUS "2, respectively. For each input,
with 41 = 52 andy, = - +d . Finally, (10) can be formulated we calculate the difference dSJ‘E””h from USPr andUSF2, that
as the foIIowmg posynomial Constraint: is, UG — UE=h andUEP2 — USE“ respectwely, and then take
- 1 the average of 100 random input sets for each setting. Itidhmeu
(Ti (Li + 1) + Amy - Li) - (Li - i(La) ™ < 1, (12) " loted that we do not compare the solving time of each method
whereAr, is Yor, chpray (Ti +Th) - T, " - L;). Note that the because while GP can solve a problem within a few seconds,
approximation quality ofg;(L;) depends on the choice afy, the exhaustive search normally takes 10-60 minutes or more
as shown in Fig. 3. Thus, in the optimization procedure, wdepending on the problem size and the choice%,pf, ands.
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Fig. 4: The average differences Gf'* andUS: to UE*" with Fig. 5: UG - UE=h with various base utilizations.

different numbers of resources. ) o ) )
period, it finds the optimal resource length by a binary dearc

C. Evaluation Results The same process is applied to the next priority resouraethiéo

Fig. 4 compares the minimum system utilization found by teomparison, we used the same inputs as above. In the heuristi
exhaustive search and our GP methods increasing the nunfRghZ: is assigned from to 1000 with s of 0.1, and eachL;
of resources from 2 to 5.7),,. and s were set to100 and Wwas found at the granularity @f.1. Fig. 6 shows i) the numbers
0.5, respectively. As we can see from the result, the averagesolutions found by each method and ii) the average diffeee
difference of US™r and UE=" increases with the number of0f the minimum system utilization between the methods. As ca
resources. This is mainly because of the approximationrerRf seen from the bars, our method finds more solutions than
in Az, (see Sec. Ill). Recall that while the exhaustive searéRe heuristic, and in the experiment, all input sets for wwhic
calculates the minimum supply of each resource by using tAesolution was found by the heuristic were also solved by our
iterative equation (Eq. (3)), our GP method approximatedy ¢ method. We can also see that as the number of resourcessacrea
culates the interference from higher-priority resourcesirty the gap also increases; withresources, our method found 49
the interval of its period (Eq. (5)). With two resources, th&olutions among 100 input sets, but only 7 solutions weredou
error of the approximation is small; however as the number By the heuristi€. This follows from the greedy nature of the
resources increases, the error accumulates from higwitpr heuristic; the parameters for a high-priority resourceenecally
resources to lower-priority ones. Nevertheless, we catisgehe Optimized without considering the feasibilities of lowgrority
differences between the two methods are quite small, itidiga "esources. In contrast, although our method is not a glqitahal
that our method can find a solution that is close to the of@ethod either, it can explore more solutions due to its tbili
that can be found by the exhaustive seafth)7-0.027 average tO take into account the variable interferences among ressu
difference compared to the exhaustive search. Anothereistiag Simultaneously in the GP optimization process. Howevee, th
observation is tha& P, can find better solutions tha@P;. This qualities of the solutions found by our method are worse than
result might be expected because of the limited search sgfacdhose found by the heuristic, as the line plot in Fig. 6 shows.
G P,: when the workload of a resource is significantly lower thaRach marker on the line is the average of the differendg of*
the other resources, its optimal period may appear befond. andU.*“, for the input sets the heuristic found; wizh3 and4
In fact, for some input setd/S"2 were lower than/F=", One resources, the average differences are betwe®is and0.065,
can find better solutions with the exhaustive search bynggttiand with 5 resources, the difference 108. The spike at5
Tz higher, however, this can be limited by the input size. resources could be explained by the low number of solutions

With the same inputs, we evaluated the performance of d@tnd. Although our method achieved lower system utilamati
GP method GP) with various base utilizations, i.e., the sum ofor some input sets, the heuristic could find better solstion
all task utilizations. From Fig. 5, we can see that the diffses Most cases. Such differences mainly arise from the optiynati
increase with the base utilizations. A similar argumentlasva the analysis used by the heuristic. That is, when the pasmet
can be used to explain this correlation. That is, a highee bis Of higher-priority resources and the period of the resowreer
lization implies that there exist resources with highelizations, analysis are fixed, the (local-)optimal resource lengthoisnfl
and thus those tend to have shorter periods and longer éxecuby the binary search which is based on the exact analysis [5].
lengths. We attribute this, again, to the approximatiomrenf On the other hand, as explained Sec. lll, our analysis cersid
Ag, in (5). the worst-case scenarios that are sufficient but not negessal

Lastly, we compared our GP method with the heuristic prd-is also based on the approximation dfz,, both of which
posed in [5]. The method finds the optimal parameters for each
resource in turn from the highest to the lowest resources; foeThe exact number of feasible solutions is unknown as thisiireg a true

h . n iod d fdr optimal method. Among 100 input sets for each case, somé sgia might be
each resource, It Iterates over a range of periods an €&feasible in the first place. Also, the main reason that eaethod finds fewer

number of solutions as the number of resources increasecasube the base
5The exhaustive search takes a longer time to solve casessivitor more system utilization also increases. For example, the agetmge utilizations of
resources, and thus we evaluated cases with 2, 3, 4, and &raeeso 100 input sets witl2 and 5 resources aré.281 and 0.663, respectively.
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communication systems [16], information theory [20], etn
extensive discussion of GP can be found in [8].

VIl. CONCLUSION

In this paper we addressed the problem of design parame-
ter optimization of multiple periodic resources in hiefgoal
scheduling. We extended the existing analysis on a singtauree
in order for our resource supply model to be able to captuee th
variable parameters of higher-priority resources. Thesqmeed
analysis on the resource bounds and the GP-based optionizati
is not a globally optimal method due to the approximation
error of worst-case resource interference and task scaleitltyl.
However, we believe that one can benefit from the presented
optimization method in designing a hierarchical systemhveit

Fig. 6: The number of solutions found by the proposed GBrge number of partitioned resources due to its ability idy
method and the heuristic in [5] (Bars), and the averagerdiffees high-quality solution with a high scalability. For futuveork,
of USP2 andUHe (Line).

we plan to apply the presented method to a hierarchical myste
under non-preemptive global scheduling such IMA schedulin

lead to schedulability loss. From this evaluation, we camcbtade
that there is a trade-off between the solution feasibiliyr(GP

1
method) and the solution quality (the heuristic of [5]). W

VI. RELATED WORK [2l
Shin et al. [1] proposed the periodic resource model in a3]
hierarchical scheduling that facilitates the scheduitgbénalysis
of the workload of tasks (child) under a periodic resourgapby  [4]
(parent). The authors presented the exact schedulabilélysis
of a workload set in a periodic resource under RM and EDB]
scheduling and derived the utilization bounds. In [2], Aldzse
et al. analyzed a similar periodic server model by introducing®l
the server availability function. They also developed artstic
algorithm for a server parameter optimization for the mimim [7]
system utilization, in which the search space is reducedstt af  [g]
deadline pointsLipari et al.[3] also considered the same problem
with a different approach of schedulability analysis usangption  [9]
of characteristic function. These three works all usedadine
resource supply models. In contrast, Daeisal. [4], [5] pre-
sented the exact worst-case response time analysis ofuasks |1
deferrable server, periodic server, and sporadic senrgough
an empirical investigation, the authors claimed that thenogd [17)
parameter selection for multiple resources is a holistabf@m
and provided a greedy algorithm, which we compare with o]
GP-based method in Sec. V. Additionally, in [18], Saewatg
al. developed a response time analysis for real-time guarsintee
of tasks under sporadic server and deferrable server. If [1[13]
Easwaran introduced a generalized periodic resource ncadet!
Explicit Deadline Periodi¢EDP) resource, and proposed an exaét!
algorithm for determining the optimal resource parameheat t
minimizes the ratio of length to period of an EDP resource2 Ttﬁl‘c’]
same problem for periodic resource model was addressediby Sh
et al. [13], in which the authors presented a polynomiaktinig)
sufficient algorithm. Both problems were addressed by DeWELIZ)]
et al. [15] and Fisher [14] by proposing fully-polynomial-time
approximation algorithms that improve both the optimabtyd (18]
time complexity. None of these papers, however, consider th
problem of optimizing the parameters of multiple resources
Geometric Programming [7], [8] has been widely applied tg
a broad range of non-linear, non-convex optimization protd [20]
such as digital circuit gate sizing [19], resource allamatin
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