
VirtualDrone: Virtual Sensing, Actuation, and Communication
for A�ack-Resilient Unmanned Aerial Systems

Man-Ki Yoon
University of Illinois at Urbana-Champaign

mkyoon@illinois.edu

Bo Liu
University of Illinois at Urbana-Champaign

boliu1@illinois.edu

Naira Hovakimyan
University of Illinois at Urbana-Champaign

nhovakim@illinois.edu

Lui Sha
University of Illinois at Urbana-Champaign

lrs@illinois.edu

ABSTRACT
As modern unmanned aerial systems (UAS) continue to expand the
frontiers of automation, new challenges to security and thus its
safety are emerging. It is now di�cult to completely secure modern
UAS platforms due to their openness and increasing complexity.
We present the VirtualDrone Framework, a so�ware architecture
that enables an a�ack-resilient control of modern UAS. It allows
the system to operate with potentially untrustworthy so�ware
environment by virtualizing the sensors, actuators, and communi-
cation channels. �e framework provides mechanisms to monitor
physical and logical system behaviors and to detect security and
safety violations. Upon detection of such an event, the framework
switches to a trusted control mode in order to override malicious
system state and to prevent potential safety violations. We built
a prototype quadcoper running an embedded multicore processor
that features a hardware-assisted virtualization technology. We
present extensive experimental study and implementation details,
and demonstrate how the framework can ensure the robustness of
the UAS in the presence of security breaches.

CCS CONCEPTS
•Security and privacy →Systems security; •Computer sys-
tems organization→Embedded and cyber-physical systems;
Robotics;

KEYWORDS
Unmanned Aerial Systems, Security, Virtualization
ACM Reference format:
Man-Ki Yoon, Bo Liu, Naira Hovakimyan, and Lui Sha. 2017. VirtualDrone:
Virtual Sensing, Actuation, and Communication for A�ack-Resilient Un-
manned Aerial Systems. In Proceedings of the 8th ACM/IEEE International
Conference on Cyber-Physical Systems, Pi�sburgh, PA USA, April 2017 (ICCPS),
12 pages.
DOI: h�p://dx.doi.org/10.1145/3055004.3055010

�is work was carried out in part in the Intelligent Robotics Laboratory, University
of Illinois. �is work is supported in part by grants from NSF CNS 13-02563 and
Navy N00014-14-1-0717. Any opinions, �ndings, and conclusions or recommendations
expressed here are those of the authors and do not necessarily re�ect the views of
sponsors.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICCPS, Pi�sburgh, PA USA
© 2017 ACM. 978-1-4503-4965-9/17/04. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3055004.3055010

1 INTRODUCTION
�e boomingUnmannedAerial Systems (UAS) industry holds tremen-
dous potential to boost productivity and the economy. In addition to
military use cases, UAS platforms have already been experimented
in many civil uses, such as delivery, surveillance, transportation,
and journalism, to name a few. With �ight intelligence and auton-
omy enabled by modern computing and communication technolo-
gies, UAS are ubiquitously networked as an important component
for Internet of �ings.

�e concern about UAS security is growing with the increasing
demand on advanced functionalities and thus their increasing ca-
pabilities. �e increased computational power and connectivity
in modern UAS, and open-so�ware environment (both operating
system and applications) expose hitherto unknown security vulner-
abilities. �reats to such systems are growing both in number as
well as sophistication, as demonstrated by recent a�acks [8, 9, 16].
A successful a�ack on safety-critical systems like UAS can result in
the safety of such systems being compromised, leading to disastrous
e�ects, from loss of human life to damages to the environment.

Hence, in order to fully integrate UAS into the current airspace,
we need an a�ack-resilient UAS platform to assure the safety of
modern UAS and the environment. In this paper, we propose Virtu-
alDrone, a so�ware framework to tackle security challenges and
achieve assured autonomy in modern UAS platforms. �e frame-
work aims to achieve cyber a�ack-resilient control of UAS even in
the event of a security violation. For this, it provides two separate
control environments – the normal control environment that allows
the user to fully control the UAS with advanced functionalities,
and the secure control environment that provides only a minimal
set of capabilities for a safe control in order to minimize the a�ack
surface. In normal circumstances, a UAS operates in the normal
control environment, utilizing advanced but potentially untrusted
applications. A security and safety monitoring module, which runs
in the secure environment, continuously monitors the physical
and logical states of the UAS in order to detect safety and security
violations. Upon detection of such an event, the secure control
environment takes the control of the UAS, limiting unreliable, un-
trustworthy functionalities. �en, the trusted controller drives the
control of the UAS while a corrective action takes place.

For a clean separation between the two control environments,
we take advantage of modern embedded processor that features
hardware-assisted virtualization technology. We sandbox the nor-
mal control environment in a virtual machine to isolate potential
security breaches. �e secure control environment runs directly
on the host machine, acting as if it is a hardware security module

ICCPS, April 2017, Pi�sburgh, PA USA M.-K. Yoon et al.

but with a higher �exibility due to so�ware control. �e virtualiza-
tion of sensor, actuator, and communication is the key element of
the VirtualDrone framework. We virtualize these devices to pro-
tect them from potential threats on the integrity and availability
by abstracting away low-level details and by controlling accesses.
�e virtual communication also enables an authorized operator to
override suspicious behaviors of the normal control environment,
by providing a hidden communication channel. �e virtualization
also allows for the use of a rich set of existing security techniques
such as virtual machine introspection [14]. Furthermore, multicore
processors, which become more prevalent in modern embedded
computing systems, enable concurrent execution of the normal and
secure control environments and also run-time safety and security
monitoring e�ciently on the same chip.

Our paper makes the following contributions:

• We introduce a novel framework, VirtualDrone, a so�ware ar-
chitecture that enables a cyber a�ack-resilient UAS platform
by safeguarding critical system resources using a virtualization
technique on a multicore processor.

• We implemented the framework on a prototype quadcopter using
an o�-the-shelf embedded computing board that runs a quad-
core processor with hardware-assisted virtualization. Our im-
plementation aims to use existing open-source so�ware stacks
without any modi�cations to the host and guest operating sys-
tems as well as the virtual machine monitor.

• We present case studies to illustrate the e�ectiveness and versa-
tility of the framework. �rough experimental validations we
demonstrate how the framework provides an integrated platform
to defend against various types of a�acks.

2 BACKGROUND
Modern UAS Computing Platform: General-purpose operat-
ing systems, especially Linux-based OS variants, are becoming
the leading OS for intelligent vehicles [7, 10], enabling the indus-
try to promote more intelligent applications. �anks to manufac-
turing advancement, embedded systems can run on light-weight
computing platforms, such as Raspberry Pi [5], �alcomm Snap-
dragon �ight control board [10], and Intel’s Aero board [12]. Many
computation-intensive applications such as computer vision and
complex navigation programs can now run onboard to unleash
advanced capabilities of modern UAS computing platforms. Appli-
cations developed for general-purpose systems can also be ported
to these platforms with minimal migration e�orts. Moreover, these
systems provide convenient networking interface such as WiFi and
cellular network which increases connectivity and usability of the
platforms. Meanwhile, many UAS applications are community-
supported open-source applications [1]. �ey allow for adding new
features, tuning the performance, etc. However, the open nature of

Safety
Controller

Complex
Controller

Safety
Decision
Module

Physical System
Actuators

Sensors
Sensor dataSensor data

Actuation

Figure 1: Simplex architecture.

the so�ware environment, in conjunction with the increased capa-
bilities and complexities of the modern UAS platforms, inevitably
introduce more security vulnerabilities to UAS.

Simplex Architecture: �e Simplex architecture [24, 27], shown
in Figure 1, is a so�ware solution that enables the use of a high-
performance (with the purpose of system performance optimiza-
tion), potentially unveri�able controller (due to complex so�ware
structure) in a safe manner; a high-assurance control is guaranteed
even when the complex controller fails due to, for example, so�ware
bugs or unreliable logic. �is is achieved by running a safety con-
troller, which has a limited level of performance but is robust, in
parallel. Sensor data from the physical system is fed to both con-
trollers, each of which individually computes actuation commands
using their own control logic. Under normal circumstances, the
physical plant is driven by the complex controller. �e safety deci-
sion module plays a critical role in assuring the safety of the system;
it continuously monitors physical states of the plant and checks
safety violations, determined by a safety envelope. If such a viola-
tion is detected, the control is transferred to the safety controller
to guarantee a continuous and robust control of the system.

3 VIRTUALDRONE FRAMEWORK
�e increasing security challenges posed on the modern UAS plat-
forms make it infeasible to completely secure them because there
exist many entry points that are vulnerable to potential security
a�acks. �e main idea that we propose in this paper is that of a
so�ware framework to achieve an a�ack-resiliency. �e framework
isolates a normal but untrustworthy execution environment from a
trusted one that (i) manages real I/O operations, (ii) continuously
monitors for detection of security and safety violations by the for-
mer and (iii) takes back the control of the physical system in such
an event. We achieve this by taking advantage of modern embed-
ded processor that features virtualization technology and increased
computing power due to multiple cores.

3.1 High-level Framework
�e VirtualDrone framework runs two separate control environ-
ments that provide di�erent levels of functionalities and capabilities
and thus require di�erent degrees of protection.

Normal Control Environment (NCE): It corresponds to the com-
plex controller in the Simplex architecture (see Figure 1) that runs
so�ware components for any normal function of UAS. �is includes
advanced �ight and mission controls, and supplementary so�ware
such as image processing and networking applications. �ese typ-
ically require external networking (which could be insecure) for
status reporting, data transfer, administration, etc. Also, o�en they
are complex, third party-developed, and/or subject to frequent up-
dates/upgrades, which hinders pre-veri�cation or certi�cation on
them. Hence, these types of so�ware components running in the
NCE are more susceptible to security threats.

Secure Control Environment (SCE): It runs a minimal set of
so�ware components that are critically required to control the UAS
even when the normal environment is completely taken over by an
adversary and does not function. A security and safety monitoring
module in the SCE thus not only monitors the physical state of the
system but also implements a set of security monitors to detect
potential security violations. �e so�ware components running
in the SCE are static since they are designed for safety purpose

VirtualDrone Architecture for A�ack-Resilient UAS ICCPS, April 2017, Pi�sburgh, PA USA

Initialization

Time

Initialization

Secure Control Mode

Ready

Control Control

Control Control Control

Normal Control Mode

SCE

NCE

Secure Control Mode

Control

Control

Violation

Active Active

Inactive

Security and Safety Monitoring

Figure 2: Switching between the SCE and the NCE.

and thus require simple so�ware structure and that a signi�cant
amount of analysis is carried out post-design/implementation. Also,
they require no or infrequent updates once deployed.

We call the system is in virtual control mode if the system is
driven by the controller running in the NCE (i.e., virtual machine).
By contrast, the system is in host control mode if the system is
driven by the trusted controller in the SCE (i.e., on the host). In
normal circumstances, the system is in the virtual control mode
(i.e., NCE), as illustrated in Figure 2, providing the user with the full
functionality. Upon detection of the event of a security or safety
violation, the SCE takes back the control of the system in order to
override the malicious behavior and to maintain the system in a
controllable state.

Figure 3 presents the high-level overview of the VirtualDrone
framework. �e key components in the framework are (i) the virtual
machine that sandboxes the full-featured but untrusted operations
including the control and other applications (e.g., mission, imaging,
networking), (ii) the virtualized sensors (e.g., inertial-measurement
unit), actuators (e.g., motors), communication channel (e.g., teleme-
try with the ground station) for use by the normal environment,
(iii) the interface between the real I/O devices and the virtualized
ones, (iv) the security and safety monitor that continuously moni-
tors on the logical and physical behaviors of the system driven by
the normal environment, and lastly (v) the trusted controller for a
robust backup and recovery. It should be noted that the controller
running in the NCE could have been fully veri�ed. However, it
is deemed untrustworthy because of potential direct and indirect
threats by other so�ware components residing together.

�e VirtualDrone framework bene�ts from a multicore processor
by being able to run the normal and secure environments in parallel.
�e la�er can continuously perform safety and security checks,
and real I/O operations while the former is carrying out its normal
operations, which are not possible on a single core processor.

3.2 Assumptions and Adversary Model
• Since we utilize a virtualization technique for the isolation of

potentially untrustworthy so�ware components, the virtual ma-
chine monitor is our trusted computing base.

• �e SCE does not use the external network (i.e., Internet) because,
as explained above, the so�ware components in the SCE are static.
If needed, any updates to the SCE require physical accesses to
the hardware; over-the-air management is not allowed.

• Inside the virtual machine, an adversary may breach any part of
the so�ware stack (the OS kernel, run-time libraries, �le system,
user applications) and can even have root-level access (in the
VM) and thus have full control of any so�ware running in the
VM. �is would enable the a�acker to create a backdoor and
even replace applications with maliciously modi�ed ones by
exploiting vulnerabilities or social-engineering techniques.

Host OS

Hardware

Trusted
Controller

Sensors Actuators

Peripheral Interfaces

Virtual Sensors
& Actuators &

Communication

Guest OS

I/O
Proxy

Secure Control
Environment (Host)

Security &
Safety Monitor

Normal Control
Environment (VM)

Ne
tw

or
k

Communication

Untrustworthy
Controller &

Apps

Figure 3: Overview of the VirtualDrone Framework.

• We do not consider physical a�acks [16, 26], such as GPS spoof-
ing, against the hardware. Such a�acks can be handled by control-
theoretic approaches such as [18, 19].

3.3 Virtual Sensing, Actuation, and
Communication

�e key requirement for sound functioning of the VirtualDrone
framework is a clear separation between the normal and secure
control environments. Otherwise, an a�acker may take over the
trusted controller or the monitoring module so that they could not
function properly when needed. It is also crucial to protect the
sensors and actuators from the untrustworthy components in the
NCE as the a�acker may degrade their availability or even corrupt
them so that the entire system operates with incorrect information
on the physical state. Hence, we use a virtualization technique
to isolate the NCE from what we need to protect, i.e., the SCE.
�e NCE, which runs potentially untrustworthy components, is
sandboxed in a virtual machine. �ey see a controlled environment
con�gured by the secure side that has a direct control on the system
resources.

Virtual Sensing and Actuation: One of the key functions of the
SCE is to protect the sensors and actuators. Our framework does not
allow the NCE to directly access such devices (e.g., passthrough I/O
[17]) because of potential security risks. Instead, as typically done in
virtualization, the I/O operations to/from the devices are emulated.
Most sensors and actuators that we can �nd from UAS are typically
interfaced through certain on-board peripheral communication
protocols such as SPI (Serial Peripheral Interface) and I2C (Inter-
Integrated Circuit). Hence, one possible way is to implement back-
end drivers for such common protocols at the virtual machine
monitor (VMM) layer so that the applications running in the NCE
can transparently use the (front-end) drivers already provided by
the guest OS. However, this approach poses signi�cant challenges
to security and complexity for the following reasons:

• An a�acker running in the NCE might recon�gure some sensor
devices (e.g., changing the sampling rate or gain) in use. Hence,
we would need a proper way to �lter out impermissible I/O trans-
actions from the NCE. �is requires the emulation interface to
have a comprehensive map of device registers that speci�es write
and read permissions for the NCE. Furthermore, some permis-
sion assignments may need to change dynamically depending

ICCPS, April 2017, Pi�sburgh, PA USA M.-K. Yoon et al.

I/O Proxy

Inertial Measurement Unit (MPU9250)

Trusted
Controller

MPU9250
Driver

IMU Interface

IMU Raw
Data

Receiver

Hardware

Host OS
SPI

Untrustworthy
Controller & Apps

IMU Interface

Security &
Safety Monitor

NCE (VM) SCE (Host)

IMU
Feeder
Thread

Host-Guest Communication

Figure 4: Sensor virtualization in the VirtualDrone frame-
work.

on the current high-level context of each I/O operation, which is
hidden in the low-level I/O emulation.

• �e a�acker may even a�empt denial-of-service a�acks on the
shared devices by simply keeping them busy.

• Allowing low-level I/O transactions also requires a tight syn-
chronization between the NCE and the SCE because some I/O
operations are stateful. For instance, a compass sensor used in
our prototype performs a register read in two stages – the device
driver initializes a read by writing the read address, waiting for
10 ms, and then collecting the data. GPS parsing is also done
with a state machine. Without a proper synchronization, the
state of the device could be lost due to interleaving transactions
from the NCE and the SCE. An a�acker in the NCE could use
this very property to hinder a timely, correct use of sensor data
by the SCE (e.g., a�acker may reinitialize a sensor while the SCE
is waiting for a sample). If a synchronization is to be enforced,
the availability could signi�cantly degrade because the device
should be locked for a long time to serve one at a time.
To solve the challenges illustrated above, we take a more passive

approach to sensor and actuator virtualization. �e framework
runs an I/O proxy for each device in the SCE that feeds sensor data
to the NCE. �is is a suitable mechanism because of the periodic
nature of their operations and the small data sizes that we can
�nd from typical sensor and actuator devices on UAS platforms
(see Table 1 in Section 4). Since it is known and �xed how o�en
each sensor data should be sampled, the I/O proxy only needs to
make sure that the SCE feeds the sensor data in time. It feeds raw
sensor data instead of processed ones so that the applications in
the NCE can process them as needed. From the perspective of
the NCE, this sensor feeding looks as if the data is sampled from
invisible, inaccessible devices (i.e., virtual sensors). Hence, the SCE
can also remove certain side-channels (e.g., radio signal strength
indicator) present in sensor information by not providing it to the
NCE especially if this would not degrade the normal functionality
of the NCE.

Figure 4 illustrates how an IMU (Inertial Measurement Unit)
sensor is virtualized in our prototype based on an open-source
autopilot suite [1]. A user-level device driver (MPU9250 Driver)
uses the SPI interface to fetch raw IMU data. �e IMU I/O proxy
runs a feeder thread which sends the current sample to the raw
data receiver running inside the NCE through a host-to-guest com-
munication interface. �e receiver behaves as a device driver from

GCS

Controller

Controller/App

Switch

NCE
SCE

Hidden Channel

Telemetry
Analyzer

Radio
Transceiver

(e.g., Switch to SCE and Return to Home)

Monitors NCE’s Telemetry Data

Figure 5: Telemetry virtualization creates a hidden commu-
nication channel between the SCE and the GCS.

which the higher-level interface (i.e., IMU interface) can fetch sen-
sor data, without needing to know the particular model of the real
device. Hence, no modi�cations are needed in the higher layers.
Actuators (e.g., motors) are virtualized in a similar way as explained
in Appendix A.

Virtual Communication: Applications running in the NCE re-
quire network communication with the external world for data
transfer, remote management, update, etc. Hence, as shown in
Figure 3, the NCE allows users to directly access into the NCE
through, for example, a port forwarding mechanism provided by
the VMM. However, there exist some communication channels that
need to be managed by the SCE – the ground control and the remote
controller.

�e ground control application utilizes a radio communication
channel to establish a telemetry transfer between the ground con-
trol station (GCS) and a vehicle. �e telemetry data, such as the
GPS location and sensor measurement, can be monitored at the
GCS. It can also use telemetry to dynamically control the vehicle
by sending commands for se�ing new waypoints, landing, arming,
etc. However, this communication channel can be exploited by an
adversary who can simply disconnect the channel by disabling the
radio driver. Hence, we virtualize the telemetry communication
channel as done for the sensor and actuator.

�e key bene�t of this mechanism is that it can create a hidden
communication channel for the SCE, as illustrated in Figure 5. For
example, the GCS can send a special command to the SCE, e.g.,
switching to the SCE and returning to the home, which is �ltered
by the telemetry analyzer (part of the telemetry I/O proxy) that
inspects every incoming message. �ese hidden messages are not
relayed to the NCE. We take advantage of this mechanism as a
solution to drone hijacking scenario presented in Section 5.1; upon
a detection of a hijacking a�empt, the GCS commands the SCE
to switch to the host control mode and to return to where it is
launched. We can use the same mechanism to reboot the virtual
machine (a�er the control is switched to the SCE) from the GCS
when a suspicious behavior is observed. Note that an a�acker can
send these special commands. Hence, such commands should be
chosen carefully in such a way that a successful a�empt cannot
lead to a safety hazard.

A hand-held remote controller (see Figure 11 in Section 5) is used
by a human pilot to wire-lessly �y a vehicle. �e communication
is also carried via a radio link (e.g., 2.4 GHz). It is virtualized in
the same fashion as the telemetry radio, and we can also create a
hidden channel. For instance, in our prototype implementation, we
bind one of the switches of the remote controller with the function
that tells the VirtualDrone to switch to the SCE. �e pilot uses
this function to manually control the vehicle when the NCE-driven
vehicle shows abnormal behavior.

VirtualDrone Architecture for A�ack-Resilient UAS ICCPS, April 2017, Pi�sburgh, PA USA

Security & Safety Monitor

Geo-fence

Sensor Data
(IMU, GPS, Battery, …)

Telemetry Command
from GCS

Telemetry Report
from NCE

Actuation Command
from NCE

Attitude Error
from SCEVMI Fake Report

Detector

Safety
Monitor

Command to SCE
(Switch, RTL, …)

Figure 6: Example con�guration of the security and safety
monitor.

3.4 Security and Safety Monitoring
Figure 6 shows an example con�guration of the security and safety
monitor and data �ow, based on the prototype implementation pre-
sented in Section 4. Notice from the �gure (and also from Figure 4)
that the monitor receives the sensor data for analysis. Because
the data are fetched from the trusted environment, the monitor
is guaranteed to use the true measurement for a safety analysis.
Hence, we can detect a�acks that, for example, try to put the vehicle
in an open-loop state or to set wrong control parameters. In our
prototype quadcopter, we analyze the a�itude (i.e., roll, pitch, and
yaw) errors, which are bounded in normal conditions, to detect an
unsafe physical state. One can also implement a control-theoretic
analysis [27]. �e monitor also analyzes the actuation outputs from
the NCE, as shown in Figure 16 in Appendix A, to prevent potential
safety violations. For example, the monitor can upper-bound on
the motor outputs to prevent motor failure due to the a�acker’s at-
tempt to apply abrupt voltage changes. �e monitor can also check
if it receives actuation commands from the NCE at the de�ned
frequency – abnormal pa�erns could be an indicator of a potential
security breach. In order to handle physical a�acks to the sensors,
one can also implement a sensor a�ack detection technique [18, 19]
using the true measurements available in the SCE.

�e SCE also inspects communications between the NCE and
the external world. �e telemetry analyzer, shown in Figure 5, inter-
cepts radio telemetry messages to and from the NCE and provides
them to the monitoring module for analysis. Using this mecha-
nism, one can detect an a�acker that, for example, sends out fab-
ricated messages (e.g., �ight path report replayed or generated by
a so�ware-in-the-loop simulation) in an a�empt to misinform the
ground control station about the true physical and logical states.

�e monitoring module can also host critical safety measures
that otherwise would run at the same layer as untrustworthy ap-
plications. For instance, geo-fencing typically runs as a part of an
autopilot so�ware. An a�acker can simply disable it or modify the
con�guration to �y the vehicle into a no-�y-zone. Since this type
of function does not require external interaction, it can run in the
SCE using the true sensor measurements (e.g., GPS location).

Virtualization also enables the use of virtualization-based secu-
rity measures, for instance, virtual machine introspection (VMI) [14].
�e monitoring module in the SCE can implement various VMI
techniques to monitor the behavior of the applications and the guest
OS running in the NCE. For example, through interfaces provided
by the VMM, the module can continuously check the integrity of
the kernel code and/or its critical data structures (e.g., interrupt
vector table, process and module lists) for detection of rootkits, and
inspect network connections and packets for detection of back-
doors, and so on. Upon a detection, the framework may switch to
the SCE as a preventive action, from which moment comprehensive

Navio+
(Sensor board)

Raspberry PI 2
(Quad-core ARM, Linux)

GPS

Telemetry
Radio (915MHz) Radio Receiver for

Remote Control (2.4GHz)

Figure 7: �adcopter prototype implementation with Rasp-
berry Pi 2 and Navio+ sensor boards.

Security & Safety Monitor

Virtual Machine (QEMU)

Linux

Hardware

ArduPilot

IMU Barometer

Compass

Motors RC

DMASPI I2C

Virtual Sensors
& Actuators &

Communication

Linux

ArduPilot

I/O Proxies

Host User Space

ADC

KVM

HW

AppApp

Net

Network

Po
rt-

Fo
rw

ar
di

ng

I
C

R
G

A
M

N
av

io
+

GPS
Telemetry

Radio

Serial

App

B

TSo
ck

et

Se
ria

lP
or

t

WiFi

Figure 8: VirtualDrone implementation on the prototype.

security analyses (e.g., deep memory scan, rebooting VMs) can take
place without losing control of the vehicle.

4 IMPLEMENTATION
In this section, we present the implementation details for our proto-
type of the VirtualDrone framework on a quadcopter drone, shown
in Figure 7, running an open-source autopilot on an embedded
computing board.

System Implementation: We implemented theVirtualDrone frame-
work on a Raspberry PI 2 Model B (RPI2) board [5], as depicted
in Figure 8. It has a quad-core ARM Cortex-A7 CPU, each core
of which runs at 900 MHz, and has a main memory of 1 GB. �e
processor features the ARM Architecture Virtualization Extension.
It enables running VMs with unmodi�ed guest OS using KVM
(Kernel-based Virtual Machine).

On the host, we run Linux 3.18. No modi�cation was made to
the kernel, except that we enabled virtualization with KVM in the
con�guration. On top of the host OS, we run unmodi�ed QEMU
v2.3 [4], an open-source virtual machine monitor. As explained
in Section 3.2, QEMU, i.e., the VMM, is our trusted computing base
(TCB). We created one VM that emulates an ARM Versatile Express
A15 board (which runs a Cortex-A15 CPU, the same ARMv7 ar-
chitecture as Cortex-A7) and assigned one of the four cores of the
processor exclusively to the virtual machine. In the virtual machine,
we run unmodi�ed Linux 4.3.

We use QEMU’s port forwarding mechanism to open an SSH (Se-
cure Shell) port on the virtual machine, through which a user logs
in to launch, update, manage services and applications. More ports
can be open to the virtual machine using the port forwarding mech-
anism. In this paper, we assume the QEMU’s port forwarding mecha-
nism is secure.

In our prototype, we chose to use Linux as the host OS. However,
it is desirable to use a formally veri�ed OS on the host instead of

ICCPS, April 2017, Pi�sburgh, PA USA M.-K. Yoon et al.

Table 1: �e rate and amount of data transfer between the
secure and normal control environments.

Component Direction Rate Size
IMU Host→ VM 200 Hz 14 bytes

Barometer Host→ VM 25 Hz 4 byte
Compass Host→ VM 50 Hz 24 bytes

ADC Host→ VM 1.67 Hz 5 bytes
GPS Host→ VM 5 Hz Max 1K bytes

Motor Output VM→ Host 200 Hz 16 bytes
RC Input Host→ VM 55 Hz 16 bytes
Telemetry Host↔ VM Vary Vary

such a general-purpose, monolithic kernel. Our choice of Linux is
to minimize engineering e�orts to port VMM, autopilot, and sensor
and actuator device drivers to a new OS. Our implementation did
not require any modi�cations to the host OS, VMM, and guest OS.

Autopilot: We stack Navio+ sensor board [2] on top of the Rasp-
berry PI 2 (as shown in Figures 7 and 8) to provide various sensor
data for �ight control. �e NCE (i.e., the virtual machine) runs the
open-source ArduPilot (a.k.a. APM) [1] autopilot suite as the �ight
control so�ware for our quadcopter drone. APM combines sensor
data and RC �ight maneuver commands to compute correct inputs
for the four motor-prop units, which are sent by the actuator ports
of the Navio+ board to drive the actuators.

As shown in Figure 8, we run one instance of APM in the SCE
(i.e., the host). �e Simplex architecture suggests the use of a robust
controller for the safety controller in order to handle and recover
from physical failures. For demonstration purposes, we chose to
use the APM’s default PID controller as the trusted controller. In a
production implementation, however, a high-assurance controller
would be used.

Virtualization: �e I/O proxy, shown in Figures 4 and 8, runs
one feeder thread for each sensor. Each sensor retrieves a new
sample at a �xed frequency. Each feeder thread then sends the
newly available data to the virtual machine using a host-guest
communication channel. Appendix B explains how the sensors
and the actuators are virtualized in our prototype implementation,
which are also summarized in Table 1.

Host-GuestCommunication: We use QEMU’s virtio-serial for
data transfer between the host (i.e., I/O proxy threads) and guest
systems. It creates virtual serial ports in the guest, each of which
is mapped to a character device such as Unix domain socket, pipe,
TCP/UDP port, etc. in the host side. We created eight virtual
serial ports for the components listed in Table 1. �e I/O proxy
threads in the SCE use eight Unix domain sockets to communicate
with the virtual machine. One may use other types of host-guest
communication mechanisms such as shared memory. In our im-
plementation, we aimed to utilize an existing infrastructure that
does not require any modi�cation or insertion to the stock QEMU.
�e virtio-serial is adequate enough to handle the low-speed,
low-volume data transfer for sensor/actuator/communication vir-
tualization. We assume virtio-serial is trustworthy as it is part
of QEMU, the TCB.

Virtual Telemetry: �e APM uses a serial port (UART) for teleme-
try radio transceiver.1 Hence, the NCE-side APM does not need any
1Our prototype copter also supports WiFi, and APM’s telemetry can be transferred
through UDP or TCP as well. �e APM abstracts these away by treating them as UART
communication.

addition/modi�cation for the virtual telemetry. �e SCE-side APM
reads/sends telemetry data from/to the real UART port, performs a
�ltering (as described in Figure 5), and relays to/from the virtual
machine using the virtual-serial port mechanism explained above.
�e APM uses MAVLink protocol (Micro Air Vehicle Communica-
tion Protocol).2 MAVLink contains all interface functions to control
the vehicle, monitor states, change parameters, etc. Each MAVLink
message size and frequencies vary depending on the message type.
�e messages typically have small size (the maximum is 263 bytes)
and low frequency (a few Hz).

5 EXPERIMENTS
We now present case studies that demonstrate how the Virtual-
Drone framework can detect and prevent various types of security
and safety violations.

5.1 Case Study
To demonstrate the e�ectiveness and versatility of our framework,
we consider the following �ve scenarios. Note that we are not
proposing new detection/mitigation solutions for the use cases pre-
sented here. Each scenario could be handled in many di�erent ways.
For instance, hijacking can be easily defeated by a simple authen-
tication of the communication. We instead intend to demonstrate
how an integrated platform, i.e., the VirtualDrone framework, can
defend against various a�ack scenarios that would otherwise have
been handled separately with potentially con�icting requirements.
We also note that these a�acks can occur in a number of di�erent
forms. In this paper, we consider a pessimistic scenario; the a�acker
can know the HW/SW con�guration and even gain a root access
to the NCE.

Attacks on Safety: An adversary can launch an a�ack on the
safety of a vehicle by, for example, degrading the availability of
critical sensors (e.g., IMU) or actuators, or the control performance
(e.g., by changing PID gains). �e worst-case scenario, from the
vehicle’s safety perspective, is when the a�acker disables the �ight
controller while the vehicle is �ying. �is immediately leads the
system to an open-loop state, which will cause the vehicle to crash.
To demonstrate this type of a�ack, we consider an extreme sce-
nario in which the �ight controller is killed by an a�acker. �e
a�acker can launch this a�ack by, for example, entering through a
backdoor, replacing the control program with one that self-crashes,
or installing a rootkit. We do not assume speci�c scenario of how
it is launched. We implemented a Linux kernel module that 1) �nds
the APM autopilot process from the kernel’s process list and then
2) kills the process. �e a�acker could achieve the same goal by
causing the virtual machine to crash.

�ere could be several ways to detect this type of a�ack. One may
use a heartbeat mechanism, which however can be circumvented by
an a�acker that impersonates the �ight controller. Instead, we take
advantage of the SCE’s ability to monitor the true physical state of
the vehicle. We use the a�itude control performance measured at
the SCE. At each control loop, the SCE-side controller calculates the
errors of the rate control on the pitch, roll, and yaw of the copter.
During a stable �ight, the rate errors are bounded, as shown in
Figure 17 in Appendix C, because the �ight controller is active to
minimize the rate errors. In case of an open-loop state, the �ight
controller cannot work to minimize the rate errors. Due to the fact
that a multirotor system is naturally an unstable �ight platform,
2h�p://qgroundcontrol.org/mavlink/start

http://qgroundcontrol.org/mavlink/start

VirtualDrone Architecture for A�ack-Resilient UAS ICCPS, April 2017, Pi�sburgh, PA USA

86.5 87 87.5 88 88.5 89 89.5 90 90.5 91
Time (s)

-10000
-7500
-5000
-2500

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000

R
ol

l,
Pi

tc
h,

 Y
aw

 E
rro

rs

Roll
Pitch
Yaw

86.5 87 87.5 88 88.5 89 89.5 90 90.5 91
Time (s)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

M
ot

or
 o

ut
pu

t (
PW

M
s)

Motor[0]
Motor[1]
Motor[2]
Motor[3]

Open-loop

Kill ArduPilot
process

Safety
Violation

Normal Control Mode
(NCE)

Secure Control Mode
(SCE)

Figure 9: �e motor outputs (top) and the roll, pitch, yaw
errors (bottom) measured at the SCE. �e attacker in NCE
kills the �ight controller, which leads the copter to an open-
loop state. �e SCE takes the control when the errors grow
beyond the thresholds, a�er which the copter is stabilized.

the rate errors will increase quickly beyond the normal bound.
�erefore, a properly chosen threshold of rate errors can be used in
detection of �ight safety violations. Hence, the security and safety
monitoring module in the SCE continuously checks if the errors
grow beyond the threshold. Upon a safety violation, the framework
switches to the secure control mode. Appendix C explains how the
APM’s a�itude control works and how we obtained the threshold
of rate errors.

Figure 9 shows the results of this experiment. While the drone
was in the virtual control mode, the a�acker activated the rootkit
mentioned above at time around 88.8 sec, at which moment the
APM process running in the VM is killed. �e top plot in Figure 9
shows the motor outputs (4 channels) from the motor driver in the
SCE. As we can see, the drone was in an open-loop state for about
300 ms. �e bo�om plot shows the a�itude errors also measured
at the SCE. �e drone becomes unstable (i.e., the errors are far
away from zero) for a moment because no actuation is applied to
the motors during the open-loop period. Upon the detection of
the violation on the errors (at time around 89.1 sec), the control is
switched to the SCE from which moment the control loop is closed
and the drone returns to a stable state.

We also tested a scenario when the control parameters are modi-
�ed during �ight. Figure 10 shows the a�itude control errors when
this happens. At time around 164.3 sec, a MAVLink message was
sent via radio to change the proportional gain (180 times bigger than
the original value) of the a�itude controller. As can be seen, the
drone became unstable immediately. �e safety module detected
the large roll errors, a�er which the SCE took the control.

Time (s)
162 164 166 168 170 172 174

R
ol

l,
Pi

tc
h,

 Y
aw

 E
rro

rs

-20,000

-10,000

0

10,000

20,000

30,000

40,000

50,000

60,000
Roll
Pitch
Yaw

Normal
Control Mode

(NCE)

Change
Proportional

Gain

Secure Control Mode
(SCE)

Figure 10: �e roll, pitch, yaw errors when the proportional
gain of the attitude controller is set to an abnormally high
value. �e SCE immediately stabilizes the drone upon the
detection of the unstable physical state.

Hijacking: It has been demonstrated that it is possible to hijack a
drone by exploiting the MAVLink protocol [9]. �e idea is to send a
command that sets a new �ight plan through the telemetry channel.
�e telemetry radio pair of the drone and the ground control station
(GCS) distinguish themselves from others by their unique NetID
and the frequency band. Hence, by using the same NetID and radio
band and running the same �rmware (which decodes the MAVLink
packets) as the target vehicle, the a�acker can send any MAVLink
messages to the target.

To demonstrate this a�ack scenario, we used three telemetry
radio (i.e., for the GCS, the drone, and the a�acker) that utilize the
same frequency band (915MHz) and same default con�guration.
Since the out-of-the-box default NetIDs are same, the a�acker’s
telemetry radio did not need any �rmware modi�cation.3 Figure 11
describes the hijacking scenario. �e drone takes o� at the launch-
ing point (marked as ‘T’) and communicates with the GCS located
at ‘G’. �e pilot �ies the drone along the normal path. �e a�acker,
located at ‘A’, then launches its ground control application. �en, it
sends a new waypoint plan to the drone, which will send it to the
location marked as ’W’. �e a�acker did not need to modify the
3It is possible to �nd out the NetID used between the GCS and the drone by modifying
the �rmware [9].

G

T

A

W

T

A

W

A

G

T

Hijack

Ground Control Station

Launching Point

Attacker

Hijacked Drone

Attacker

Figure 11: �e attacker (‘A’) tries to hijack the drone �ying
along the normal path and to send it to a newwaypoint (‘W’).
�e attacker uses the same telemetry radio as the GCS and
the drone, and unmodi�ed APM Planner GCS.

ICCPS, April 2017, Pi�sburgh, PA USA M.-K. Yoon et al.

G G

T T

A A

W W

(a) Without VirtualDrone (b) With VirtualDrone

Figure 12: (a) �e �ight trajectory of the drone hijacked by
the attacker. It is sent to new location ‘W’ set by the attacker.
(b) �e attacker’s attempt to hijack the drone is detected by
the GCS. Upon the detection, the GCS sends a special com-
mand to the SCE, which switches the control mode to the
SCE and directs the drone to where it was launched.

GCS program (the stock APM Planner 2.04 with default se�ings).
Figure 12(a) shows the �ight trajectory of the drone when it was
successfully hijacked by the a�acker.

While the drone itself cannot detect such a hijacking a�empt,
the GCS can detect it because of unexpected message exchange initi-
ated by the a�acker, as detailed in Appendix D. Hence, we added
the functionality that detects such unexpected messages to our
legitimate GCS. Upon a detection, the GCS commands the drone
to return to where it was launched, as shown in Figure 12(b). �is
takes advantage of the VirtualDrone’s virtual telemetry explained
in Section 3.3; the SCE’s telemetry proxy enables a hidden com-
munication channel between the GCS and the SCE, through which
the former sends the drone a pre-de�ned set of special commands.
In this scenario, the command from the GCS overrides the NCE’s
abnormal operation by switching the drone to the secure control
mode. Note that the a�acker might be able to send the same special
command. However, what it can do at worst is to send the drone
back to the home.

As explained in Section 3.4, the virtual telemetry also enables the
SCE to detect if the NCE is trying to deceive the ground station. For
example, a�er a successful hijacking, the a�acker may report fake
GPS location (by replaying or by generating from SW simulator) to
the GCS so that it looks as if it is �ying on the planned path. �e
telemetry analyzer, however, can detect such a�empts by analyzing
each outgoing MAVLink packet and comparing against the true
location retrieved from the GPS receiver, which is also implemented
on our prototype.

Corrupting Safety Functions: Autopilot programs also support
critical failsafe mechanisms that are activated under certain con-
ditions such as losing radio communication signal or low-ba�ery.
It is in fact easy to corrupt such a safety-critical measure because
typically it can be enabled/disabled remotely through a telemetry
command (hence, an a�acker can send a command via radio, as
done in the hijacking scenario). Moreover, such a mechanism is
o�en implemented as a part of autopilot that runs at the user-level.
Hence, an a�acker who has gained a root access can easily corrupt
it by modifying the con�guration �le or the memory.

4h�p://ardupilot.org/planner2/index.html

No-fly zone

Original Path

Figure 13: Attacker disables the geo-fence andmodi�esWay-
point 3 so that the drone �ies into a no-�y zone. Such a
safety-critical function can be protected by running in the
SCE.

In this case study, the a�acker corrupts the geo-fence mechanism.
Geo-fence employs positioning data such as GPS signal or local
radio-frequency identi�ers to set up a virtual boundary to prevent
the vehicle entering a prohibited zone. �e vehicle position is
monitored at all times such that before the vehicle enters a no-
�y zone, the system could act accordingly to prevent a geo-fence
violation. Corruption of the geo-fence can result in a catastrophic
result; an a�acker may disable the geo-fencing and induce the
vehicle to �y into a congested airspace such as takeo� pathways
for mid-air collision.

To demonstrate this type of a�ack, we developed a rootkit that
disables the geo-fence of APM during a �ight, and sends it into
a no-�y zone. �e rootkit executes this a�ack by modifying the
APM’s memory, as detailed in Appendix E. Our drone was planned
to �y through a path (0-1-2-3) in an autonomous mode as shown
in Figure 13. During the �ight, the a�acker logged into the system
through WiFi and launched the rootkit when the drone was �ying
toward Waypoint 2. �e new Waypoint 3 set by the rootkit is
located inside a no-�y zone, and because the rootkit has already
disabled the geo-fence, the drone consequently �ied into the no-�y
zone, deviating from the original path, as shown in Figure 13.

�e SCE of VirtualDrone provides a protected layer at which
safety-critical functions like geo-fence can be placed. We imple-
mented a simple geo-fence module in the security and safety mon-
itoring module in the SCE. It continuously monitors the current
GPS coordinate and checks it against the list of no-�y zones also
stored at the SCE layer. Upon a violation, a pre-de�ned action is
taken. In our implementation, the SCE takes back the control from
the NCE and returns to where it was launched, as done for the
hijacking scenario explained earlier.

Side-channel: �e virtualization of sensor, actuator, and commu-
nication allows for hiding certain types of information from the
NCE. One of the examples is the RSSI (Received Signal Strength
Indication) that indicates the link quality between a pair of radio
transmi�er and receiver. We especially consider a scenario in which
an a�acker tries to estimate the location of the GCS by observing
the RSSI measured between the vehicle and the GCS. Due to signal
a�enuation, the radio signal is stronger as the vehicle is closer to the
GCS. Hence, one can correlate the RSSI with the GPS coordinate.

http://ardupilot.org/planner2/index.html

VirtualDrone Architecture for A�ack-Resilient UAS ICCPS, April 2017, Pi�sburgh, PA USA

T

1

2

3

4

G

Lat: 40.1626060
Lng: -88.3074907

0 20 40 60 80 100 120 140 160 180
Time (s)

100

120

140

160

180

R
SS

I

0 20 40 60 80 100 120 140 160 180
Time (s)

40.1615

40.162

40.1625

40.163

40.1635

La
tit

ud
e

0 20 40 60 80 100 120 140 160 180
Time (s)

-88.309

-88.308

-88.307

-88.306
Lo

ng
itu

de

Figure 14: �e drone �ies through T-1-2-3-4-1. �e graphs
represent the RSSI (top), the latitude (middle), and the longi-
tude (bottom). An attacker can estimate the location of the
GCS by correlating the RSSI and the GPS information.

Figure 14 illustrates such a possibility of side-channel. �e graphs
in the �gure represents the RSSI (between the drone and the GCS)
and the GPS coordinate (latitude and longitude) measured while
the drone �ies through a path (T-1-2-3-4-1). If the a�acker is able to
obtain these RSSI information, he/she can estimate the location (or
a region) of the GCS by �nding when the RSSI is high. �e results
show quite accurate estimation of the true GCS location (shown in
the map). A complex algorithm will allow for further narrowing
down the location. �e VirtualDrone framework eliminates this
possibility by not providing the RSSI information to the NCE. Note
that RSSI is needed only for the SCE (e.g., switches to the SCE
and then performs a pre-de�ned operation such as return-to-home
when RSSI is low due to the loss of telemetry link). Furthermore,
because of the telemetry virtualization, the NCE cannot even know
if the telemetry is communicated through a radio channel or a
network (e.g., WiFi). In case of the network-based telemetry, the
SCE can even hide the IP address of the GCS.

Virtual Machine Introspection: Many rootkits modify critical
kernel data structures to intercept sensitive data, hide malicious
processes or �les, etc. For a demonstration, we implemented a secu-
rity module that checks the integrity of the system call table of the
guest OS. For this, we chose to utilize an existing interface provided
by QEMU, namely the QEMU Machine Protocol (QMP). It allows host-
side applications to communicate with or control a running QEMU
VM. We created a QMP Unix socket to which our security module
can connect. During the initialization of the VM, the module dumps
the current system call table and stores this initial state in memory.
From then on, the module regularly dumps the current table and
compares it against the one obtained initially. Using this technique,
we were able to detect a known rootkit, modhide1, that hijacks the
open call to hide itself from the kernel module list.

Note that we are not proposing new rootkit detection methods
here. We instead intend to demonstrate how the VirtualDrone
framework can handle such a stealthy security violation. One can
use a rich set of library for virtual machine introspection such as
LibVMI [3], which we leave for future work.

5.2 Discussion
Sensor attack: �e VirtualDrone framework cannot handle phys-
ical manipulations on the sensors such as GPS spoo�ng. �ese
types of a�acks are called sensor a�ack or false data injection a�ack,
and typically tackled by control-theoretic approaches [18, 19]. �e
requirement, however, is that the methods themselves should be
protected from cyber-a�acks. Hence, one can implement such a

Time (sec)
0 20 40 60 80 100 120 140 160 180

V
o

lt
a

g
e

 (
v
)

10.5

11

11.5

12
Without VirtualDrone
With VirtualDrone

Figure 15: Voltage drop at the battery for 3-minutes of hov-
ering with and without the VirtualDrone framework.

technique on the SCE layer, speci�cally in the security and safety
monitoring module, as it can see the true (but potentially physically
manipulated) sensor measurements.

Power consumption: Since UAS typically runs on ba�ery power,
we compare the power consumption of the prototype drone with
and without the VirtualDrone framework. In order to compare the
power consumption in a controlled environment (e.g., eliminating
varying disturbance due to wind), we �ew the drone indoors, hov-
ering it at a �xed position. We �ew the drone for about 3 minutes
with the same fully-charged ba�ery and measured the voltage drops
during the �ight.

Figure 15 shows that the VirtualDrone does not impose over-
head on the power consumption. �is is because the majority of
the power is consumed by the motors to li� the copter. �e power
consumption by RPI2 board and the Navio+ sensors cannot exceed
5 Wa�s which is the upper bound of the power supply by the power
module. �at is, the power consumption by any on-board comput-
ing cannot be more than 5 Wa�s. We calculated the average power
of the 3-minutes of �ights, which ranged between 114 and 118
Wa�s. Hence, the power consumption by any on-board computing
can be ignored. Due to the fact that the upper bound of power
consumption by computing is two orders of magnitude smaller
than that of the motors, we conclude that the power consumption
overhead of running the VirtualDrone is negligible.

6 RELATEDWORK
Current unmanned vehicle systems are very vulnerable to cyber-
a�acks as demonstrated by recent a�acks. Maldrone [8] is a so�-
ware virus that can compromise drones based on ARM Linux sys-
tems. �e malware can open a backdoor in the Parrot AR Drones,
infect on-board so�ware and take over the control. Pleban et al.
[23] presented analysis details on the insecure WiFi network and
OS user management of the Parrot AR Drones. Also, researchers
demonstrated a hijacking of DJI consumer drones by emulating
fake GPS signals using low-cost so�ware de�ned radio tools [11].
It is also possible to inject MAVLink message into a radio link by
modifying the radio �rmware, and hijack a �ying drone [9], which
we reproduced for our case study. Javaid et al. [15] addressed some
vulnerabilities of wireless communications channels in unmanned
aerial vehicles. Commercial airplanes are also facing with such
security problems. �e Actel ProASIC chip used in early Boeing

ICCPS, April 2017, Pi�sburgh, PA USA M.-K. Yoon et al.

787 had a backdoor [6] that could allow an a�acker, via internet
connection or as a passenger, to use entertainment system in the
aircra� to take over the control of the aircra�.

Advances in virtualization technologies have enabled Virtual
Machine Introspection (VMI) [14], in which a trusted VM or the
VMM monitors and analyzes the state of applications or OS running
inside untrusted VMs. By placing the detection mechanism outside
of the VM it monitors (i.e., the untrusted VMs), VMI overcomes
the vulnerability of the traditional host-based intrusion detection
systems. VMIs have been applied to process execution monitor-
ing [25], control-�ow integrity check [22], virtual memory and disk
monitoring [20], dynamic information �ow tracking [29], etc.

Hardware-based approaches can also be used to isolate vulnera-
ble components. ARM TrustZone [28] is an architectural extension
that allows a coexistence of secure world and normal world using
the same on-chip hardware. Access to certain secure components
are blocked depending on the execution mode. Azab et al. [13]
proposed TZ-RKP which protects the integrity of operating system
kernel that runs on a normal world by running a security monitor
in the secure world. Zhou et al. [33] use ARM processors memory
domain support for so�ware fault isolation. Yoon et al. [31] takes
advantage of the redundancy of a multicore processor; a core is used
to monitor the execution time of a real-time application running
on a monitored core. It was extended to monitor memory behavior
for system-wide anomaly detection [32] and to protect in-place se-
curity monitoring module [30]. �ese hardware-based approaches
provide be�er security than virtualizations can do because the lat-
ter relies on the security and correctness of the VMM which is
susceptible to a�acks [21]. However, virtualization-based methods
have advantages in that no hardware modi�cation is needed and
that they are more �exible due to the so�ware control.

7 CONCLUSION
In this paper, we presented the VirtualDrone framework as a solu-
tion to increasing security threats to unmanned aerial systems. �e
use of this framework allows system designers (or users) to run
advanced �ight applications in an untrustworthy environment. Our
prototype implementation requires a minimal e�ort to build the
framework on an o�-the-shelf platform with open-source so�ware
stack. �rough case studies, we demonstrated that the framework
provides an integrated way to handle various security threats that
would otherwise have required potentially con�icting requirements.
Nevertheless, there still remains challenges for practical use of the
framework. We used a full-featured autopilot for both normal
and safety controllers in the current implementation, simply for a
demonstration purpose only. It is desirable to run a fully-veri�ed
control so�ware in the SCE. Hence, we plan to adopt and implement
a high-assurance controller.

REFERENCES
[1] ArduPilot Autopilot Suite. h�p://www.ardupilot.org
[2] Emlid NAVIO+. h�ps://docs.emlid.com/navio/
[3] LibVMI. h�p://libvmi.com/
[4] QEMU. h�p://wiki.qemu.org
[5] Raspberry PI 2 Model B.

h�ps://www.raspberrypi.org/products/raspberry-pi-2-model-b/
[6] Cyber-a�ack concerns raised over Boeing 787 chip’s ’back door’. �e Guardian.

h�ps://www.theguardian.com/technology/2012/may/29/
cyber-a�ack-concerns-boeing-chip.

[7] 3DR’s Solo Drone Boasts Dual Linux Computers Run-
ning Dronecode. h�ps://www.linux.com/news/
3drs-solo-drone-boasts-dual-linux-computers-running-dronecode

[8] A hacker developed Maldrone, the �rst malware for drones. Se-
curity A�airs. h�p://securitya�airs.co/wordpress/32767/hacking/
maldrone-malware-for-drones.html.

[9] Hijacking drones with a MAVLink exploit. h�p://diydrones.com/pro�les/blogs/
hijacking-quadcopters-with-a-mavlink-exploit.

[10] �alcomm Goes Ubuntu for Drone Reference Platform. h�ps://www.linux.com/
news/qualcomm-goes-ubuntu-drone-reference-platform

[11] Watch GPS A�acks �at Can Kill DJI Drones Or Bypass White House
Ban. Forbes. h�p://www.forbes.com/sites/thomasbrewster/2015/08/08/
qihoo-hacks-drone-gps/#26431a2853fe.

[12] Intel Aero Compute Board. h�p://www.intel.com/content/www/us/en/
technology-innovation/aerial-technology-overview.html

[13] Ahmed M. Azab, Peng Ning, Jitesh Shah, �an Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision Across Worlds: Real-time
Kernel Protection from the ARM TrustZone Secure World. In the ACM Conference
on Computer and Communications Security.

[14] Tal Gar�nkel and Mendel Rosenblum. 2003. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In the Network and Distributed Sys-
tems Security Symposium.

[15] Ahmad Y. Javaid, Weiqing Sun, Vijay K. Devabhaktuni, and Mansoor Alam. 2012.
Cyber security threat analysis and modeling of an unmanned aerial vehicle
system. In the IEEE Conference on Technologies for Homeland Security.

[16] Andrew J. Kerns, Daniel P. Shepard, Jahshan A. Bha�i, , and Todd E. Humphreys.
2014. Unmanned Aircra� Capture and Control Via GPS Spoo�ng. Journal of
Field Robotics 31 (2014).

[17] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda. 2006. High Per-
formance VMM-bypass I/O in Virtual Machines. In the USENIX Annual Technical
Conference.

[18] Y. Mo and B. Sinopoli. 2015. Secure Estimation in the Presence of Integrity
A�acks. IEEE Trans. Automat. Control 60, 4 (2015), 1145–1151.

[19] Miroslav Pajic, James Weimer, Nicola Bezzo, Paulo Tabuada, Oleg Sokolsky, Insup
Lee, and George J. Pappas. 2014. Robustness of A�ack-Resilient State Estimators.
In the ACM/IEEE International Conference on Cyber-Physical Systems.

[20] Bryan D. Payne, Martim Carbone, and Wenke Lee. 2007. Secure and Flexible
Monitoring of Virtual Machines. In the Annual Computer Security Applications
Conference.

[21] Gábor Pék, Andrea Lanzi, Abhinav Srivastava, Davide Balzaro�i, Aurélien Fran-
cillon, and Christoph Neumann. 2014. On the Feasibility of So�ware A�acks
on Commodity Virtual Machine Monitors via Direct Device Assignment. In the
ACM Symposium on Information, Computer and Communications Security.

[22] Nick L. Petroni, Jr. and Michael Hicks. 2007. Automated Detection of Persistent
Kernel Control-�ow A�acks. In the ACM Conference on Computer and Communi-
cations Security.

[23] Johann-Sebastian Pleban, Ricardo Band, and Reiner Creutzburg. 2014. Hacking
and securing the AR.Drone 2.0 quadcopter: investigations for improving the
security of a toy. In the SPIEMobile Devices andMultimedia: Enabling Technologies,
Algorithms, and Applications.

[24] Lui Sha. 2001. Using Simplicity to Control Complexity. IEEE So�w. 18, 4 (2001),
20–28. DOI:h�p://dx.doi.org/dx.doi.org/10.1109/MS.2001.936213

[25] Deepa Srinivasan, Zhi Wang, Xuxian Jiang, and Dongyan Xu. 2011. Process Out-
gra�ing: An E�cient ”out-of-VM” Approach for Fine-grained Process Execution
Monitoring. In the ACM Conference on Computer and Communications Security.

[26] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Rasmussen, and Srdjan
Capkun. 2011. On the Requirements for Successful GPS Spoo�ng A�acks. In the
ACM Conference on Computer and Communications Security.

[27] X. Wang, N. Hovakimyan, and L. Sha. 2013. L1Simplex: Fault-tolerant control
of cyber-physical systems. In the ACM/IEEE International Conference on Cyber-
Physical Systems.

[28] Peter Wilson, Alexandre Frey, Tom Mihm, Danny Kershaw, and Tiago Alves.
2007. Implementing Embedded Security on Dual-Virtual-CPU Systems. IEEE
Des. Test 24, 6 (Nov. 2007), 582–591.

[29] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda. 2007.
Panorama: Capturing System-wide Information Flow for Malware Detection and
Analysis. In the ACM Conference on Computer and Communications Security.

[30] Man-Ki Yoon, Mihai Christodorescu, Lui Sha, and Sibin Mohan. 2016. �e
DragonBeam Framework: Hardware-Protected Security Modules for In-Place
Intrusion Detection. In the ACM International Systems and Storage Conference.

[31] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. 2013.
SecureCore: A Multicore-based Intrusion Detection Architecture for Real-Time
Embedded Systems. In the IEEE Real-Time Embedded Technology and Applications
Symposium.

[32] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, and Lui Sha. 2015. Memory Heat Map:
Anomaly Detection in Real-Time Embedded Systems Using Memory Behavior.
In the ACM/EDAC/IEEE Design Automation Conference.

[33] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. ARMlock:
Hardware-based Fault Isolation for ARM. In the ACM Conference on Computer
and Communications Security.

http://www.ardupilot.org
https://docs.emlid.com/navio/
http://libvmi.com/
http://wiki.qemu.org
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.theguardian.com/technology/2012/may/29/cyber-attack-concerns-boeing-chip
https://www.theguardian.com/technology/2012/may/29/cyber-attack-concerns-boeing-chip
https://www.linux.com/news/3drs-solo-drone-boasts-dual-linux-computers-running-dronecode
https://www.linux.com/news/3drs-solo-drone-boasts-dual-linux-computers-running-dronecode
http://securityaffairs.co/wordpress/32767/hacking/maldrone-malware-for-drones.html
http://securityaffairs.co/wordpress/32767/hacking/maldrone-malware-for-drones.html
http://diydrones.com/profiles/blogs/hijacking-quadcopters-with-a-mavlink-exploit
http://diydrones.com/profiles/blogs/hijacking-quadcopters-with-a-mavlink-exploit
https://www.linux.com/news/qualcomm-goes-ubuntu-drone-reference-platform
https://www.linux.com/news/qualcomm-goes-ubuntu-drone-reference-platform
http://www.forbes.com/sites/thomasbrewster/2015/08/08/qihoo-hacks-drone-gps/##26431a2853fe
http://www.forbes.com/sites/thomasbrewster/2015/08/08/qihoo-hacks-drone-gps/##26431a2853fe
http://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-overview.html
http://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-overview.html
http://dx.doi.org/dx.doi.org/ 10.1109/ MS.2001.936213

VirtualDrone Architecture for A�ack-Resilient UAS ICCPS, April 2017, Pi�sburgh, PA USA

A ACTUATOR VIRTUALIZATION

I/O Proxy

PWM Generator
(PCA9685)

Trusted
Controller

Motor Driver

Motor Interface

Virtual
Motor
Driver

Hardware

Host OS
I2C

Untrustworthy
Controller

Motor Interface

Security &
Safety Monitor

NCE (VM) SCE (Host)

Motor
Thread

Host-Guest Communication

Motors
0,1,2,3

Figure 16: Actuator virtualization in the VirtualDrone
framework.

Figure 16 shows how an actuator is virtualized in the Virtual-
Drone framework, which is similar to the sensor virtualization
explained in Section 3.3. �e controller running in the NCE com-
putes a set of PWM (Pulse Width Modulation) output values to
control the motors of the vehicle. �e controller writes these values
to the virtual motor driver through the motor interface. It transfers
the data to an I/O proxy thread that relays the PWM values to the
motor driver in the SCE. �e motors are �nally actuated by analog
signals converted by the on-board speed controller.

B DETAILS ON VIRTUALIZATION
Sensors: �e following describes how the sensors are virtualized
in our prototype implementation.
• Inertial Measurement Unit (MPU9250): �e device driver run-

ning on the host retrieves a raw IMU data (14 bytes) every 1
ms through SPI. However, every 5th sample is actually used for
control (hence, the e�ective control frequency is 200 Hz). �e
data includes a 3-axis gyroscope and 3-axis accelerometer values.

• Barometer (MS5611): �is sensor measures the barometric pres-
sure and temperature. �e driver runs a state machine that
operates at a frequency of 25 Hz. A raw data (24 bits) retrieved
from the sensor through I2C is converted to either pressure or
temperature value depending on the state (8 bits).

• Compass (AK8963): It measures terrestrial magnetism in the 3
axes at a frequency of 50 Hz using I2C. Total 24 bytes (including
per-axis calibration factor) of raw data are fed to the NCE.

• Analog-to-Digital Converter (ADS1115): It measures the voltages
on 6 ADC channels. It reads each channel every 600 ms through
I2C. For each channel, a data of 40 bits (8 bits for channel ID and
32 bits for sampled data) is transferred to the VM.

• GPS (u-blox NEO-M8): It provides the current longitude, latitude,
and altitude of the vehicle, the time information (current millisec-
ond time of week), etc. �e driver reads UBX protocol messages
from the u-blox GPS receiver through SPI, parses each one, and
then obtains the above information. �e parsing is stateful, and
a a�er-parsing data can be at most 1K bytes. It is fed to the NCE
at the frequency of 5 Hz.

Actuator: For the motor actuation, the virtual controller in the
NCE sends the PWM values (for the four motors) to the host at the
frequency of the main control loop (i.e., 200 Hz).

Radio Control Input: A remote control via radio link is used to
manually control (arm/disarm, �ight maneuver) the quadcopter.
�e raw input pulses are retrieved through DMA (Direct Memory
Access) at 1,666 Hz. About every 18 ms (i.e., 55 Hz), a new set of
PWM values representing the stick and switch movements (total 8
channels) becomes available. As done for the sensors mentioned
above, the I/O proxy runs an RC feeding thread. However, instead
of feeding the raw pulse data, we send the processed data, i.e., the
PWMs, in order to avoid the overhead due to feeding the raw data
at such a high frequency (1,666 Hz).

C ATTITUDE CONTROL AND ERROR BOUND

Time (s)
50 55 60 65 70 75 80 85

R
ol

l,
Pi

tc
h,

 Y
aw

 E
rro

rs

-25,000

-20,000

-15,000

-10,000

-5,000

0

5,000

10,000

15,000

20,000

25,000
Roll
Pitch
Yaw

Time (s)
50 55 60 65 70 75 80 85

R
C

 In
pu

t (
PW

M
s)

800

1000

1200

1400

1600

1800

2000

2200
Roll
Pitch
Throttle
Yaw

Drone hit
the ground

Switched to SCE

Figure 17: �e roll, pitch, yaw errors (top) measured during
the drone’s extreme movements. �e bottom plot shows the
roll, pitch, throttle, and yaw targets set by the pilot using the
remote controller.

�e APM uses a double-loop PID/P control to stabilize the quad-
copter. �e Angle loop, a.k.a. the outer loop, controls the a�itude
of the vehicle. �e Angle loop utilizes a P control to achieve the
desired a�itude by outpu�ing a desired angular speed, i.e., the an-
gular speed setpoint, to the Rate loop, a.k.a. the inner loop. �e
Angle loop’s output, i.e., the angular speed setpoint, is proportional
to the di�erence between the target angle value set by the pilot
(or autopilot when in autonomous �ight mode) and the measured
angle value from the IMU sensor. �e Rate loop controls the a�itude
rates of the aircra�. �e Rate loop continuously calculates an error
value as the di�erence between the angular speed setpoint and the
measured angular speed from the IMU sensor. A PID control is

ICCPS, April 2017, Pi�sburgh, PA USA M.-K. Yoon et al.

utilized in Rate loop to minimize the error over time by outpu�ing
PWM signals to control motors.

For the thresholds on the errors, we used ±20, 000 (rad/sec) for
roll and pitch, and ±10, 000 (rad/sec) for yaw. �e switching logic
activates when the violation happens three times consecutively.
We obtained these bounds on the errors by measuring from both
normal and extreme movements of the prototype drone. �e top
plot in Figure 17 shows those errors measured during the drone’s
extreme movements and the bo�om plot shows how the pilot cre-
ated the movements. �e result indicates that the errors are well
bounded even when the drone experiences such movements. �e
pilot intentionally made the drone hit the ground at time between
75 sec and 76 sec, a�er which the control is switched to the SCE.
We did not a�empt to �nd optimal thresholds. �e smaller the
threshold is, the easier it is for the SCE to recover to a stable state.
However, at the same time, it could create more false positives.

D DETECTION OF HIJACKING ATTEMPT

(a) Legitimate
Tim

e

Vehicle GCS

…

Attacker

…

Unexpected!

Tim
e

VehicleGCS

…

(b) Hijacking attempt

Figure 18: (a) MAVLink messages exchanged between the
GCS and the vehicle for waypoint setup. (b) �e legitimate
GCS can detect the attacker’s update on the vehicles route
as the vehicle’s responses are unexpected.

In order for a GCS to set waypoints for a vehicle, a series of
MAVLink messages are exchanged. Figure 18(a) shows the MAVLink
waypoint protocol. �e GCS �rst sends MISSION COUNT(N) to the
vehicle where N represents the number of waypoints that it will
set. �e vehicle prepares for receiving the N waypoints, and then
requests for each waypoint by sending MISSION REQUEST(i) until
all the waypoint locations are received.

Note that both the legitimate GCS and the a�acker need to follow
this protocol to set any waypoints. From the vehicle’s perspective,
the initialization requests (i.e., MISSION COUNT(N)) from them are
indistinguishable. �at is, the vehicle itself cannot detect suspicious
requests for a route change. However, the fact that the a�acker can
receive messages from the vehicle means that the legitimate GCS
can also hear what the vehicle responds to the a�acker’s request.
As Figure 18(b) shows the legitimate GCS can detect the a�acker’s
update on the vehicle’s waypoints when it receives unexpected
MISSION REQUEST messages as it did not initialize the message ex-
change. Due to such stateful communication, the MAVLink protocol
enables detecting other types of suspicious a�empts (e.g., changing
control parameters) as well.

E GEO-FENCE ATTACK ROOTKIT
We developed a rootkit that disables the geo-fence and sends the
vehicle into a no-�y zone. �e rootkit �nds the APM process, and
then modi�es itsmemory that stores (i) the �ag that enables/disables
the geo-fencing and (ii) the list of waypoints. �ese are loaded
from the APM con�guration �le (/var/APM/ArduCopter.stg) on
its startup and bu�ered in the memory.

Waypoint 3
Waypoint 2

Waypoint 4

Geo-fence
enabled

Figure 19: �ewaypoint list and geo-fence enable �ag stored
in the memory of APM process. An attacker who gained a
root-level access canmodify thesememory values to disable
the geo-fence and then send the drone to a new location.

Figure 20: �e rootkit that disables the geo-fence and modi-
�es the �ight plan by manipulating the APM’s memory.

One can change these values remotely through radio, which how-
ever is easy to prevent since radio communication can be monitored
easily. Modifying the bu�ered values in the memory is di�cult to
prevent especially if the a�acker has gained a root access. �e mem-
ory locations of these data can be easily found if the source code
or the executable binary is available. Figure 19 shows the memory
dump of the waypoint list and geo-fence enable �ag. Figure 20
shows how these values are modi�ed by the rootkit.

	Abstract
	1 Introduction
	2 Background
	3 VirtualDrone Framework
	3.1 High-level Framework
	3.2 Assumptions and Adversary Model
	3.3 Virtual Sensing, Actuation, and Communication
	3.4 Security and Safety Monitoring

	4 Implementation
	5 Experiments
	5.1 Case Study
	5.2 Discussion

	6 Related Work
	7 Conclusion
	References
	A Actuator Virtualization
	B Details on Virtualization
	C Attitude Control and Error Bound
	D Detection of Hijacking Attempt
	E Geo-Fence Attack Rootkit

