
Learning Execution Contexts from System Call Distribution for
Anomaly Detection in Smart Embedded System

Man-Ki Yoon
University of Illinois at

Urbana-Champaign
mkyoon@illinois.edu

Sibin Mohan
University of Illinois at

Urbana-Champaign
sibin@illinois.edu

Jaesik Choi
Ulsan National Institute of Science and

Technology
jaesik@unist.ac.kr

Mihai Christodorescu
�alcomm Research Silicon Valley

mihai@qti.qualcomm.com

Lui Sha
University of Illinois at

Urbana-Champaign
lrs@illinois.edu

ABSTRACT
Existing techniques used for anomaly detection do not fully utilize
the intrinsic properties of embedded devices. In this paper, we pro-
pose a lightweight method for detecting anomalous executions using
a distribution of system call frequencies. We use a cluster analysis to
learn the legitimate execution contexts of embedded applications
and then monitor them at run-time to capture abnormal executions.
Our prototype applied to a real-world open-source embedded ap-
plication shows that the proposed method can e�ectively detect
anomalous executions without relying on sophisticated analyses or
a�ecting the critical execution paths.

CCS CONCEPTS
•Computer systems organization →Embedded systems; •Sec-
urity and privacy →Intrusion detection systems;

KEYWORDS
Embedded Systems, Security, Anomaly Detection
ACM Reference format:
Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, and Lui
Sha. 2017. Learning Execution Contexts from System Call Distribution for
Anomaly Detection in Smart Embedded System. In Proceedings of the 2nd
ACM/IEEE International Conference on Internet-of-�ings Design and Imple-
mentation, Pi�sburgh, PA USA, April 2017 (IoTDI 2017), 6 pages.
DOI: h�p://dx.doi.org/10.1145/3054977.3054999

1 INTRODUCTION
With advanced functionality and connectivity enabled by modern
computing and communication technologies, embedded devices are
ubiquitously networked as an important component for Internet of
�ings (IoT). Open-source so�ware plays an important role in the
IoT so�ware ecosystem, enabling community-supported develop-
ment of smart embedded applications. However, this open nature

�is work is supported in part by grants from NSF CNS 13-02563, 14-23334, 15-45002,
and Navy N00014-14-1-0717. Jaesik Choi is supported by ITRC (Information Technology
Research Center) support program (IITP-2016-R2720-16-0007) funded by MSIP, Korea
and the Industrial Convergence Core Technology Development Program (No. 10063172)
funded by MOTIE, Korea. Any opinions, �ndings, and conclusions or recommendations
expressed here are those of the authors and do not necessarily re�ect the views of
sponsors.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
IoTDI 2017, Pi�sburgh, PA USA
© 2017 ACM. 978-1-4503-4966-6/17/04. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3054977.3054999

of the so�ware environments, in conjunction with the increased
capabilities and complexities of the modern embedded systems, in-
troduce more security threats. As demonstrated by recent a�acks
[3–5], threats to these systems are growing, both in number as well
as sophistication.

�e increasing security challenges posed on these systems make
it virtually impossible to completely secure them due to many en-
try points that are vulnerable to potential security threats. �us,
instead of a�empting to prevent every possible security breach, we
intend to detect anomalies by monitoring the behavior of the appli-
cation; deviation from expected behavior is considered malicious.
Traditional behavior-based anomaly detection systems rely on spe-
ci�c signals such as network tra�c [15], control �ow [6], system
calls [7, 9], etc. �e use of system calls, especially in the form of se-
quences [8, 9, 13, 16], has been extensively studied in behavior-based
anomaly detection for general purpose systems since malicious ac-
tivities o�en use system calls to execute privileged operations on
system resources.

We observe that the very properties of embedded systems also
make them amenable to the use of certain security mechanisms.
�e regularity in their execution pa�erns means that we can detect
anomalies by monitoring the behavior of such applications [14, 19–
21] since the set of what constitutes legitimate behavior is o�en
limited by design. In this paper we present an anomaly detection
mechanism for embedded systems using a system call frequency
distribution (SCFD). Figure 1 presents an example. It represents the
numbers of occurrences of each system call type for each execution
run of an application. �e key idea is that the normal executions of
an application whose behavior is regular can be modeled by a small
set of distinct system call distributions (e.g., Figure 6 in Section 4.4),
each of which corresponds to a high-level execution context. We use
a cluster analysis to learn distinct execution contexts from a set of
SCFDs and to detect anomalous behavior.

Our detection method is lightweight and has a deterministic time
complexity – hence, it �ts well for resource-constrained embedded
systems. �is is due to the coarse-grained and concise representation
of SCFDs. Although it can be used for o�ine analysis, we demon-
strate an implementation on an embedded computing board [2] and
show that minor modi�cations to the operating system and archi-
tectural supports from modern embedded processors enable us to

0

5

10

15

20

write close munmap close unlink symlink mmap2 gettimenanosle ioctl open fstat64 accept

N
um

be
r o

f c
al

ls

Figure 1: A system call frequency distribution (SCFD).

IoTDI 2017, April 2017, Pi�sburgh, PA USA M.-K. Yoon et al.

Motion
Frame
Save

Snapshot
Save

Leak Out
Motion
Frame

open-fstat64-mmap2-write- ...
-write-close-munmap-clone-write-write-

open-fstat64-mmap2-write- ...
-write-close-munmap-clone-write-

open-fstat64-mmap2-write- ...
-write-close-munmap-clone-write-write-

...
...

...
...

Ti
m

e

Figure 2: Sequence of system calls made by Motion (used in
the evaluation in Section 4). An attacker can use the exact
same routine used by the legitimate code to leak images out.

monitor and analyze the run-time system call usage of applications
in a non-intrusive manner. We use a real-world open-source appli-
cation [1] and demonstrate that SCFDs can e�ectively detect certain
types of abnormal execution contexts that are di�cult for traditional
sequence-based approaches.

2 OVERVIEW
�e main idea behind SCFD is to learn the normal system call pro�les,
i.e., pa�erns in system call frequency distributions, collected during
legitimate executions of a sanitized system. Analyzing pro�les is
challenging especially when such pro�les change, o�en dramatically,
depending on the execution modes, events, and inputs. We address
this issue by clustering the distribution of system calls capturing
legitimate behavior. Each cluster then can be a signature that repre-
sents a high-level execution context, either in a speci�c mode/event
or for similar input data. �en, given an observation at run-time, we
test how similar it is to each previously calculated cluster. If there is
no strong statistical evidence that it is a result of a speci�c execution
context then we consider the execution to be malicious with respect
to the learned model.
Attacks against sequence-based approach: Although sequence-
based methods can capture detailed, temporal relations in system
call usages, they may fail to detect abnormal execution contexts. �is
is because sequence-based approaches fundamentally pro�le the
local, temporal relations among system calls within a limited time
frame. Figure 2 highlights such a case. �e system calls shown
in the �gure are generated by Motion [1], an open-source motion
detection application used in our evaluation. Each Motion loop saves
the current motion frame to the �lesystem if a motion is detected (the
top block in the �gure). A snapshot is saved too (the bo�om block),
independently, at a regular interval (e.g., once per 5 seconds). �ese
two blocks use the same routine to save the images to �les and thus
generate same sequence of system calls as depicted. We were able to
insert a small piece of code that leaks out the current motion frame
to a desired location in the �lesystem while making the resulting
system call sequences still look legitimate. �is was possible because
(i) the sequence pa�erns generated only by the inserted block are
identical to those made by the other two blocks (since the same
routine is used) and (ii) no new pa�erns are generated by transitions
across the blocks. Note that if only one of the legitimate blocks
execute, the resulting sequences are still legitimate because the
inserted block looks like the other block that did not execute. �e
only way a sequence-based approach can detect such a malicious
execution is to know pa�erns that are long enough to learn the
temporal relationship between the two legitimate blocks. �at is,
the expected sequence pa�erns must know what system calls should
follow a�er two �le operations. However, this is highly unlikely
since the required pa�ern lengths are too long and also can vary
greatly due to variations in data (i.e., image) sizes.

An a�acker who has access to the target application code can im-
plement such a stealthy, malicious code that modi�es the high-level
execution context while not disturbing the system call sequence
pa�erns. �is is more probable especially when the target applica-
tion has such a vulnerable structure as described above. In contrast
to sequence-based techniques, our SCFD method can easily detect
abnormal deviations in high-level, naturally variable execution con-
texts such as the one illustrated above (Figure 2) since the SCFD
signi�cantly changes due to the malicious execution. Also, if the
a�acker corrupts the integrity of the data (for instance, erases the
motion frame so that no motion can be detected) then our method
is able to detect it – this is not easy for sequence-based methods.
Hence, by using these two approaches together, one can improve
the overall accuracy of the system call-based anomaly detection.
Adversary Model: We consider threat models that involve changes
to the behavior of system call usage. If an a�ack does not invoke or
change any system calls, the activity at least has to a�ect executions
a�erward so that the future system call usage may change. �e
methods in this paper, as they stand, cannot detect a�acks that
never alter system call usage and that just replace certain system
calls. We especially consider stealthy, indirect a�acks, e.g., ones
that collect important system information or leak out sensitive data
while the system/application is functioning normally; or a�acks that
degrade the availability of such systems. We do not focus on more
active a�acks such as process killing, privilege escalation, etc., as
these will change the system call usage in an obvious way and such
a�empts can be detected by other techniques [18–20]. Also, we do
not make any assumptions as to how the compromised program is
present on the device. �e a�acker may have installed the modi�ed
target program in the system or induced users to download the
modi�ed source code or the executable binary using, for example, a
social engineering tactic.
Assumptions: (1) We consider applications that execute in a repet-
itive fashion which �ts well for embedded applications (e.g., sensing
and computation). Motion, used in our prototype and evaluation, is
an example. We monitor and perform a legitimacy test at the end
of each invocation of a task. (2) We limit ourselves to applications
where most of the possible execution contexts can be pro�led ahead
of time. Hence, the behavior model is learned under the stationarity
assumption – this is a general requirement of most behavior-based
anomaly detection systems. �is can be justi�ed by the fact that
most embedded applications have a limited set of execution modes
and input data falls within fairly narrow ranges. (3) �e pro�ling is
carried out prior to system deployment when the application is trust-
worthy. Also, any updates to the applications or the system must
be accompanied by a repeat of the pro�ling process. We assume
that the stored pro�le(s) cannot be tampered with (for example, by
hardware-based protections [17–19]).

3 ANOMALY DETECTION USING SYSTEM
CALL FREQUENCY DISTRIBUTIONS

Let S = {s1, s2, . . . , sD } be the set of all system calls provided by
an operating system, where sd represents the system call of type
d . During the nth execution of an application, it calls a multiset
σn of S. Let us denote the nth system call frequency distribution
as xn = [m(σn , s1),m(σn , s2), . . . ,m(σn , sD)]T , wherem(σn , sd) is
the multiplicity of the system call of type d in σn . Herea�er, we
simplifym(σn , sd) as xnd . �us, xn = [xn1 ,x

n
2 , . . . ,x

n
D]T .

We de�ne a training set, i.e., the execution pro�les of a sanitized
system, as a set of N system call frequency distributions collected
from N executions, and is denoted by X = [x1, x2, . . . , xN]T . �e

Learning Execution Contexts from System Call Distribution IoTDI 2017, April 2017, Pi�sburgh, PA USA

Cluster 3D

Cluster 2

B

C

of system call s1

of

 s
ys

te
m

 c
al

l s
2

Cluster 1A
Cutoff
Distance

Figure 3: System call frequency distributions for S = {s1, s2}
and clusters. �e gray-colored objects are SCFDs in the train-
ing set. Each star-shaped point is the centroid of each cluster.
�e ellipsoid around each cluster draws its cuto� line.

clustering algorithm (Section 3.2) then maps each xn ∈ ND to a
cluster ci ∈ C = {c1, c2, . . . , ck }. We denote by c : {x1, · · · , xN } →
C the cluster that xn ∈ X belongs to.

3.1 Learning a Single Execution Context
�e variations in the usage of system calls will be limited if the
application under monitoring has a simple execution context. In
such a case, it is reasonable to consider that the executions follow a
certain distribution of system call frequencies, clustered around a
centroid, and cause a small variation from it due to, for example, input
data or execution �ow. �is is a valid model for many embedded
systems since the code and structure in such system tends to be
fairly limited in what it can do.

For a multivariate distribution, the mean vector µ = [µ1, µ2, . . .
,µD]T , where µd = (

∑N
n xnd)/N , can be used as the centroid. Figure 3

plots the frequency distributions of two system call types (i.e., D = 2).
For now, let us consider only the data points (triangles) on the le�-
hand side of the graph. �e data points are clustered around the star-
shaped marker that indicates the centroid of the distribution formed
by the points. Now, given a new observation from the monitoring
phase, e.g., the point marked ‘A’, a legitimacy test can be devised
that tests the likelihood that such an observation is actually part
of the expected execution context. �is can be done by measuring
how far the new observation is from the centroid. Here, the key
consideration is on the distance measure for testing legitimacy.

One may use the Euclidean distance (or L2-norm) between the
new observation x∗ and the mean vector of a cluster. Although
the Euclidean distance is simple and straightforward to use, the
distance is built on a strong assumption that each coordinate (di-
mension) contributes equally while computing the distance. In other
words, the same amount of di�erences in xn1 and xn2 are considered
equivalent even if, e.g., a small variation in the usage of system
call s2 is the stronger indicator of abnormality than system call s1.
�us, it is more desirable to allow such a variable contribute more.
For this reason, we use the Mahalanobis distance [12], de�ned as√
(xn − µ)T Σ−1 (xn − µ), for a group of data set X, where Σ is the

covariance matrix of X. Notice that the existence of Σ−1 is the neces-
sary condition to de�ne the Mahalanobis distance; i.e., the di�erence
of the frequency of each system call from the mean (i.e., what is
expected) is augmented by the inverse of its variance.

Accordingly, if we observe a small variance for certain system
calls during the training, e.g., execve or socket, we would expect to
see a similar, small, variation in the usage of the system calls during
actual executions as well. On the other hand, if the variance of a
certain system call type is large, e.g., read or write, the Mahalanobis

distance metric gives a small weight to it in order to keep the distance
(i.e., abnormality) less sensitive to changes in such system calls.
Cluster 2 in Figure 3 shows an example of the advantage of using the
Mahalanobis distance over the Euclidean distance. Although C is
closer to the centroid than B is in terms of the Euclidean distance, it is
more reasonable to determine that C is an outlier and B is legitimate
because we have not seen (during the normal executions) frequency
distributions such as the one exhibited by C while we have seen a
statistically meaningful amount of examples like B. As an extreme
case, let us consider D which is quite close to Cluster 3’s center in
terms of the Euclidean distance. However, it should be considered
malicious because s2 (i.e. the y-axis) should never vary.

Using covariance values also make it possible to learn dependen-
cies among di�erent system call types. For instance, an occurrence
of the socket call usually accompanies open and many read or
write calls. �us, we can easily expect that changes in socket’s
frequency would also lead to variations in the frequencies of open,
read and write. Cluster 1 in Figure 3 is such an example that shows
covariance between the two system call types. On the other hand,
they are independent in Cluster 2 and 3. �us, using the Maha-
lanobis distance we can not only learn how many occurrences of
each individual system call should exist but also how they should
vary together.

Now, given a set of system call distributions,X = [x1, x2, . . . , xN]T ,
we calculate the mean vector, µ, and the covariance matrix, Σ, for
this data set. It then can be represented as a single cluster, c , whose
centroid is de�ned as (µ, Σ). Now, the Mahalanobis distance of a
newly observed SCFD, x∗, from the centroid is

dist (x∗, c) =
√
(x∗ − µ)T Σ−1 (x∗ − µ). (1)

If this distance is greater than a cuto� distance θ , we consider that the
execution to be malicious. One analytic way to derive this threshold,
θ , is to think of the Mahalanobis distance w.r.t. the multinomial
normal distribution,

p (x∗) =
√
|Σ|(2π)D

−1
exp

(
−

1
2dist (x

∗, c)2
)
. (2)

�at is, we can choose a θ such that the p-value under the null
hypothesis is less than a signi�cant level p0, e.g., 1% or 5%.

3.2 Learning Multiple Execution Contexts
In general, an application may show widely varying system call
distributions due to multiple execution modes and varying inputs.
In such scenarios, it is more desirable to consider that observations
are generated from a set of distinct distributions, each of which
corresponds to one or more execution contexts. �en, the legitimacy
test for a new observation x∗ is reduced to identifying the most
probable cluster that may have generated x∗. If there is no strong
evidence that x∗ is a result of an execution corresponding to any
cluster then we determine that x∗ is most likely due to malicious
execution.

Suppose we collect a training set X = [x1, x2, . . . , xN]T where
xn ∈ ND . To learn the distinct distributions, we use the k-means
algorithm [11] to partition the N data points on a D-dimensional
space into k clusters. �e k-means algorithm works as follows:
(1) Initialization: Create k initial clusters by picking k random data

points from X.
(2) Assignment: For each xn ∈ X, assign it to the closest cluster, i.e.,

c (xn) = arg min
ck ∈C

dist (xn , ck). (3)

(3) Update: Re-compute the centroid (i.e., µ and Σ) of each cluster
based on the new assignments.

IoTDI 2017, April 2017, Pi�sburgh, PA USA M.-K. Yoon et al.

Time

Frame
Capture

Motion
Detection

Tuning,
Text/Graphics

Overlay
Event &
Action Snapshot Video

Loopback
Parameter

Update
Frame-rate

Control

1/Frame-rate

Frame
Capture

Motion detection by Motion Raspberry PI 2 with USB Camera

Image Server

Network
Live CAM

Figure 4: Motion’s main execution process (top). �e main
loop repeats at the frame rate (e.g., 3 frames per second).

�e algorithm repeats steps (2) and (3) until the assignments stop
changing. Intuitively speaking, the algorithm keeps updating the k
centroids until the total distance of each point xn to its cluster,

total-dist (X,C) =
N∑
n=1

dist (xn , c (xn)), (4)

is minimized.
�e k-means algorithm requires a strong assumption that we

already know k , the number of clusters. However, this assumption
does not hold in reality because the number of distinct execution
contexts is not known ahead of time. Moreover, the accuracy of the
�nal model heavily depends on the initial clusters chosen randomly.
Hence, we use the global k-means method [10] to �nd the number
of clusters as well as the initial assignments that lead to determin-
istic accuracy. Given a training set X of N system call frequency
distributions, the algorithm �nds the best number of clusters and
assignments. �is is an incremental learning algorithm that starts
from a single cluster and repeats until either k reaches a pre-de�ned
MAXK, the maximum number of clusters, or the total distance value
becomes less than the total distance bound BoundTD. Note that the
total distance in Eq. (4) decreases monotonically with the number
of clusters.

�e clustering algorithm �nally assigns each data point in the
training set into a cluster. �en, each cluster ci ∈ C can be rep-
resented by the centroid, (µi , Σi). �e legitimacy test of a newly
observed SCFD x∗ is then performed by �nding the closest cluster,
c∗, using Eq. (3). �us, if dist (x∗, c∗) = minci ∈C dist (x∗, ci) > θ for
a given threshold θ , we determine that the execution does not fall
into any of the execution contexts speci�ed by the clusters since
dist (x∗, ci) > θ for all i = 1, . . . ,k . We then consider the execution
to be malicious. As an example, for the new observation C in Fig-
ure 3, Cluster 2 is the closest cluster. C is malicious since it is outside
Cluster 2’s cuto� distance.

4 EVALUATION
4.1 Target Application
We use Motion [1], an open-source program that monitors camera
images and detects motion by tracking changes between image
frames as illustrated in Figure 4. It is used for surveillance purpose
and provides live streaming and external program execution when
certain events (e.g., motion detection, on �le creation) are detected.

Figure 4 also show Motion’s execution process. �e main loop
consists of a series of blocks. Each loop starts by capturing an image
frame from the camera. When a motion is detected, each frame
is saved to the �lesystem. Following this, some pre-de�ned event
actions could trigger external programs. �is main loop repeats at
the speci�ed frame rate (such as 3 frames per second). Depending
on the events, some of the blocks may not execute in every loop. In

our con�guration, a python script that logs the current time in a �le
executes when a motion is detected, and the wput Linux command
is executed to upload the newly created images to a remote server.
�ese external commands are executed by separate processes forked
by the main process.

4.2 System Implementation
We implemented a prototype of our SCFD-based anomaly detection
system on a Raspberry PI 2 Model B board [2]. It has a quad-core
ARM Cortex-A7 CPU. Each core runs at 900 MHz. �e system has a
memory of 1 GB and runs Linux 3.18. All applications and the OS
run on Cores 0, 1, 2. We inserted a hook in the so�ware interrupt
handler that dispatches each system call handler. �e hook sends
the system call number and the PID (Process ID) of the caller to the
monitoring process (called Secure Monitor) on Core 3 through a set
of mailboxes available on the Broadcom BCM2836 SoC (System-on-
Chip). �e secure monitor performs the detection process presented
in Section 3 using the SCFD built from the reported information.
Since we collect system call usage information at the operating
system layer (i.e., so�ware interrupt handler), the OS is our trusted
computing base.

4.3 Attack Scenarios
Considering the purpose and the functionality of Motion, the pri-
mary security concerns are privacy and availability. Hence, we
consider the following a�ack scenarios:
(1) A�ack 1: One a�ack is the leaking of images captured by Motion

while leaving the original functionality intact. We consider the
case where an a�acker saves the images at a desired location
in the �lesystem with the intention that the collection will be
used/retrieved later.

(2) A�ack 2: �e a�acker corrupts the images captured from the
camera so that no motion can be detected. Speci�cally, the
a�acker erases frame(s) by calling memset. Note that this a�ack
does not require any system calls.

�e a�acker tries to implement the above a�acks as simply as
possible (e.g., using existing routines/libraries) because otherwise
the system call usage will diverge in an obvious way. For example,
A�ack 1 can be implemented by inserting the following small piece
of code:

const char* org_filepath = cnt->conf.filepath;
cnt->conf.filepath = "/path/to/attackers_desired_location";
event(cnt, EVENT_IMAGE_DETECTED, cnt->imgs.image_ring[cnt->

imgs.image_ring_out].image, NULL, NULL, &cnt->imgs.ima
ge_ring[cnt->imgs.image_ring_out].timestamp_tm);

cnt->conf.filepath = org_filepath;

�e event function above is identical to what is called by the original
code and it in turn calls the put picture library routine which saves
the current frame image at a desired location. �e a�acker only
needs to change the path to store the image (i.e., cnt->conf.filepa
th) in the con�guration and restore it back before and a�er calling
the event function, respectively, as depicted. Now, the a�acker can
place this piece of code (followed by a bogus write call) between
the two �le write operations.

4.4 Evaluation Results
We obtained a training set that consists of 2420 loop executions of
Motion that ran under normal conditions (i.e., no a�ack present) for
about 15 minutes. Figure 5 summarizes the system call sequences
made in each loop in normal situations. �e three if blocks are
independent; each loop may execute only one, a pair, or all of them
depending on the current situation. �is creates various execution

Learning Execution Contexts from System Call Distribution IoTDI 2017, April 2017, Pi�sburgh, PA USA

/* Frame-rate Control */

/* Frame Capture */

gettimeofday-gettimeofday

(ioctl)-rt_sigprocmask-ioctl-ioctl-rt_sigprocmask

clone

gettimeofday-(nanosleep)

select

Motion loop {

}

If (motion_detected) {

}
If (time to take a snapshot) {

}

If (a webcam-client is waiting) {

}

/* Wait for a webcam-client */

open-fstat64-mmap2-write- ... -write-close-munmap-clone-write
write

unlink-symlink

/* Save frame image*/

/* Save snapshot image*/

/* Update symbolic link to the latest snapshot file*/

open-fstat64-mmap2-write- ... -write-close-munmap-clone-write

/* Run external command upon ‘on_motion_detected’ event*/

(accept-ioctl-write)-(write-munmap-close)-(mmap2-gettimeofday)-(write)-(write)-(munmap)
/* Several variations are made with the these calls*/

/* write chain. Length depends on image size. */

Figure 5: �e system call sequences made by Motion.

contexts. �e system call usages can vary further when images are
saved to �les, as can be seen from the �rst two if blocks. �is is
due to the varying length of the write chain that depends on the
image size.
SCFDTraining: With the training set obtained from the system un-
der normal conditions, we applied the learning algorithm presented
in Section 3. Out of 15 types of system calls used by Motion, two
types, select and rt sigprocmask, showed zero variance. Hence,
the algorithm �rst reduces the dimensionality of SCFDs to 13.

Figure 6 visualizes the training result obtained with se�ings
MAXK = 20 and BoundTD = 1000. �e table in the middle is the
training set (only unique SCFDs are shown) and the ones around
it are the resulting clusters. Each row represents an SCFD and the
colors represent high (orange color) and low (green color) counts
for each system call type. As can be seen from the result, the 2420
SCFDs are clustered into 11 clusters. From these, we �nd the follow-
ing execution contexts:
(1) Cluster 1 represents the case when no event occurs during a

loop shown in Figure 5. �e loop only takes the current image
frame and none of the if blocks in Figure 5 execute.

(2) Clusters 2, 4 and 5 are also the cases when no images are saved
to �les, because the related system calls (e.g., open, fstat64,
close) do not appear and also the number of write calls is few.
�e di�erences among the three clusters are due to variations in
the last if block (i.e., webcam remote view-related) in Figure 5.

(3) Clusters 3, 6, 8, 10, and 11 correspond to the executions that write
an image �le once, because the �le-related system calls appear
just once per SCFD (i.e., per loop). In addition, the write calls
are used accordingly. Among them, Clusters 6, 10, and 11 write
snapshot images (i.e., the second if block in Figure 5). Cluster
11 is when an image is fed to a webcam-client as more mmap and
unmap are observed. �e only di�erence between Clusters 6 and
10 is the number of write calls; it is �xed to 74 in Cluster 6,
while Cluster 10 has everything but 74.

�e fewer number of unlink and symlink in Clusters 3 and
8 (than 6, 10, and 11) suggest that these two correspond to the
executions that write frame images (i.e., the �rst if block). Also,
clone should be called twice in that case.

(4) Cluster 9 corresponds to the case when both motion frame and
snapshot �les are saved (because of the reasons explained above).
It covers both the cases when an image is fed or not fed to
webcam-client. Increasing the number of clusters will split the
two cases.

(5) Cluster 7 is a mixture of some rare SCFDs that are similar to
other clusters but vary in a very small way (due to the last
if block in Figure 5). Such di�erences caused them to stand

73 1 1 2 0 0 1 3 0 2 1 1 0
76 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 2 0 0 1 3 0 3 1 1 0
1 0 1 0 0 0 1 4 1 2 0 0 0
76 1 1 2 0 0 1 3 1 2 1 1 0
1 0 1 0 0 0 1 4 1 3 0 0 0
77 1 1 2 0 0 1 3 1 2 1 1 0
1 1 1 0 0 0 0 3 1 2 0 0 0
0 0 1 0 0 0 1 4 1 3 0 0 0
77 1 1 1 1 1 1 3 1 2 1 1 0
74 1 2 2 0 0 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
1 1 1 0 0 0 1 4 1 2 0 0 0

150 2 2 3 1 1 2 3 0 2 2 2 0
78 1 1 2 0 0 1 3 1 2 1 1 0
77 1 1 1 1 1 2 4 1 3 1 1 1
4 1 1 0 0 0 1 4 1 3 0 0 1
76 2 2 2 0 0 2 4 1 2 1 1 0
74 1 1 2 0 0 1 3 0 2 1 1 0
0 0 1 0 0 0 1 4 1 2 0 0 0
75 1 2 2 0 0 2 4 1 2 1 1 0
74 1 1 2 0 0 1 3 1 2 1 1 0
75 1 2 1 1 1 2 4 1 2 1 1 0
76 1 3 2 0 0 2 4 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
76 1 2 2 0 0 2 4 1 2 1 1 0
0 0 1 1 0 0 1 4 1 2 0 0 0
68 1 1 2 0 0 1 3 1 2 1 1 0
150 2 3 3 1 1 3 4 0 2 2 2 0
75 1 1 1 1 1 1 3 1 2 1 1 0
148 2 2 3 1 1 2 3 0 3 2 2 0
0 0 0 0 0 0 0 3 1 3 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
3 0 0 0 0 0 1 4 1 3 0 0 1
72 1 1 2 0 0 1 3 1 3 1 1 0
71 1 1 2 0 0 1 3 1 3 1 1 0
148 2 2 3 1 1 2 3 0 2 2 2 0
73 1 1 2 0 0 1 3 1 2 1 1 0
1 0 2 0 0 0 1 4 1 2 0 0 0
66 1 1 2 0 0 1 3 1 3 1 1 0
73 1 1 2 0 0 1 3 1 3 1 1 0
75 1 3 1 1 1 2 4 1 2 1 1 0
75 1 1 2 0 0 1 3 0 2 1 1 0
148 2 3 3 1 1 3 4 0 2 2 2 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 2 0 0 1 3 1 3 1 1 0
152 2 2 3 1 1 2 3 0 2 2 2 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 1 4 1 2 0 0 0
75 1 1 2 0 0 1 3 1 2 1 1 0
151 2 3 3 1 1 3 4 0 2 2 2 0
71 1 1 2 0 0 1 3 0 3 1 1 0
77 1 1 2 0 0 2 4 1 2 1 1 0

0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0
0 0 0 0 0 0 0 3 1 2 0 0 0 0 0 1 0 0 0 1 4 1 2 0 0 0

0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0
0 0 1 0 0 0 1 4 1 2 0 0 0

77 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
77 1 1 2 0 0 1 3 1 2 1 1 0
77 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
76 1 1 2 0 0 1 3 1 2 1 1 0
74 1 1 2 0 0 1 3 1 2 1 1 0
75 1 1 2 0 0 1 3 1 2 1 1 0
75 1 1 2 0 0 1 3 1 2 1 1 0

2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0
2 0 0 0 0 0 0 3 1 2 0 0 0

1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0
1 0 1 0 0 0 1 4 1 2 0 0 0

74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0
74 1 1 1 1 1 1 3 1 2 1 1 0

74 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
76 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
76 1 2 2 0 0 2 4 1 2 1 1 0
74 1 2 2 0 0 2 4 1 2 1 1 0
75 1 2 2 0 0 2 4 1 2 1 1 0
76 1 2 2 0 0 2 4 1 2 1 1 0

150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
148 2 2 3 1 1 2 3 0 2 2 2 0
151 2 3 3 1 1 3 4 0 2 2 2 0
148 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0
150 2 2 3 1 1 2 3 0 2 2 2 0

76 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
73 1 1 1 1 1 1 3 1 2 1 1 0
76 1 1 1 1 1 1 3 1 2 1 1 0
77 1 1 1 1 1 1 3 1 2 1 1 0
75 1 1 1 1 1 1 3 1 2 1 1 0

75 1 2 1 1 1 2 4 1 2 1 1 0
75 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
75 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
75 1 2 1 1 1 2 4 1 2 1 1 0
75 1 3 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0
74 1 2 1 1 1 2 4 1 2 1 1 0

Training Set (2420 SCFDs)

Cluster 1 (1129 SCFDs)

Cluster 2 (248 SCFDs)

Cluster 3 (601 SCFDs)

Cluster 4 (75 SCFDs)

Cluster 5 (90 SCFDs)

Cluster 6 (73 SCFDs)Cluster 7 (47 SCFDs)

Cluster 8 (71 SCFDs)

Cluster 9 (48 SCFDs)

Cluster 10 (13 SCFDs)

Cluster 11 (25 SCFDs)

write close munm clone unlink symlin mmap gettim nanosl ioctl open fstat64 acceptSCFD

77 1 1 1 1 1 2 4 1 3 1 1 1
1 0 2 0 0 0 1 4 1 2 0 0 0
1 1 1 0 0 0 1 4 1 2 0 0 0
3 0 0 0 0 0 1 4 1 3 0 0 1
1 0 2 0 0 0 1 4 1 2 0 0 0
2 0 0 0 0 0 1 4 1 2 0 0 0
1 0 2 0 0 0 1 4 1 2 0 0 0
1 1 1 0 0 0 1 4 1 2 0 0 0
68 1 1 2 0 0 1 3 1 2 1 1 0
66 1 1 2 0 0 1 3 1 3 1 1 0

Figure 6: �e result of clustering 2420 SCFDs. Each row repre-
sents an SCFD of 13 system call types. �e training set shows
only the unique SCFDs and each cluster shows only 10 SCFD
examples that belong to it.

1100 1150 1200 1250 1300 1350 1400
1

2

3

4

5

6

7

8

9

10

11

C
lo

se
st

 C
lu

st
er

Time (# SCFD)

Motion Detected Webcam feed

No MotionsNo Motions

Save Snapshot Only

Save Motion
Frame Only

Save Both

Figure 7: SCFDs in normal situation, their closest clusters as-
signed by our detection algorithm and the corresponding ex-
ecution contexts.

out in comparison to other clusters. Each one was also not
representative enough to create its own cluster.

Figure 7 shows the closest cluster for each SCFD (for 300 SCFDs
obtained during a normal situation) and the corresponding execution
context. �e shaded areas represent the time period when motion
is detected – during which a frame image is saved to a �le. We can
also see that a snapshot is saved at regular intervals (every 5 sec)
regardless of motion detection. Overall, the results show the changes
in the execution contexts as various events occur individually or
together.
Accuracy: Now, we evaluate the accuracy of our anomaly detection
methods. We enabled each of the a�acks from Section 4.3.
(1) A�ack 1: We inserted the code block that leaks out the current

frame image to the a�acker’s desired location (as explained in
Section 4.3) and then obtained a test set of 1003 SCFDs. Note
that not all of them include the a�ack because the inserted code
executes only when a motion is detected. 603 SCFDs correspond
to the case that did not detect a motion and thus are normal.

�e rest of the SCFDs can be divided into two groups as
shown in Figure 8. �e �rst group (upper-right) looks very
similar to the ones in Cluster 9 (in Figure 6) that saves both

IoTDI 2017, April 2017, Pi�sburgh, PA USA M.-K. Yoon et al.

147 2 2 3 0 0 2 3 0 2 2 2 0
151 2 2 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
151 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
150 2 4 3 0 0 3 4 0 2 2 2 0
150 2 4 3 0 0 3 4 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
151 2 2 3 0 0 2 3 0 2 2 2 0
149 2 3 3 0 0 3 4 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
223 3 4 4 1 1 4 4 0 2 3 3 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
223 3 4 4 1 1 4 4 0 2 3 3 0
150 2 4 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
148 2 3 3 0 0 3 4 0 2 2 2 0
150 2 3 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
223 3 3 4 1 1 3 3 0 2 3 3 0
223 3 4 4 1 1 4 4 0 2 3 3 0
223 3 3 4 1 1 3 3 0 2 3 3 0
149 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 3 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
148 2 3 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 3 3 0 0 3 4 0 2 2 2 0
149 2 3 3 0 0 3 4 0 2 2 2 0
150 2 3 3 0 0 3 4 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
223 3 3 4 1 1 3 3 0 2 3 3 0
147 2 2 3 0 0 2 3 0 2 2 2 0
223 3 3 4 1 1 3 3 0 2 3 3 0
147 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0
149 2 2 3 0 0 2 3 0 2 2 2 0

149 2 2 3 0 0 2 3 1 2 2 2 0
149 2 2 3 0 0 2 3 1 2 2 2 0

149 2 2 3 0 0 3 4 0 2 2 2 0
151 2 2 3 0 0 3 4 0 2 2 2 0

147 2 3 3 0 0 3 4 0 2 2 2 0
148 2 3 3 0 0 3 4 0 2 2 2 0

148 2 4 3 0 0 3 4 0 2 2 2 0
150 2 4 3 0 0 3 4 0 2 2 2 0
150 3 3 3 0 0 3 4 0 2 2 2 0
152 3 3 3 0 0 3 4 0 2 2 2 0

220 3 3 4 1 1 3 3 0 2 3 3 0
223 3 3 4 1 1 3 3 0 2 3 3 0
221 3 4 4 1 1 4 4 0 2 3 3 0
223 3 4 4 1 1 4 4 0 2 3 3 0

147 2 2 3 0 0 2 3 0 2 2 2 0
147 2 2 3 0 0 2 3 0 2 2 2 0

SCFDs with Attack1 Two file operations,

write close munm clone unlink symlin mmap gettim nanosl ioctl open fstat64 acceptSCFD

but no unlink and symlink

Too many writes and three file operations!

Figure 8: �e SCFDs when the attacker leaks out current mo-
tion frames (A�ack 1). Not all SCFDs are shown.

motion frame and snapshot images. If the test SCFDs were legit-
imate, then they should have used unlink and symlink system
calls once as shown in the Motion’s normal system call usage
in Figure 5. Since the test SCFDs did not use the calls, they are
classi�ed as abnormal with respect to the learned pa�erns. Of
course, the a�acker could insert bogus unlink and symlink for
this particular execution context. However, then the resulting
sequences are identical to those made by the normal code (when
both images are saved) and no system call-based detection meth-
ods can di�erentiate the two cases, which does not fall into our
threat model.

�e second group (at bo�om-right in Figure 8) consists of
SCFDs observed when the inserted code executes between the
two legitimate �le operations. �e resulting SCFDs are abnormal
as there are three �le operations and hence too many write calls.

(2) A�ack 2: �is a�ack does not use any system calls; it just changes
the values of the data (i.e., image). �is a�ack produces 14KB of
frame images, which results in much less frequent write calls.

5 1 1 1 1 1 1 3 1 2 1 1 0

9 1 2 1 1 1 2 4 1 2 1 1 0

Save snapshot

Save snapshot + Webcam feed

�e SCFDs shown above, obtained when A�ack 2 is enabled,
are quite close to Cluster 6 (top) and Cluster 11 (bo�om), re-
spectively. However, these SCFDs are always classi�ed to be
abnormal because the image sizes (due to the number of write
calls) are not typical when saving snapshot �les during normal
executions. �e a�acker could have circumvented our detection
method if, for example, the frame image is just replaced with
another that has a similar size as the unmodi�ed ones. However,
again, such case is out of scope of our threat model because the
system call usage does not change.

To measure the false positive rates, we obtained a new set of
SCFDs by running the system without activating any a�acks and
measured how many times the secure monitor classi�es an execution
as being abnormal. For the cut-o� distance θ with p0 = 5%, 4 out of
1755 executions (0.23%) were classi�ed as malicious. With p0 = 1%,
i.e., a farther cut-o� distance, it was reduced to just 1 (0.06%). Such
a lower signi�cant level relaxes the cuto� distance and produces
fewer false alarms because even some rarely-seen data points are
considered normal. However, this may result in lower detection rates
as well. In the a�ack scenarios listed above, however, the results did
not change even with the lower signi�cant level.

As explained before, sequence-based approaches may fail to detect
abnormal deviations in situations that naturally have a high-level
variance in the execution contexts. Such instances require a global

view on the frequencies of di�erent system call types made dur-
ing the entire execution and the correlations among di�erent types.
Sequence-based approaches are sensitive to local, temporal varia-
tions, e.g., an unusual transition from one system call to another.
Our SCFD might not catch such a small, local variation. Hence, one
can use these two approaches together to improve the accuracy of
the system call-based anomaly detection for embedded systems.

5 CONCLUSION
In this paper we presented a lightweight anomaly detection method
that uses application execution contexts learned from system call
frequency distributions of embedded applications. We demonstrated
our technique for a real-world open-source application and showed
that the proposed detection mechanism could e�ectively comple-
ment sequence-based approaches by detecting anomalous behavior
due to changes in high-level execution contexts. We plan to im-
prove the learning method using the topic modeling approach to
deal with large-scale heterogeneous behaviors of complex embedded
applications.

REFERENCES
[1] Motion. h�p://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome.
[2] Raspberry PI 2 Model B.

h�ps://www.raspberrypi.org/products/raspberry-pi-2-model-b/.
[3] A hacker developed Maldrone, the �rst malware for drones. Secu-

rity A�airs (Jan 2015). h�p://securitya�airs.co/wordpress/32767/hacking/
maldrone-malware-for-drones.html.

[4] Jeep Hacking 101. (Aug 2015). h�p://spectrum.ieee.org/cars-that-think/
transportation/systems/jeep-hacking-101.

[5] Hackers broadcast live footage from hacked webcams on YouTube and trolls are
loving it. (Apr 2016). h�ps://blog.kaspersky.com/2ch-webcam-hack/11961/.

[6] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Liga�i. 2009. Control-�ow
integrity principles, implementations, and applications. ACM Trans. Inf. Syst.
Secur. 13, 1, Article 4 (Nov. 2009), 4:1–4:40 pages.

[7] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid:
Behavior-based Malware Detection System for Android. In the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices.

[8] Eleazar Eskin. 2001. Modeling system calls for intrusion detection with dynamic
window sizes. In DARPA Information Survivabilty Conference and Exposition II.

[9] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and �omas A. Longsta�.
1996. A Sense of Self for Unix Processes. In the IEEE Symposium on Security and
Privacy.

[10] Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek. 2003. �e global k-means
clustering algorithm. Pa�ern Recognition 36, 2 (2003), 451 – 461.

[11] S. Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Information
�eory 28, 2 (1982), 129–137.

[12] Prasanta Chandra Mahalanobis. 1936. On the generalized distance in statistics.
the National Institute of Sciences 2 (1936), 49–55.

[13] Carla Marceau. 2000. Characterizing the behavior of a program using multiple-
length N-grams. In the workshop on New security paradigms.

[14] Sibin Mohan, Stanley Bak, Emiliano Be�i, Heechul Yun, Lui Sha, and Marco
Caccamo. 2013. S3A: Secure System Simplex Architecture for Enhanced Security
and Robustness of Cyber-Physical Systems. In the ACM International Conference
on High Con�dence Networked Systems.

[15] Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using
Machine Learning For Network Intrusion Detection. In the IEEE Symposium on
Security and Privacy.

[16] Christina Warrender, Stephanie Forrest, and Barak Pearlmu�er. 1999. Detecting
intrusion using system calls: alternative data models. In the IEEE Symposium on
Security and Privacy.

[17] Peter Wilson, Alexandre Frey, Tom Mihm, Danny Kershaw, and Tiago Alves. 2007.
Implementing Embedded Security on Dual-Virtual-CPU Systems. IEEE Des. Test
24, 6 (Nov. 2007), 582–591.

[18] Man-Ki Yoon, Mihai Christodorescu, Lui Sha, and Sibin Mohan. 2016. �e Drag-
onBeam Framework: Hardware-Protected Security Modules for In-Place Intrusion
Detection. In the ACM International Systems and Storage Conference.

[19] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. 2013. Se-
cureCore: A Multicore-based Intrusion Detection Architecture for Real-Time
Embedded Systems. In the IEEE Real-Time Embedded Technology and Applications
Symposium.

[20] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, and Lui Sha. 2015. Memory Heat Map:
Anomaly Detection in Real-Time Embedded Systems Using Memory Behavior. In
the ACM/EDAC/IEEE Design Automation Conference.

[21] Mohammad Mehdi Zeinali Zadeh, Mahmoud Salem, Neeraj Kumar, Greta Cutu-
lenco, and Sebastian Fischmeister. 2014. SiPTA: Signal Processing for Trace-based
Anomaly Detection. In the International Conference on Embedded So�ware.

http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://securityaffairs.co/wordpress/32767/hacking/maldrone-malware-for-drones.html
http://securityaffairs.co/wordpress/32767/hacking/maldrone-malware-for-drones.html
http://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101
http://spectrum.ieee.org/cars-that-think/transportation/systems/jeep-hacking-101
https://blog.kaspersky.com/2ch-webcam-hack/11961/

	Abstract
	1 Introduction
	2 Overview
	3 Anomaly Detection Using System Call Frequency Distributions
	3.1 Learning a Single Execution Context
	3.2 Learning Multiple Execution Contexts

	4 Evaluation
	4.1 Target Application
	4.2 System Implementation
	4.3 Attack Scenarios
	4.4 Evaluation Results

	5 Conclusion
	References

