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Abstract—Security violations are becoming more common in
real-time systems — an area that was considered to be invulnerable
in the past — as evidenced by the recent W32.Stuxnet and Duqu
worms. A failure to protect such systems from malicious entities
could result in significant harm to both humans as well as the
environment. The increasing use of multicore architectures in such
systems exacerbates the problem since shared resources on these
processors increase the risk of being compromised. In this paper,
we present the SecureCore framework that, coupled with novel
monitoring techniques, is able to improve the security of real-
time embedded systems. We aim to detect malicious activities by
analyzing and observing the inherent properties of the real-time
system using statistical analyses of their execution profiles. With
careful analysis based on these profiles, we are able to detect
malicious code execution as soon as it happens and also ensure
that the physical system remains safe.

I. INTRODUCTION

Many safety-critical systems such as advanced automo-
tive/avionics systems, power plants and industrial automation
systems have traditionally been considered to be invulnerable
against software security breaches.! This was particularly the
case since, in general, such systems are physically isolated from
the outside world and also used specialized protocols. However,
many recent successful security attacks on embedded control
systems such as the W32.Stuxnet infection of Iran’s nuclear
power plant [36], malicious code injection into the telematics
units of modern automobiles [19] and attacks on UAVs [30] call
for a rethink of the security of safety-critical embedded systems.

Another recent trend is that of multicore processing. Such
processors are finding wide use in a variety of domains and
embedded systems are no exception. The increase in perfor-
mance, reduction in power consumption, and reduced sizes of
systems using multicore processors (a single board instead of
multiple boards) makes them very attractive for use in safety-
critical embedded systems. A problem with the use of multicore
processors in such systems is that of shared resources — com-
ponents such as caches, buses, memory, efc., are shared across
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YA safety-critical or life-critical system is one where failure or malfunction
may result in death or serious injury to humans, loss or severe damage to
equipment and/or the environment.

the multiple cores and could result in security vulnerabilities
[25]. For example, malicious entities could snoop on privileged
information used/generated by critical code running on alternate
cores, high-priority tasks could be prevented from executing by
a denial-of-service attack on the shared resources (e.g., keeping
the bus occupied by large DMA transfers could prevent the high
priority task from obtaining the memory reads it requested),
etc. Hence, there is a need for a comprehensive solution where
multicore processors could be used in safety-critical systems
in a safe and secure manner. In fact, the very nature of such
processors — the parallel cores and the convenience they provide
— could be used to improve the overall security of the system.

In this paper, we present SecureCore, a secure and reliable
multicore architecture solution to tackle security vulnerabil-
ities in real-time embedded systems. We specifically pursue
an approach to entrusting certain CPU cores in a multicore
processor with the role of monitoring and intrusion detection.?
The use of multicore processors has inherent advantages over
off-chip security devices: (i) a CPU core is able to more closely
monitor the execution behavior of software running on the other
(potentially) unsecured core(s); (i) the mechanisms cannot be
tampered with easily or reverse-engineered. Section III provides
further details about the SecureCore Architecture.

We also introduce novel techniques to observe inherent prop-
erties of the real-time code executing on the monitored core
in Section IV — properties such as execution time for instance.
These properties tend to be fairly deterministic in such real-time
systems and hence can be used as a way of detecting anomalous
behavior (indicative of malicious activity). These observations,
in conjunction with the capabilities of the SecureCore architec-
ture, significantly increase the security of the overall system by
enhancing the abilities to detect intrusions. The key idea behind
the proposed architecture and intrusion detection mechanism
is that since real-time embedded control applications generally
have regular timing behavior, an attack would inevitably alter
its run-time timing signature from expected values [22].

Our architecture proposes a design so that a trusted entity, a
secure core, can continuously monitor the run-time execution
behavior of a real-time control application on an untrustworthy
entity (henceforth referred to as the monitored core), in a non-

ZFor this paper we will focus on the use of a dual-core processor setup where
one core observes the other one. In future versions, we intend to study the
tradeoffs regarding how many monitoring cores are required per set of observed
cores.



intrusive manner. In case malicious behavior is detected, a
reliable backup control application residing on the secure core
takes control away from the infected core in order to guarantee
stability and loss-less control for a physical system [28]. Since
there will be some inherent variability in these properties — for
instance due to changes in inputs, code complexity, efc., we use
a statistical learning-based mechanism for profiling the correct
execution behavior of a sanitized system.

In summary, this paper implements the following: (a) a
novel architecture based on a multicore platform that provides
security mechanisms for use in embedded real-time systems;
(b) execution time-based intrusion detection mechanisms using
a statistical learning; and (c¢) Simplex [28] architecture-based
reliability. All of these combined provides non-intrusive, invis-
ible monitoring capabilities and reliable, seamless control for
real-time systems.

A. Assumptions

In this paper, the following assumptions are made without loss
of generality: (i) We consider a CPU-based real-time control
application — i.e., a system consisting of periodic, independent
tasks. (ii) We assume the application runs on a single monitored
core. The proposed intrusion detection method does not work
with multiple monitored entities in the current form. (iii) We
assume that the size of the input set (to the control application
under consideration) is small. This can be justified by the fact
that most real-time control applications have a small footprint
for input data (velocity, angle, efc.) within fairly narrow ranges.
(iv) We assume that the execution time of the application is not
unbounded. For example, the upper bounds for loops is known
a priori. However, this assumption is not strictly required in this
paper. It is sufficient to assume that (almost) all possible loop
bounds are profiled. (v) Similarly, we assume there is no hidden
execution flow path in the application — all paths are present
when being profiled.

II. MOTIVATION
A. Threat Model

The W32.Stuxnet worm [36] was able to successfully subvert
operator workstations and gain control of Iran’s nuclear power
plants through sophisticated attacks including the first known
PLC rootkits and use of multiple zero-day vulnerabilities. The
worm was able to intrude into the control system by first gaining
access and then downloading attack code from a remote site.
The malware then gradually inflicted damage to the physical
plant by substituting infected actuation commands for legitimate
ones over a period of time. Despite the employment of several
protection and monitoring mechanisms, the control system could
not detect the intrusion and the attack until the physical damage
to the plant was significant. In fact, such sophisticated systems
have many entry points that are vulnerable to potential attacks
and they often cannot be secured completely. Hence, there is
need for failure-prone monitoring methods.

In this paper, instead of trying to prevent and/or detect
intrusions at every vulnerable component, we intend to monitor
and detect intrusions at the most critical component: in real-time
control systems, the primary concern is the safety of the physical

plant under control. Thus, we focus on detecting an intrusion
that directly targets the real-time control application. We assume
that regular security process was in place to ensure the security
during the application design and development phases, i.e., the
application is trustworthy initially. The execution timing model
is obtained via profiling prior to system deployment. Also, the
timing information is obtained by re-profiling the system after
any updates and is supplied with the modified application (if
any). We assume that the application could be compromised
after the profiling stage but the stored timing profile cannot
be tampered with during the updating process. We consider
malicious code that can be secretly embedded in the application,
either by remote attacks or during upgrades. The malicious code
activates itself at some point after the system initialization and
then gradually tries to change, damage, or even snoop on the
physical state of the plant under control. We are not directly
concerned with ~ow the malicious code gained entry, but more
concerned with what happens after that.

B. Use of Multicore Processor in Real-Time Control Systems

Multicore processors are receiving wide attention from in-
dustries due to their ability to support generic and high-end
real-time applications that traditional control hardware, e.g.,
programmable logic controllers (PLC), are unable to provide.
This trend is especially strong for instance in automotive indus-
tries [1] where CPU-based real-time control applications have
a significant presence, e.g., engine control, anti-lock braking
systems (ABS), etc. As previously introduced, it was shown
that automotive control applications are increasingly vulnerable
to security attacks as they are more equipped with high-end
and complex technologies [19]. Although we do not specifically
consider automotive control applications, the use of the mech-
anisms presented in this paper will naturally fit into the future
development processes of safety-critical automotive components
as the industries are more moving toward employing more
multicore-based real-time control systems. Also, the use of one
or more cores for improving the security (and overall safety) of
such systems is a big plus. Even though some of the resources
(cores in this case) are being used up, the increase in security
that is provided as a result definitely offsets any losses in
performance. Hence, the use of multicore processors in secure
real-time embedded systems will be beneficial to the community.

III. SECURECORE ARCHITECTURE

In this section, we present the SecureCore Architecture, a se-
cure and reliable multicore architecture that aids in the detection
of intrusions in embedded real-time systems and guarantees a
seamless control to the physical system. We first introduce the
overall structure of the architecture and then discuss the design
consideration of each component in detail.

There exist several challenges in both hardware as well
as software, before these techniques could be implemented
in a satisfactory manner. First, a protection mechanism must
be provided to the secure core so that it is tamper-resistant
(especially from malicious activity on the unsecured/monitored
cores). Second, the secure core should be able to closely monitor
the state of the other core. However, the monitoring activity
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Fig. 1. SecureCore Architecture.

should be invisible as far as the observer is concerned — this
is mainly so that an attacker should not be able to deceive the
intrusion detection mechanisms by means of replay attacks (i.e.,
replicating previously recorded execution behavior of an appli-
cation in its correct state). Third, in a multicore environment,
an application will inevitably experience a considerable variation
in its execution time due to the interference caused from inter-
core resource contentions [27], [39], [40]. Thus, the security
invariant, i.e., the execution time profile in this paper, should be
accurate enough so that the intrusion detection method(s) can
effectively validate the cause of any such variations. Similarly,
the method should be able to take into account execution time
variation caused by legitimate application contexts such as
differences in input sets and execution flow. Finally, the secure
core should be able to guarantee loss-less control to the physical
system that it manages even if the main, monitored, or control
application is compromised. How we solved these problems is
elaborated in the following sections.

A. High-Level Architecture

Figure 1 shows the high-level structure of the SecureCore
architecture. The system is composed of four major components
— (a) the secure core, (b) the monitored core, (c¢) the on-chip
Timing Trace Module (TTM) and (d) the hypervisor. The system
is built upon the concept of the Simplex architecture [28]: a
safety controller and a decision module rest on the secure core
while a complex controller (essentially the controller that man-
ages the physical system) runs on the monitored core. Sensor
data from the physical plant is fed to the both controllers, each
of which computes actuation commands using their own internal
control logic. The decision module on the secure core then
forwards the appropriate command to the plant depending on a
pre-computed safety envelope for the physical system. In normal
circumstances, the plant is actuated by commands from the
complex controller. However, when an abnormal operation of the
complex controller is detected (say, due to unreliable/erroneous
logic and faults), control is transferred to the safety controller
in order to maintain loss-less actuation of the physical plant.
With this mechanism, the reliability of the control actions can
be guaranteed by the decision module and the safety controller
(that can be formally verified), provided however that all the
entities are trustworthy. It is possible for the decision module
or safety controller to be compromised by a security attack.
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Fig. 2. Execution flow of the SecureCore components.

Furthermore, the complex controller may deceive the decision
module by providing a legitimate actuation value while, for
example, collecting critical system information that could be
exploited during a future attack. Thus, it is important to ensure
a high security level for the system. In the following sections, we
describe how the security as well as the reliability of this basic
Simplex mechanism can be enhanced by use of the SecureCore
architecture.

B. Design Considerations

Our solution includes a hypervisor that provides a virtu-
alization of hardware resources on our proposed SecureCore
architecture through partitioning and consolidation [4]. In or-
der to protect the secure core from malicious alteration by
a compromised complex controller, the hypervisor provides a
clean separation of memory spaces by programming the memory
management unit (MMU). Also, the hypervisor itself runs in its
own protected memory space. Thus, any attempts at memory
access across the partitions is blocked by hypervisor.

With the help of this memory protection, we design an I/O
channel between the processor and the plant. The channel is
managed by an I/O proxy process that runs on the secure core.
The I/O proxy manages all I/O to and from the physical plant.
This is to prevent I/O data obfuscation that could be caused
by malicious code on the monitored core. Furthermore, if the
I/O channel device is directly accessible by both cores then
a compromised application on the monitored core may attack
the secure core indirectly by, say, causing a denial-of-service
attack on the I/O channel — this will prevent the safety controller
from taking over from the complex controller. This I/O device
consolidation capability is also provided by the hypervisor
through the I/0 MMU. The system is configured such that the
device cannot be seen from the monitored core.

Since the memory space is partitioned and the I/O device is
consolidated to the secure core, data to and from the monitored
core is relayed via the inter-core communication channel on the
hypervisor level. Transferring data through a shared memory
region is strictly prohibited because of a potential vulnerabil-
ity [25]. As shown in Figure 2, the I/O proxy first retrieves
sensor data from the plant and then transfers it to the two
controllers. For the complex controller, the I/O proxy places
the data on a dedicated channel between the memory space
of the secure core and that of the hypervisor. The data is
then copied to the buffer at the monitored core’s side. The
complex controller retrieves the data by either polling or an
interrupt-driven method. For the opposite direction, however,
i.e., if the complex controller wishes to send out actuation



commands and when the decision module wishes to retrieve
such a command, it (the decision module) polls the buffer on
the inter-core communication channel. The decision module
also sets a watch-dog timer for this process. When the timer
expires and the decision module has still not received data
from the complex controller, the safety controller takes over the
control. This polling-based data passing is to prevent the secure
core from being unboundedly interrupted by a compromised
complex controller — a vulnerability that can be exploited using
an interrupt-driven method.

The main component that enforces the security invariant in the
architecture is the secure monitor — a process that continuously
monitors the execution behavior of the complex controller. The
secure monitor works in conjunction with an on-chip hardware
unit called the Timing Trace Module (TTM). The details of
secure monitor and TTM are discussed in Section III-C. The key
role of the monitor is to detect if the run-time execution time
signature has deviated from what is expected/has been profiled.
If any unexpected deviations are observed then the secure
monitor informs decision module and control is immediately
switched over to safety controller in the secure core. At the
same time, the hypervisor is told to reset the monitored core and
then reload a clean copy of the complex controller binary from
a secure memory region. Once the reset and reload is complete,
the monitored core could, potentially, resume operation and take
control back. Of course, this could depend on the policy for
recovery that is implemented on the actual system. It could also
happen that the monitored core is completely shut down and not
restarted until an engineer analyzes the issue and says it is safe
for the monitored core to resume operations. This will prevent
smart attackers from triggering constant back and forth switches
between the complex and simple controllers — events, that could
themselves, cause harm to the physical system if timed correctly.
In case a rapid recovery is required, the complex controller may
even be implemented to run on a bare-metal executive [4] which,
however, would require a modification of the legacy code.

As described above, the architecture relies heavily on the
hypervisor. Thus, the entire secure mechanism can collapse if
the hypervisor itself is compromised in the first place. Hence,
it is assumed in this paper that the hypervisor forms part of
the trusted base; no malicious code is embedded in it. We note
that while a hardware-enforced memory protection mechanism
would further enhance the security of the hypervisor [38], we
do not address this issue in this paper.

One may argue why the monitored core does not receive the
same protection as the secure core. The secure core needs to
exist for two reasons: (i) fault tolerance when the main controller
fails either due to a fault or a security violation and (ii) security;
the monitored core might need to have software updates/interact
with external sensors, perform /O, efc., while the data/code in
the secure core will not often change. Hence, it makes sense to
harden the secure core and not always the monitored core. Of
course, even if the monitored core is hardened, it can still be
susceptible to smart attackers. Another issue is that the way the
secure core is hardened is by providing it with private memory
and other hardware mechanisms. Doing this for all other cores
would be prohibitive, especially when we want to increase the
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observation to multiple cores.?

C. Timing Trace Module (TTM)

The Timing Trace Module (TTM) is a special on-chip hard-
ware unit that traces the run-time timing information of the
monitored core. The module is located between the monitored
and secure cores and directly attached to the former as seen in
Figure 3. When a certain event is triggered (the execution of a
special instruction; explained shortly), a part of the processor
state is read by the TTM. The processors state includes the
values of the timestamp counter, the program counter (PC) and
the process ID (PID) of the current task. The trace information
is then written to the scratch pad memory (SPM) that can be
seen/accessed only by the secure core. The SPM is mapped to a
range of the secure core’s address space. A sequence of traces
is collected during one single run of the complex controller
(Figure 2). The secure monitor verifies the legitimacy of the
execution profile obtained from the trace by comparing it with
one that has been collected during implementation time when
the system was in a known good state.*

We now present how TTM traces the required information
from a running application. A trace operation is carried out by
executing a special trace instruction in the monitored applica-
tion, as described in Figure 4 (a). The special instruction also has
a mode when it can register the PID of the monitored application
with the TTM. Once a PID is registered, only a process that
matches the PID can execute other trace instructions; this is to
prevent traces from being forged by another process that might
be compromised. The PID value is written at the top of the SPM
and the PC value at that point is registered as the Base Address
(BA) as shown in Figure 4 (b). When the trace instruction is
executed while the tracing is enabled, the timestamp and the
instruction address at that point execution are written at the
address specified by the value of Addr®d. Here, the address
being written is a relative address from BA, i.e., PC; — BA, that
can contain positive or negative values. The reason for storing
a relative address is to capture the exact signature of each trace,
since the real addresses can change between executions — two
sequences of traces may not match although they are produced
at the identical places.’

Note: the TTM is used at rwo different points in the
whole process: (i) during the development/testing phase, it

3This is part of our future research plan.

4The statistical learning-based profiling and monitoring methods will be
explained in further detail in Section IV.

SWe assume that no dynamically loaded libraries exist in the system and even
if they do, we do not trace them.
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Fig. 4. Trace instructions and the layout of SPM.

is used to collect profiling information about the application
processes/tasks, e.g., the real-time execution time profile de-
scribed later in this paper and (ii) when the system is actually
deployed in the field, the TTM is a conduit for flow of the
monitoring information from the monitored core to the secure
core. Meanwhile, the trace instructions are manually inserted
into the code. Automated insertion of trace instructions is a
future work.

The SPM is a circular buffer of traces. When a single run of
the complex controller completes, the secure monitor consumes
a sequence of traces specified by Addr¢2d and Addr™!. While
it is possible for SPM buffer to overflow during execution,
we note that only a small number of traces would be enough
in a real-world control application due to a short span of
the execution times. Also, we chose to use an SPM instead
of shared memory (through a cache) as the buffer for the
traces because an SPM has a lower access latency. The shared
memory communication can also open up potential security
breaches [25].

IV. GAUSSIAN KERNEL DENSITY ESTIMATION FOR
EXECUTION TIME-BASED INTRUSION DETECTION

The intrusion detection method presented in this paper utilizes
the deterministic timing properties of real-time control applica-
tions. Since any form of unwanted malicious activity consume
finite time to execute, a deviation from expected regularity
would likely point towards an intrusion. However, as explained
in Section I, the execution time of an application can also
include variations due to other, more mundane, reasons such
as system effects. On a multicore processor, the sharing of
hardware resources such as caches, buses, memory, efc., can
result in variability in the execution times. Also, an application’s
own context such as different input sets and execution flows can
cause deviations in timing. The main difficulty in profiling and
estimating execution time comes from the fact that it is often
non-parametric; e.g., monitoring only the mean, minimum, or
maximum values is often not accurate enough for our purposes.
Thus, in this section, we present a statistical learning-based
execution time profile and intrusion detection method that can
effectively validate the causes of any observed perturbations in
execution time and account for their causes.

A. Overview
Let us first consider a simple example application consisting
of three blocks of code (Figure 5 (2)).° The blocks are sequen-

A Block could refer to a sequence of instructions of arbitrary size and does
not necessarily mean Super Block [15].
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Fig. 5. Trace instructions inserted to an example application.

tially executed but depending on the input value(s) Block 2 may
be skipped. Here, we do not assume a specific form of inputs —
the input can be a single value, a range, or even multiple ranges
of values. However, it should be assumed that the execution flow
does not show deviations when presented with the same input.

The execution time profiling method (explained in Section
IV-B) profiles the execution times of each block (measured
in cycles) and generates an estimation on it. During run-time
monitoring, each measured execution time of block i, e;, is
compared with the estimation, é;, to check how close it is to
legitimate behavior. The reason we do not profile aggregated
execution time is to improve the detection accuracy by nar-
rowing the estimation domain. That is, each variation at every
block gets accumulated along the execution path and this would
obscure potential malicious code execution inside. For example,
an attack code could redirect the execution (say using buffer
overflows) during the execution of Block 2 and then return to
the right address in a short amount of time. In such cases, the
time taken by the extra code may fall within the interval of
allowed deviations of aggregated execution time. Moreover, with
block level monitoring, each block boundary can be used as a
check point — the monitor can detect malicious execution along
a path where a block is either skipped or never exited. Thus,
an attacker would need to not only keep within fixed paths, but
also complete execution in a very short amount of time — both
of which significantly raise the bar against would be attackers.

B. Trace Tree

We now explain how traces generated by the TTM can be
used to profile block execution times. Consider the execution
flow graph in Figure 5 (a). Suppose we are interested in
monitoring blocks between Begin and End. Then, we add
an INST TRACE instruction at the end of each block and at
the top of the flow as shown in Figure 5 (b).” Every time the
instruction executes, a pair (Addr;,t;) is added as a trace (see
Section III-C). This results in a sequence of traces for a single
execution of the application — e.g., (Addry,t1), (Addra,ts),
(Addry,t4), etc., for one input of I-. Assuming each run of
the application begins at the same entry point, we can construct
a trace tree from a collection of such sequences as shown in
Figure 6. In the tree, each edge corresponds to the address

7Tt should be noted that no INST TRACE instruction must be placed inside
a recursive function.
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(relative from a base address) at which each INST TRACE is
executed. Thus, a block in the original execution flow graph
can be defined as a pair (Addr,, Addr.), where Addr), is the
address of the last trace instruction that is executed before and
Addr. is the address of the instruction that is executed right
after the block. Accordingly, each node in the tree is a set of
time differences between the two addresses that then are the
samples of the block execution time.

Note, however, that the same block may have different Addr,
values depending on an execution flow, for instance Block 3.
Observe that such a block appears in multiple trace paths.
Here, we define trace path P; as a sequence of addresses
(Addr; 1, Addr; 2, ..., Addr; ), where n is the number of
blocks along the execution path. Thus, two trace paths, P; and
P;, are distinguishable if there exists a k such that Addr; j, #
AddTﬁk (e.g., AddTLg = Add’l“4 and Add?“273 = AddTg) ThllS,
the two Block 3’s can be distinguished by the trace paths taken.
Note that we extracted the trace paths from the tree without
prior knowledge of input values. The tree is constructed only
from a given collection of trace sequences. A higher accuracy in
profiling and monitoring would be achieved by including input
information when constructing the trace trees.

Now the trace tree gives us the information of how the appli-
cation needs to behave in order to be considered as legitimate
execution — i.e., in what order the traces have to be generated.
In the next step, we estimate each block’s execution time with
samples at each node. The obtained profile will strengthen the
invariant by enforcing what ranges of execution time each block
have to fall within. The trace tree will also infer what each
block’s execution time should be, for individual path. However,
one issue remains: a block’s execution time can also vary for
different inputs even along the same path (e.g., Block 3 at
the right subtree in Figure 6). In what follows we address
the problem of block execution time estimation in the face of
varying control flow and inputs.

C. Profiling Block Execution Time Using Gaussian Kernel Den-
sity Estimation

Suppose we are given a set of samples of block execution
times from a trace tree node. In this section, we show how to find
a good estimation on the samples that can effectively classify
the differences between legitimate and malicious execution
behaviors. As previously explained, although a real-time control
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Fig. 7. Probability density estimation of an example execution block.

application has regularity in timing, noise (system effects, re-
source contentions, etc.), control flow variations and even input
sets can cause variance in execution times. Thus, instead of
trying to obtain accurate (or tight) ranges of execution times
we calculate the likelihood of legitimate executions by taking
into account the effects of such perturbations. For this purpose,
we estimate the probability density function (pdf) of execution
times, f(e), from a set of samples, (e(V), e ... e(™), by
using the Kernel Density Estimation (KDE) [9], [16], [26]
method. KDE is a non-parametric pdf estimation method that
estimates an unknown pdf directly from sample data as follows:

R 1 & .
M ey = LS R (e — e
fh(6|€ ) € ) m et h(e € )a

where K is a Kernel function and h is Bandwidth (also
known as the smoothing constant). Hereafter, we simplify
fulele®, ... e™) as fi,(e).

There exist several kernel functions such as Epanech-
nikov [12], triangular, uniform, efc. However, in this paper,

. .2 2
we use the Gaussian kernel, Kj(x) = \/217h6 ®*/2h7 " \where

—oo<z<00.% The key idea of the Gaussian KDE is to first draw
a scaled Gaussian distribution (parameterized by the bandwidth
h) at each sample point along the x-axis (i.e., e-axis) and
then to sum up the Gaussian values at each e that results
in the probability density estimate at e, i.e., fj(e). Thus the
more samples that are observed near e, the higher the density
estimate fh(e) will be. Figure 7 shows the probability density
estimation derived by Gaussian KDE from a set of 6708 samples
of an example block (used in the prototype implementation in
Section V). As can be seen from the figure the estimated pdf
is in a non-regular shape compared to what could have been
obtained by a parametric distribution such as Gaussian. Also,
as the bandwidth becomes wider, the resulting pdf is further
smoothed out. Given this pdf, one can expect that a newly
observed e* would highly likely fall within the ranges close
to 2.73 x 10°, 2.75 x 10° cycles, etc.

D. Intrusion Detection Using Execution Time Profiles

To deal with the timing variations during the execution of
the code, we use the idea of probability density estimations

8We do not address the problem of choosing the kernels and the optimal
bandwidth in this paper. Interested readers can refer to [12], [16], [26].



for monitoring and detecting intrusions. We now show how
this information is used to detect intrusion at run time. In
what follows we limit ourselves to a single trace node (i.e.,
a block). However, the same method is applied to all other
nodes that form a part of the code. Suppose we are given the
probability density estimation f* of node k.2 Let P*(a<e<b)
be the probability that an arbitrary execution time e is observed
between a and b with the given pdf. Note: the probability that e
is included within a range [a, b] is P*(a<e<ble),--- (™)) =
f; FElele®, -+ e™) de.

Here, the obtained pdf may not be directly usable in the
continuous domain, depending on the implementation. Thus,
we derive the discrete probability distributions (or probability
mass functions) instead. Let N be the number of uniformly
distributed points on the e-axis that the Gaussian KDE evaluated
on. Then, there are N — 1 bins, each of which is characterized
by [emin + iU, €min + (i+1)-u]. Simply put: [b% . b 1, for
1=0,...,N—1 and u = (emaz—Cmin)/(N—1), where €,,qx
and e,;, are the maximum and the minimum values among
the observed samples, respectively. In this setting, P*(e*), the
probability of a specific execution time e*, be approximated by

P*(b

min

<e< binaz) ~ fk(bznzn) " U,

k| et —em : * i . : :
where i* = |[“—=min |, je, e € [b],i,,b14.]; u is the bin

width and > ...y, PF(e € [b,.,, b 00]) = 1.

Note that P*(e*) is the probability of being a legitimate
execution instance assuming that the estimated pdf is the true
distribution. Thus, in order to deal with errors resulting from
the estimation we compare P*(e*) with a pre-defined minimum
required probability, 8 (e.g., 6 = 0.05 or § = 0.01). If
PF¥(e*) is below 6 we consider that the execution instance to
be malicious.!® Hence,

if P(e*) <0
if P(e*) >0

malicious,

safe.

The value of @ affects the rate of misclassification. We define a
false positive as a case where the secure monitor says something
is malicious when it is not. Similarly, a false negative is defined
as a case where the monitor could not detect a real attack. With
a higher 0, the rate of false negatives would decrease. However,
at the same time, the rate of false positives will also increase.
Note that setting 6 to 0 implies that any execution is considered
to be legitimate.!!

Lastly, suppose we obtained f k for all nodes in a trace
tree. For a given sequence of traces generated during a single
execution of the monitored application, the secure monitor
traverses the trace tree with the address values as explained in

9We drop the subscript A from f;, to simplify the expression.

10The proposed model is related to outlier detection algorithms [18]. More
specifically, the null hypothesis - e* is legitimate - is that the sample has at least
6 percent of all other points having a distance to the sample less than u, the bin
width. One may regard that we reject the null hypothesis when P* (e*) < 0.

TOne may perform a non-parametric hypothesis test such as Wilcoxon
Signed-Ranks Test [37] or Anderson-Darling Test [5]. It should be noted,
however, that the intrusion detection process needs to be performed for a set
of execution time samples instead of a single sample in such non-parametric
tests. Thus, the process of detection could be delayed depending on how many
samples are used to perform the test.
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Fig. 8.
Section IV-B. At each node k, the secure monitor calculates
P¥(t. —t,) where t, and t. are the timestamps when two
subsequent trace instructions are executed at Addr, and Addr,.
If there exists at least one k such that P*(t. —t,) < 6, the
secure monitor considers that execution to be malicious. Since
we use Gaussian KDE of execution time variations for detecting
intrusions, we shall henceforth refer to this technique as the
Gaussian methods for Intrusion Detection using Timing profiles
(GalT).

SecureCore prototype implemented on Simics P4080 model.

V. IMPLEMENTATION

In this section, we present the implementation details for
a SecureCore prototype. We first describe the hardware-level
implementation and setup and then explain the software com-
ponents. The latter includes a real-time control application and
embedded malicious code.

A. System Implementation

We implemented SecureCore on Simics [21], a full-system
simulator that can run a hardware platform including real
firmware, device drivers as well as an unmodified OS and
hypervisor and also allow processor architecture modifications.
Figure 8 shows the system implementation overview (see Table I
for the implementation parameters). We used the Freescale
QorIQ P4080 Processor [3] platform that has eight e500mc
cores [2]. Only two out of the eight cores were enabled — i.e.,
cores 0 and 1 were used as the monitored and secure cores
respectively. The secure core side runs Linux kernel 2.6.34. The
monitored core runs on the Freescale Light Weight Executive
(LWE) [4]. The choice of LWE is specific to this paper but
we used it for the support of rapid reset and reload of a
trusted binary it provides. The LWE could easily be replaced
by any commodity or real-time OS, depending on the system
requirements.

The hypervisor is configured such that the memory spaces
between the cores are cleanly separated and the monitored core
is set to be a managed partition under the secure core (core
1 can reset core O via a unidirectional reset doorbell). A byte
channel (16 bytes-wide) was established to be the inter-core
communication channel between the cores. We set the clock
speed of each e500mc core to be 1000Mhz. In addition, we
attached caches to the cores (not shown in the figure) for a more
realistic environment. Each core has L1 instruction and data
caches, each of size 16KB. The cores share a unified L2 cache of
size 128KB. We note that without the caches, every instruction
execution and data fetch would take 1 cycle on Simics.



TABLE I
IMPLEMENTATION AND EXPERIMENTAL PARAMETERS.

[ Component [ Description

Clock speed 1000MHz

L1 Inst. and Data cache 16KB, 8 ways, latency: 2 cycles

L2 Unified cache 128KB, 32 ways, latency: 10 cycles

Exec. time of complex contr. [0.855,1.2°] cycles

Exec. times of malicious loops | 440, 720, 1000 cycles (1,2,3 loops, resp.)

Min. required probability 6 0.01 or 0.05

The Timing Trace Module (TTM) was implemented by ex-
tending the Simics sample-user-decoder that is attached
to core 0. When the decoder encounters the trace instructions,
the relevant information is written to the SPM. We modified
the ISA of the e500mc core [2] so that the execution of the
rlwimi instruction will trigger an event to the TTM.!? As
shown at the bottom of Figure 4, there are four types of trace
events differentiated by the last parameter: (a) INST REG_PID
registers the process ID of the calling application with the
TTM, (b) INST_ENABLE/DISABLE_TRACE enables/disables
the trace operations of TTM and (¢) INST TRACE writes a
trace to the SPM. As mentioned in Section III-C, when tracing
is turned on and the INST TRACE instruction is executed,
the timestamp and the instruction address at the point of the
execution are written at the address specified by the value of
Addread The SPM has a size of 4K B and is mapped to a
region of core 1’s address space by the hypervisor.

Lastly, all processes including secure monitor (SM), decision
module (DM), I/O proxy (IOP) and the safety controller (SC)
run in user-space. Sending/receiving data through the byte
channel is done via a kernel module that requests a hypervisor
call. The processes (Figure 2) execute with a period of 10 ms.

B. Application Model

As our physical control system, we used an Inverted Pen-
dulum (IP). However, since the simulation speed of Simics is
slower by an order of magnitude than the dynamics of a real
IP, we used control code and related dynamics generated from
a Simulink [32] IP model. These were then encapsulated into
software processes. The dynamics process runs on the host PC
and is synchronized with the control system managing it in
Simics through a pseudo terminal (Note: Simics sees it as a real
serial connection). The physical state of IP is defined as the cart
position and the rod’s angle, perpendicular to the ground. This
state is sent to the controllers executing on Simics and they, in
turn, compute an actuation command that is then sent back to
the dynamics process that then emulates the action of the IP. For
realistic dynamics, we embedded a Gaussian noise generator at
the output of the rod angle in the dynamics.

As mentioned above, the system runs on Simics and monitors
the IP control application. We use the same control code for
the complex and simple controllers for evaluation purpose only.
However, since the code is too simple with very little variance
in execution time, we inserted a fast fourier transform (FFT)
benchmark from the EEMBC AutoBench suite [11], aifft, to
the complex controller as shown in Figure 9 (a). The benchmark
consists of three phases after initialization. We modified it so

2rlwimi is the Rotate Left Word Immediate Then Mask Insert instruction.
Execution of rlwimi 0,0,0,0,1i for 0 <% < 31 is equivalent to nop.
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(a) Execution flow graph

Fig. 9.

(b) Trace tree

The execution flow and the corresponding trace tree of IP+FFT.

that after initialization it randomly selects a path ID. If the ID
is ‘0’, FFT Phase 2 is skipped, and Phase 3 is executed twice if
the ID is ‘2’. From this structure, we wish to observe how well
our detection methods can deal with execution time variances
caused by inputs and flows. After the FFT phases complete, the
IP control logic is executed. The logic controls the IP so that it
is kept stabilized at position ‘41’ meter from the origin.

We inserted malicious code at the end of FFT Phase 3.
It is a small loop in which some arrays used in previous
FFT phases are copied. The average execution time of the
malicious code is 440, 720 and 1000 cycles for 1, 3 and 5 loops
respectively. The code becomes activated when the cart position
of IP received from IOP becomes +0.7 meter. Thereafter the
code is executed randomly and the complex controller discards
the actuation command calculated by the IP logic and sends
out one duplicated from the previous execution. This will result
in two effects — variances in execution time that differ from
expected values and also sends wrong actuation information
to the control system. Both of these effects should trigger our
detection systems.

To profile the execution times of the complex controller, we
inserted INST TRACE instructions at the end of each block
and one at the top of each flow (i.e., before FFT_init()) as
explained in Section IV-B. We executed the system in a normal
condition (i.e., no malicious code activation) for 10,000 runs
until we obtained a collection of traces. From these traces, a
trace tree is constructed as shown in Figure 9 (b). We then used
the ksdensity function in Matlab to derive the pdf estimation
f* of the samples at each block k.3

VI. RESULT AND DISCUSSION

In this section, we evaluate our SecureCore architecture
through experiments on the prototype presented in Section V.
We then discuss some limitations and possible improvements.

13We set the number of bins, N, to 1000. The kernel smoothing bandwidth
h is then automatically selected by the function.
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Fig. 10. Trajectory of cart with different protection approaches.
A. Early Detection of an Intrusion

We first evaluate our timing-based intrusion detection method
by measuring how quickly it can detect malicious code execu-
tion compared to vanilla Simplex-only approach. As explained
in Section V-B, the malicious code embedded in the complex
controller is activated when the cart passes through the point
at +0.7 m. In this evaluation, we set the minimum required
probability 8 to 0.01 and the loop count of the malicious code to
3. The cart positions were traced from the IP dynamics process
for the cases where (a) there is no attack, (b) attack + no
protection, (c) attack + Simplex only and finally (d) attack +
Simplex + GalT (our detection method). Additionally, we set
an event that is triggered when Simplex or our method detect
anomalies. However, for evaluation purposes, we intentionally
disabled our method until the cart passes over +0.5 meter; if we
enable it from the beginning, a false positive would activate the
safety controller before an attack takes place.

Figure 10 shows the different trajectories of the cart for the
four cases. The cart is stabilized at the position near +1m when
there is no attack or if the control logic is protected (either by
GalT or vanilla Simplex). When there is no such protection
mechanism, however, the cart becomes destabilized finally after
time 25 seconds. When the protection mechanisms are active
(SecureCore + GalT) and the malicious code was activated
(at around 6.9 seconds), it was almost instantly detected by
GalT. We can see this from the magnified section of the plot
showing the trajectory of the cart along with the normal case
(i.e., no attack). On the other hand, although it is not clear in the
figure, the Simplex-only method detected the abnormal behavior
of the complex controller at around 9.5 seconds. In this case,
we see that the cart has deviated from its normal trajectory
for a moment; it was later returned to the normal trajectory.
Even though the experiment was performed with a restrictive
setup for a simple application, the result shows that our timing-
profile based intrusion detection method (GalT) can supplement
Simplex through early detection. Even though vanilla Simplex
can detect malicious activity, it does so much later than GalT
and only because the compromised controller tried to actuate
the physical system into an unsafe state. Many times, attackers
may not send wrong actuation commands — they may snoop on
the operation of the system and collect privileged information.
SecureCore and GalT will be able to detect such activity almost
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Fig. 11. False negative rates for different 6 and malicious loop counts.
TABLE II
FALSE NEGATIVE RATES (# ATTACKS MISSED / # ATTACKS TRIED).
[ i 1 loop [ 3 loops [ 5 loops ]
0 =0.01 827/1022(81%) | 574/1046(55%) | 130/1098(12%)
0 =0.05 578/1050(55%) | 117/1011(12%) 0/1045(0%)

instantaneously, as evidenced here, while Simplex will fail to
detect it. Also, attackers could increase the wear and tear on the
physical system under vanilla Simplex — by causing the system
to operate, albeit briefly, in an unsafe state. This can also be
avoided by use of our techniques.

B. Intrusion Detection Accuracy

The early detection capability, however, can be effective only
when a higher classification accuracy is possible. Thus, we
evaluate the accuracy of our intrusion detection method by
measuring the false positive and false negative rates. In this
experiment, we disabled the reset mechanism of secure core
to correctly count the number of attacks and misclassifications.
However, the functionality exists for future work. As mentioned
before, a false positive occurs when the monitor classifies an
execution to be malicious when it was not and a false negative
is when a malicious attack goes undetected. The evaluation was
performed with the minimum required probability 6 set to 0.01
or 0.05. For each case, the loop count of the malicious code
was set to 0, 1, 3 and 5. Then, we sampled decisions made by
the secure monitor until we collected at least 1000 samples.

To measure the rate of false positives, we ran the system
without activating the malicious code. For 6 = 0.01, only one
false positive out of 1024 samples was found. With § = 0.05, the
monitor classified 7 samples out of 1015 legitimate executions
as attacks. We then activated the malicious code to measure
the false negative rates. Table II shows how many attacks the
monitor missed for each § and loop count. For example, for
6 = 0.05 and the loop count of 3, the monitor could not detect
117 out of a total 1011 malicious code executions. As can be
seen from Figure 11, the false negative rate decreased when
the malicious code executed for longer time frames. For the
same execution, a higher value of § also showed reductions in
the rate of false negatives. However, as previously mentioned,
there is a tradeoff between a higher 6 and a lower one. That is,
while setting 6 higher can reduce the chances that the monitor



will not miss malicious code execution, it can also increase
the rate of false alarms. In such cases, the control would be
frequently switched to the safety controller even if the complex
controller is not compromised. This could degrade the overall
control performance for the physical system. Thus, a balanced 6
should be obtained, either through extensive analysis or through
empirical methods.

C. Limitations and Possible Improvements

The main cause of misclassifications comes from noise during
execution time profiling. A legitimate execution time might not
appear in the samples but might be observed during the actual
monitoring phase. Moreover, the malicious execution time might
also fall within a legitimate interval. This is especially possible
when an attacker exploits the system by using a short and steady
malicious code execution such as an example using the Return-
Oriented Programming (ROP) attack [29]. An ROP-based attack
is a sequence of short code blocks each of which would last
for less than 100 cycles (or even 10 cycles) before returning
to the original execution path. Thus, an attacker may deceive
the proposed detection method by executing such short code
because legitimate timing variations would likely last longer
than the ones caused by such malicious code. As the result in
the previous subsection shows, the proposed method would not
perform well when such attacks are employed.

Thus, it is the key that we narrow the range of execution
time variances as much as possible so that the above situations,
i.e., the probability that a legitimate execution instance can fall
within the range and that even a short length of malicious
execution can deviate from the range is maximized. One way
to achieve this is to run the final system on a real-time oper-
ating system that inherently has more deterministic execution
times. Disabling interrupts during execution (if possible) [22]
or locking frequently used data or instructions on cache [6] can
help increase the predictability of such executions. In addition,
using a real-time multicore processor [20], [24], [39] can further
improve the accuracy by reducing or eliminating unpredictable
variations in execution times caused from contentions on shared
resources such as cache, bus, memory, efc. We are also inves-
tigating methods to improve our analysis techniques to detect
such small, constant, variations.

VII. RELATED WORK

The work that is closest to that presented here is the Secure
System Simplex Architecture (S3A) proposed by Mohan et
al. [22]. That architecture employs an FPGA-based trusted
hardware component, that monitors the execution behavior of
a real-time control application running on a untrustworthy main
system. They use the execution time and the period of the
application as a side-channel monitored by the trusted hardware.
The main difference of our work form S3A is that, in our work,
finer executions units are profiled and monitored by a statistical
learning method taking application contexts into account as well.
Also, we target the use of multicore architectures for secure
embedded real-time systems. An earlier work was proposed by
Zimmer et al. [41], in which the absolute worst-case execution
time (WCET) was used as a security invariant.

There exists some work in which a multicore processor (or
a coprocessor) is employed as security measure in different
aspects. One example is the Dynamic Information Flow Track-
ing (DIFT) mechanism by Suh er al. [35]. Shi et al. [31]
proposed INDRA, an Integrated Framework for Dependable and
Revivable Architecture, in which logs of application executions
on monitored cores are verified by a monitoring core through
buffering of logs on a special on-chip memory. While this is
similar to the work proposed here, the difficulties arise due to
the real-time nature of the systems we consider and problems
with contention in shared resources that could result in security
violations. Also, the security measure in their work is functional
behavior such as function calls and return (e.g., the monitoring
core verifies if each function always returns to the right address).
We focus on the execution profiles of the tasks (e.g., timing)
as security invariants — something that is very feasible in real-
time systems but not in general purpose ones. Similar work
can be found in by Chen et al. [7]. The work also employs
a logging hardware that captures the information, e.g., program
counter, input and output operands and memory access addresses
of any instruction that the monitored application executes. The
captured traces are delivered through a cache to another core
for inspection. The work was extended where a hardware ac-
celerator was proposed to reduce high overheads in instruction-
grain monitoring [8]. There have also been coprocessor-based
approaches. Kannan et al. [17] addressed the high overheads in
the multicore-based DIFT by proposing the DIFT Co-processor,
in which application instructions and memory access addresses,
etc., are checked with a pre-defined security policy. A similar
approach was taken by Deng et al. [10] where reconfigurable
logic attached to the main CPU checks for software error as
well as DIFT from execution traces.

All of these techniques, while applicable for general purpose
systems, could also be repurposed for embedded real-time
systems. Hence, the combination of these techniques with our
SecureCore and GalT approaches will only make the overall
system more secure and hence, safer.

Hofmeyr et al. [13] developed an intrusion detection method
based on a profile of normal behavior by using traces of system
calls (however, no machine learning technique was employed).
The profile is a database of unique sequence of legitimate system
calls of a specific length. During monitoring each sequence of
system calls is tracked and the method checks if a significant
deviation from the legitimate trace has occurred. Mukkamala et
al. [23] developed an intrusion detection method based on users’
behavior pattern. Using a neural network and a support vector
machine (SVM) mechanism, a classifier is trained to learn a
set of important behavior features and to recognize abnormal
behavior patterns. In fact, most of the work for intrusion detec-
tion systems using machine learning have focused on network
activity monitoring. Sinclair et al. [33] used decision trees along
with genetic algorithms to generate rules for differentiating
malicious traffic from normal network activities. Similar work
used robust support vector machines (RSVMs) to detect network
activity anomalies [14]. A good summary of machine learning
for network security is provided by Sommer et al. [34].



VIII. CONCLUSION

In this paper, we proposed SecureCore, a novel application
of a multicore processor for creating a secure and reliable real-
time control system. We used a statistical learning method for
profiling and monitoring the execution behavior of a control
application (GalT). Through the architectural and the theoret-
ical support, our intrusion detection mechanism implemented
could detect violations earlier than just a pure safety-driven
method, Simplex. This helps in achieving reliable control for
physical systems. The isolation achieved by SecureCore and
the monitoring mechanisms presented by GalT also prevents
attackers from causing harm to the physical systems, even
if they gain total control of the main controller. Evaluation
results showed that with careful analysis and design of certain
parameters, one can achieve a low misclassification rate and
higher intrusion detection rates. As future work, we plan to
extend the presented approach to support concurrent monitoring
of multiple applications on multiple cores. Also, we intend to
address many of the limitations presented in Section VI-C.
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