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Abstract—Attacks on Industrial Control Systems (ICS) con-
tinue to grow in number and complexity, and well-crafted cyber
attacks are aimed at both commodity and ICS-specific contexts.
It has become imperative to create efficient ICS-specific defense
mechanisms that complement traditional enterprise solutions.
Most commercial solutions are not designed for ICS environ-
ments, rely only on pre-defined signatures and do not handle zero-
day attacks. We propose a threat detection framework that aims
to detect zero-day attacks by creating models of legitimate, rather
than malicious ICS traffic. Our approach employs a content-
based analysis that characterizes normal command and data se-
quences applied at the network level, while proposing mechanisms
for achieving a low false positive rate. Our preliminary results
show that we can reliably model normal behavior, while reducing
the false positive rate, increasing confidence in the anomaly
detection alerts.

I. INTRODUCTION

It is well known that Industrial Control Systems (ICS)
(some of which are also known as Supervisory Control and
Data Acquisition or SCADA systems) supporting the critical
infrastructure of our nation are vulnerable and have even
become the targets of well-crafted cyber attacks aimed at both
commodity and ICS-specific contexts (e.g. Stuxnet [7]).

With the emergence of such cyber threats, it becomes
imperative to create efficient ICS-specific defense mechanisms
that complement traditional enterprise security solutions. Most
existing context-specific solutions use a traditional approach
to network intrusion detection systems (IDS), which rely
on a pre-defined set of signatures to identify potential ICS
attacks [6]. However, recent research has underlined the
limitations of such an approach when faced with zero-day
attacks [13], [24], [27], which have become prevalent in
ICS. One alternative, known as Anomaly Detection (AD), has
shown promise in detecting zero-day intrusions by creating
models of legitimate, rather than malicious, traffic for enter-
prise networks [14], [15], but has not been fully explored in
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the ICS context [21].

ICS systems use well established, yet insecure, communi-
cation protocols such as Modbus [5], DNP3 [2] and CIP [1],
which can exhibit unauthorized requests or commands, mal-
formed messages, efc. as a consequence of an attack. We
propose to use the intrinsic characteristics of these protocols
to determine the normal behavior of an ICS device. We
aim to address this problem by creating and maintaining
accurate normality models by identifying the relevant features
encompassed by the models. We propose to employ a content-
based analysis that characterizes normal command and data
sequences applied to communication patterns while reducing
the false positive rate.

A. Assumptions

Compared to enterprise systems, industrial control systems
exhibit a more constrained behavior, which is predictable [28].
Current ICS systems have fixed topology and their special-
ized functionality results in regular communication patterns.
Moreover, ICS communication protocols can be simple [5] and
not very diverse; each industry sector uses a few standard
or recognized communication protocols (e.g., in the elec-
tric power systems, Modbus [5], IEC 60870-5-104 [3], IEC
61850 [4] and DNP3 [2] are prevalent). Consequently, we
conjecture that attacks in such environments would exhibit
different communication patterns than those observed during
normal operation.

B. Contributions

The key challenge for monitoring and defending ICS
systems is creating a robust method for modeling normal
ICS device behavior. This paper proposes a novel method
for modeling ICS device communication behavior by using
sequences of requests and replies, which are generated by
regular communication patterns, to determine the state of a
device. Our implementation and experiments focus on the
problem of creating adaptive models, leveraging the intrinsic
characteristics of the environment where the models are cre-
ated. The work described here provides several contributions
by:

e proposing a new probabilistic-suffix-tree-based ap-
proach for ICS anomaly detection, which extracts the
normal patterns of command and data sequences from
ICS communications;



e identifying the imperative need for a low false positive
rate and proposing a mechanism that reduces it; and

e  building a system to implement the algorithms, apply-
ing the system to both real and simulated datasets, and
analyzing the performance of the proposed framework.

II. BACKGROUND
A. System Model

We consider a control network that comprises of a set
of master devices M = {my,ma,...,my,, } and a set of
slave devices S = {s1, s2, ..., SN, }. A master m; controls, or
observes the state of a slave s;, by sending a request that
is composed of a command and a command-specific data.
A slave may send a response back to the master after the
requested execution. Similar to a request, a response is also
composed of a command and data that represents the result
of the execution. Because of the indistinguishability in the
formats, we denote by r; ; = (c,d) a request/response from
device ¢ to j with command ¢ and the corresponding data
d, and call it a message. The message format is protocol-
dependent. We assume fixed-length commands and variable-
length data. We specifically denote the entire set of commands
by X.. Lastly, the connection established between master m;
and slave s; is uniquely represented by w; ;.

The network may implement multiple protocols; a device
may interact with others with different protocols. Conse-
quently, the unique connection identifier w; ; defined above
can be extended to w; ;, where p represents a protocol. We
perform anomaly detection at the connection level, in a multi-
protocol environment. However, for notation and explanation
simplicity, we consider a single-protocol network.

B. Problem Description

Given the control network described above, a protocol
analyzer monitors the messages transferred along all the con-
nections = {w;;} and aims to detect anomalies. The t*"

message of a connection w; ;, denoted by r(t]) = (c®,d®),
is considered anomalous if the probablhty of observmg the
message, given a history of previous messages, is below a
threshold. That is, if
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then r( ) is deemed anomalous. In this paper, we assume that

the messages in different connections are independent. That
is, the message r; ; does not affect the command and/or data
in 7 or ri ;. Depending on the network configuration and
also on the protocol used, however, this assumption may not
hold for some systems. Nevertheless, we claim that ICS en-
vironments use simple protocols with regular communication
patterns, where our assumptions apply (e.g., a message sent
by a Modbus server to a slave will not affect the command
and/or data sent to a different slave).

III. CONTENT-BASED ANOMALY DETECTION FOR ICS
DEVICES

In this section, we present a method for calculating the
probability in (1). We model message sequences as a Dynamic
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Fig. 1. Dynamic Bayesian network structure.

Bayesian Network (DBN) [20], [23] and use Probabilistic
Suffix Tree (PST) [25] as the underlying predictive model.
In what follows, for the simplicity of explanation, we limit
ourselves to the analysis of one connection w; ; and thus we
omit the subscript ¢, j.

A. Dynamic Bayesian Network of Command and Data Se-
quence

As explained in the previous section, a message is com-
posed of a command and a command-specific data. Data can
vary in terms of the content and length, but the space that it
can be generated from is limited (mainly due to protocol spec-
ification), once the command is given. Thus, the unconditional
probability of message ") = (c(¥), d®)) can be modeled as

P(r®) = P(cM)P(dP]cM). 2)

However, we should consider message history, since other-
wise (2) would be proportional to the frequency of command
(or data). For example, an otherwise normal message with
rarely-observed command would look abnormal because of
small P(c(¥)). Moreover, a particular task for a device can
be carried out by a chain of messages. For instance, a master
device may retrieve the state of a slave, and then, depending on
it, the master may issue appropriate command(s). Hence, the
message history helps detect out-of-context messages, and thus
we calculate the following conditional probability as shown in
the dynamic Bayesian network (Figure 1):

P(r(t)|r(1), co,T

p( (t)|r(1) N (t*2)7r(t*1))>< (3)
(d(t |c r(l .,r(t*Q),r(tfl)). (@]

(=2 (1) =

The problem now reduces to finding the conditional proba-
bility distributions of (3) and (4). Note that each is conditioned
on the previous messages. Although this is more general,
as described above, we reduce the conditions to command
sequence and data sequence (plus the current command),
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Fig. 2. DBN for an example sequence of length 5.

respectively, as follows:

P(r(t) ‘r(l), I A r(t—l)) -
P(c®]eM, . ct=2 D) (5)
p(d(t) ’c(t); d(l)7 e d(t—2)7 d(t—l)). 6)

(5) assumes that previous data does not affect the current
command. Again, this may or may not hold depending on
the task that is carried out by the command. However, in
general, the command flow is not easily influenced by the
data associated with each command. Such a deviation rarely
happens when, for example, an exception or a fault must be
handled (which can also be considered an anomaly). Similarly,
(6) considers the current data as independent from the previous
commands. In fact, it rather depends on the previous data that
was sent along with the same command type as the current
command. Hence, the conditional probability of a message can
then be represented as follows:

P(r® ‘r(l), T D)
= P(c(t) |C(1)7 ot C(tfl))P(d(t) ’C(t); D(c(t))), (7

where D(c®) = {d®|c®) = B 1 < s <t —1}, ie., the
data that has been sent along with the same command type
as ¢!). Figure 2 shows the DBN for an example sequence of
length 5, where ¢(!) = ¢4 = ¢(® and ¢® = ¢, Note that
there is no edge from @) to d¥ such that z < y, from d®)
to any (), and from d*) to d*) such that ¢\*) # ¢(¥), Once

we observe the fifth messa%e, its probability is calculated by
P(c®|cM,. ®)P(d® [, d d®).

Although the dimensions of the conditional probability
distributions (3) and (4) are reduced by the independence as-
sumption, calculation of (7) as t — oo is still computationally
unfeasible, because all the possible joint assignments would
hardly be seen. Hence, we need a way to approximate it.

B. Pattern of Command (and Data) Learning Using Proba-
bilistic Suffix Tree

As described in Section I-A, ICS networks behave in
a fairly deterministic way: devices repeat certain sequences
of tasks unless otherwise interrupted. If we look at each
connection level, a set of periodic operations forms a pattern of

command sequence that hardly varies in a normal condition.'
The degree of data variation can be higher; however, data
usually also exhibits a pattern in the content or in the structure.
Due to this presence of patterns in message sequences, we
can further reduce the dimensionality in (7) considering the
consistency of a given command (or data) with the recent
history of commands (or data) as a part of the underlying
pattern. In what follows, we present a method to learn the
hidden pattern from a sequence of commands (or data). Note
that the same learning method presented here is applied to both
command sequences and data sequences.? Thus, for the rest of
this section we use ‘element’ to refer to command or data.

Now, suppose we are given the following sequence of
elements:

01,02,01,02,03,03,01,02,01,02,03,03

One may model the sequence as a first-order Markov chain,
ie., P(c®cM ..  ot=D) = P(e®|st=D). The first-
order Markov chain model can detect certain abnormal sub-
sequences; for instance, ‘o1, 03 or ‘o9,02’, efc., since those
have never appeared in the sequence. However, it does not
fit well for modeling the normal subsequences because, for
example, P(o1|oz) = P(os|loz) = 0.5 although ‘og,0¢’
and ‘09,03 are still legitimate subsequences. However, a
Markov chain of order 3 (or more) learns the above normal
subsequences without any ambiguity. If a sequence of elements
is generated by an underlying pattern and exhibits no noise,
there always exists a minimum order, m, for a Markov chain
allows us to predict the probability of an element by just
looking at the m most recent elements.

However, finding such an mtP-order Markov chain is

challenging since m is unknown especially during an online-
learning phase. Even if it is known a priori, the construction of
the conditional probability distribution remains computation-
ally expensive if m is large, due to the fixed-order model.
In fact, the minimum required length of the recent history
of elements can vary. For example, knowing that the most
recent one was o1, we can always expect to see o2 next.
Similarly, ‘oq,03’ is always followed by os3. This variable-
order Markov chain not only can reduce the joint assignments
of elements that need to be learned, but also enables us to
learn the underlying pattern without any prior knowledge.

The challenge is to build such a model even in the pres-
ences of noise, i.e., legitimate variations from the base pattern
due to missing, out-of-order messages and/or sporadic tasks.
To address this challenge, we use the Probabilistic Suffix Tree
(PST, or Prediction Suffix Tree) [25], which uses a variable-
order Markov model representation. Intuitively speaking, a
PST learns a set of subsequences of different lengths, e.g.,
‘o1’, ‘09,03, each of which can be a significant indicative of
the next element. This enables us to efficiently calculate the
probability of the ‘next’ element without having to look back
all or a pre-defined length of the history. That is,

P(e®Wjo®, ... oD} ~ P(o®]glt=P) ... 5t-D)

'In certain protocols such as Modbus [5], a slave responses back with the
command originally specified by the master. Thus, the sequence of commands
in the slave’s messages is identical to the one issued by the master unless an
exception occurred.

2We try to find the pattern of the command sequences for each connection
and the pattern of the data sequence for each command type in each connection.



Fig. 3.
with the base pattern of ababcc. The maximum depth is set to 3.

A probability suffix tree for a sequence of length 1847 generated

for some k that varies depending on o=, ¢(t=2) and so
on. To explain how a PST is built and used, let us consider
an example shown in Figure 3. The PST is learned from
a sequence of length 1847 that is generated with the base
pattern of ababcc where 3 = {a, b, c} is the set of all possible
elements.> Each node is associated with string s € ¥*, e.g.,
cb, cab, and the value associated with each node represents the
number of occurrences of so, Vo € ¥, in the whole sequence.
We observe that the frequencies of the substrings from the base
pattern, ababcc, are dominantly higher than the ones caused
by noise.

Now, suppose we have observed [---bccab] and a is
given as the new observation. To calculate P(a|---bccab),
we traverse the tree from the root by reading backward the
elements of the history until we cannot go further down.
Each node (including inner nodes) models the conditional
probability distribution P(c|s) for ¢ € X, where s is the
string associated with the node. Figure 4 shows the node with
s = cab, where the traverse for [---bccab] would stop. In
each node, the frequency of so for different o is counted. For
instance, caba appeared 261 times in the entire sequence. The
probability of an element is then calculated by

n(so)
ZU’GZ n(sa’) ’

where n(x) is the frequency of the substring z in the whole
sequence. Thus,

P(o|history) =~ P(ols) = (8)

261
P(a|---bccab) = P(a|cab) = 391 ~ 0.8877.

The probability distribution would change if the traverse
stopped at the node with s = ab instead of cab. A traverse
could go down to the maximum depth D that is given as
a parameter (D = 3 for the PST in Figure 3). However, a
pruning technique is used to cut some branches for a better
approximation of the conditional probability [25]. To explain
this, let us assume that we have seen [- - - ccaab] followed by b.
The traverse in the PST in Figure 3 would stop at the node aab.
P(blaab) is an inaccurate approximation of P(b|---ccaab)
because aab is not significant; it can be present due to noise.
In this case, calculation of P(blab), which is probabilistically
more significant, is advisable. The base pattern, however, is

3The sequence is obtained from 1847 Modbus commands communicated
over a connection between a master and a slave deployed in a testbed.

.,ql'r @] n(caba) = 261
cab '\ -
> bl n(cabb) =3
294 ) ==
' c | n(cabc) =30

n(cabse) = 294 o

Fig. 4. Example of a PST node with s = cab.

unknown; thus, we examine the significance of a node by
calculating P(s) as follows:

2grexn ™(s07)
L—1s) ~’

where L is the length of the whole sequence and I(s) is the
length of string s. The denominator represents the number of
all possible substrings of length equal to I(sc”’) for any o’ €
in the whole sequence. For example, P(aab) = 6/(1847—3) ~
0.0033. When we traverse the PST, the branches to such nodes
that have low P(s) compared to a threshold are pruned, so
that the conditional probability can be obtained with a high
significance.*

P(s) = ©)

C. Incremental Learning of PST

The original PST is suited for an offline-learning; a PST is
learned from a long sequence of elements (command or data in
our case), given in advance, and by counting the frequencies of
substrings of different lengths (up to D). Such a batch learning
is not applicable to network-level anomaly detection, given that
timely action must be taken in case of an anomaly.

Consequently, we implement an incremental PST learning,
which starts from an empty tree and, as a new element
is being observed, updates it using recently-read elements.
Since the tree is bounded by the maximum depth parame-
ter D, we only need to keep the D most recent elements,
ot=D) s(t=D+1) ... 5(t=1) When a new element o(®) is
observed, we traverse down the tree from the root node until
reaching a leaf node (create any nodes when needed) and
update the counter (for the o(t)) at each node. In terms of
computational efficiency, this takes only O(D).> Note that
no pruning is applied: since the PST is incrementally built,
some nodes that are initially not significant can later turn into
significant ones. Thus, pruning is used only when calculating
the probabilities as described in the previous subsection.

The analyzer attached to the network under protection
builds one PST for the commands sent along each connection
w;,; and up to X PSTs for the data (i.e., one for each command
type) on the connection, which can total a maximum of
|2](1 + X) PSTs. Each PST is associated with a buffer of
commands and data, respectively, whose length is D. and D,
respectively.

4Pruning can be also used to reduce the memory required to store the tree.
This can be done by comparing the distributions P(o|s) and P(c|o’s) for
some ¢’. If P(o|s) ~ P(o|o’s) for every o € X, then the branch from s to
o's is pruned.

SThis is based on the assumption that searching the counter for o) at
each node takes O(1). If a linear search is used, the time complexity can be
O(DY).
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.ababccablbl
P(blcab) = 1.02%

Fig. 5. Example of a false positive due to a missing element.

D. False Positive Reduction using Missing Element Inference

So far we have seen how to approximate the probability
of a command (or a data) given each history sequence. The
calculation of message probability is then straightforward:
the analyzer finds the two PSTs, the command and the data
PST, then traverses each tree using the associated buffers and
the newly observed message, each of which will find the
approximation of each term in (7).

Due to the critical nature of ICS systems, achievement of
a very low false positive rate is imperative; otherwise, such
systems’ availability can degrade in the presence of remedia-
tion. This is a very challenging problem. However, considering
that the messages communicated over a connection follow
a pattern, certain sources of false positives can be reduced.
Among them, in this paper, we reduce the false positives due
to a missing element (e.g., a missing packet). To illustrate our
approach, let us consider a sequence of commands, shown in
Figure 5, which is a part of the sequence generated from the
base pattern of ababcc as in Figure 3. If we calculate the
probability of the last b (in the box), according to Figure 4,
P(b|cab) ~ 1.02%, which is very low since such a sequence
has rarely been seen. By looking at the sequence carefully,
we can see that a command of ‘a’ might be missing between
the two bs. The missing element, ‘a’, also causes subsequent
false alarms since the next D elements would be expecting
the presence of the missing one. Accordingly, P(c|abb) and
P(c|bbc) will be very low.®

Conversely, however, restoring such a missing element
can reduce multiple false positives that could possibly occur
subsequently. Consider an element, which is supposed to be
seen between o(t=1) and o®, i.e., the most recent and the
current elements, respectively, is missing (although its actual
absence or presence is unknown). In general, as soon as that
happens, the probability of the following element, o), will be
affected by the missing one. Thus, whenever the probability
of the t'" element (i.e., command or data) is significantly low,
i.e., less than the threshold used in (1), we try to recover
the element between (¢t — 1) and ** elements, assuming
that it could be missing. This can be done by inferring
the most probably missing element given the current history
ot=D) ... 5(t=1) a5 follows:

* (t=D) ... 5(t=1)
o argrglggP(da o] ).

Then, assuming that o* is missing between o(*~1) and ¢(*),

OIf the pruning technique is used, we would end up calculating P(c|b)
instead of P(c|abb) because P(b) and P(bb) are too low. In this case,
P(c|b) will be close to 0.5 because of the base pattern ababcc. This shows
that the pruning technique may also help reduce false positives.

we recalculate the probability of ¢(*) as

P(oW]ot=D) .. (D) o
P(o*|ot=P) .. gt D) P (O[5 t=DFD) . 5t=1) ).

Our approach takes into account not only the probability of ¢*
being actually the (¢ — 1) element (the second term), but also
the likelihood of o* being positioned there (the first term). In
the example above, 0* = argmax,e(a b} P(c|cab) = a ac-
cording to Figure 4, and thus, P(b|cab) ~ P(a|cab)P(blaba),
which is high enough to be considered normal.

As explained above, one missing element can cause sub-
sequent false positives. This can be alleviated by inserting o*
into the history; e.g., by inserting ‘a’ before the boxed ‘b’
in the sequence presented by Figure 5. Moreover, P(c|abb)
and P(c|bbc) can be recalculated by P(c|bab) and P(c|abc).
However, we do not update the PST (in Figure 3) with
the inferred missing element, since that can lead to biased
probability distributions. Suppose that, after we have seen the
dominant pattern ababcc as in the example above, abbcc starts
appearing more often than before. For the first few times we
will try to restore an a, believing it is missing. However, if
we observe this pattern a non-negligible number of times,
learning the new pattern is a more reasonable approach than
to keep the initially dominant one. Use of the inferred missing
element to update the PST makes the initially dominant pattern
unchanged, which can cause more false positives (and also
low detection rate), when the base pattern actually changes.
Hence, we keep two buffers of elements (in each PST): one
for building PST as described in Section III-B and another for
calculating the probability of an element as in Section III-D.
This means that the PST is built purely with what we have
actually seen and the probability of a newly observed element
is calculated mainly based on the learned PST, but possibly
also with some inferred elements. By separating the buffers,
we can limit locally the effect of the restored element (up to
the next D elements) while preserving the global pattern.

Figure 6 shows an example of how false positives are
reduced. The sequence is from a master-to-slave connection
observed in a testbed and contains 1321 Modbus commands.
The sequence is a mixture of ababcc, abcc and abababcc
(because of these multiple base patterns, the points are some-
what scattered). The probabilities of the first 10% commands
were not calculated, but, as described above, the tree is
incrementally learned with all of the 1321 commands. The
plots are the probabilities of the remaining commands: (a)
without any recovery of missing element and (b) with recovery
for § = 10%. The maximum PST depth is set to D = 3. Many
false positives (see points below 0.1) were reduced from 25
to 9 false positives out of 1189 commands by the inference of
missing elements. Most of the remaining false positives were
due to out-of-order commands. For example, in *- - - abcacba’,
the last four commands caused four false positives in (a). With
the recovery method, only one false positive at the last b
was made. Looking at the sequence carefully, there is a high
possibility that the order of ac was actually flipped, an event
which cannot be corrected well by the proposed method.

Note again that the procedure explained above is car-
ried out whenever an element seems to be abnormal, i.e.,
P(oW|ot=D) ... o(t=1)) < 9. This does not always improve
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Fig. 6.

the probability, of course, since the low probability could be
simply due to a rare observation, i.e., a legitimate noise. Hence,
the probability can even be lowered. In general, our approach
does not increase the number of false positives, since without
such a recovery, they would have already been considered ab-
normal. Furthermore, it could be possible to recover the wrong
o in the absence of a single, dominant pattern. In this case,
the inferred o* can mislead the elements following it, and thus,
can lead to low probabilities of them. However, as will be seen
in Section IV, the proposed method can substantially reduce
the false positive rate when the sequence under monitoring
has a dominant pattern, which, in general, is the case for the
ICS environment. Finally, we are aware that this technique
could allow an attacker to insert additional specially crafted
commands or data in legitimate sub-sequences. For the future,
we plan to address this limitation by exploring randomization
and corroboration capabilities that detect attacks against the
architecture itself.

IV. EVALUATION

In this section, we quantify the performance of the pro-
posed framework. We first evaluate it using a dataset obtained
from a Modbus network testbed. Due to the lack of attack
data, we evaluate how well the probabilistic suffix tree can
model normal sequences of command and data. Then, we
generate and use a synthetic dataset to see the performance
of our framework in the presence of anomalies.

A. Evaluation with Modbus Dataset

The dataset is obtained from a Modbus network testbed that
consists of 43 connections established among 2 masters and
25 slaves. The number of commands used by the connections
is 4, i.e., . = {a,b, c,d}. To the best of our knowledge, there
are no attack/abnormal scenarios in this dataset, and thus all
sequences are considered normal. The threshold, 6, and the
maximum depth of PST trees, D, are fixed to 10% and 5,
respectively, regardless of connections. With these settings, we
compare the following three methods:

Probabilities of commands observed from a Modbus testbed connection.

0.3r- 4
o 9% 00 3 3
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t

(b) With recovery for § = 10%

1) BATCH: Batch learning where each PST tree is
learned with the entire sequence, i.e., offline learning.
Once it is built, the probability of each element (either
command or data) of the sequence is calculated.

2) INC: The incremental learning presented in Sec-
tion III-C, i.e., without missing element inference.

3) INC_INF: The incremental learning with missing el-
ement inference presented in Section III-D.

Because we consider an online learning approach for INC and
INC_INF, the first 10% of commands in each sequence are
only used to build each PST (no probability calculation is
performed) for all three methods.

We compute the false positive rate (FPR) of each sequence
(of commands, data, or both) as follows:

PORN I(P(U(t)|history) < 49)
= N 5
where N is the length of the sequence (excluding the first 10%
of elements) and I(expr) is 1 if expr is true or O otherwise.

FPR

Figure 7 presents the false positive rate of each method
for the command sequence corresponding to each connection
(Table I shows the mean and the standard deviation of each
method). We can observe that INC_INF substantially reduces
the number of false alarms for most of the connections as
compared to INC. The reduction is significant especially in
Connection 1-18, in which the base pattern is very simple,
e.g., bbc, and the commands follow the pattern quite well. As
previously explained, the recovery of a missing command in
such a case is fairly accurate, since the possible variations of
the base pattern are limited. However, the reductions for the
other connections are not that significant, since the dominant
pattern is somewhat vague (in varying degrees) because of
multiple base patterns or more noise (variations). In such
cases, a recovery is more likely to fail, simply because such
irregularity would set an incorrect context (i.e., recent history),
which would naturally lead to incorrect inference. Thus, in
some particular cases, performance of the recovery process is
not recommended, given the results for Connection 28 and 40.
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Fig. 7. False positive rates of command sequences on the Modbus testbed’s connections.
TABLEL  THE AVERAGE FPR PER CONNECTION AND STD. DEVIATION. . o -
sequences since data does not exhibit a significant pattern.
l [[ Barcu [ INc [ INCLINF ] However, we observe that, for a fixed command type, data
[ mean [T 1.429% | 1.819% [ 0.848% | follows certain templates in its format. This is due to the
[ stdev || 0.007 | 0.010 | 0.011 |

From these results, we can also observe that BATCH’s FPR
is always lower than or equal to the FPR of INC. This should
be true since in INC, the probability of the current element
is calculated using the PST learned so far.” Thus, if some
noisy pattern appears in the early phase and starts appearing
more and more later, INC would raise false alarms for them
in the early phase, although they would be considered normal
in the later phase. In BATCH, on the other hand, any sub-
patterns that appear in the entire sequence are smoothed out
and are learned beforehand, and thus would cause less false
positives even if the base pattern changes over time. Even
though BATCH performs better than INC (in terms of FPR),
in many cases INC_INF achieves lower false positive rate than
BATCH. Moreover, as we will illustrate later, BATCH does not
detect anomalies well for the same reason it generates fewer
false positives.

Next, using the dynamic Bayesian network model pre-
sented in Section III-A, we analyze the same dataset by
calculating the message-level probabilities (i.e., Equation (7)).
Figure 8(a) shows an example, where each point represents

p(c(t) |Crnd history)P(d(t) |c(t); data history))

of each message that was captured in Connection 43. Unlike
the false positive rate of the command sequence in Figure 7
(Connection 43, INC_INF), the FPR at the message-level is
approximately 87% (20111 FPs out of 23123 messages), which
is unacceptably high. This result is attributed to the very high
FPR of the data sequence. This situation occurs often in data

"Note that if there is a clearly-dominant pattern, then the two methods will
converge to the same PST when ¢ is large enough.

nature of protocol-based communications, for which data is
not arbitrarily generated. Instead, some of the data fields may
vary, with others dependent on the rest of the fields, and still
others simply fixed.

Consequently, we implemented a template-based online
data clustering that incrementally extracts data templates and
maps each data to one of them. Due to lack of space, we do
not detail the procedure, but the main idea is to represent each
cluster as a data template such as 75x«0001, 27x%0001,
etc., where x is a wild-card. Each data d is labeled with the
ID of the most similar template, determined by computing
the Hamming distance [22] between d and all templates and
choosing the minimum distance one, with the distance above a
given threshold.® If there exists no such template, the data itself
becomes a template of a new cluster and can be updated later
as more data is available (i.e., some of the fields are designated
as wild-card). Accordingly, the PST for data sequence is built
with the new labels, i.e., template IDs. Consequently, data
observed in Connection 43 was clustered into 3 templates (for
the similarity threshold of 66%) — 75**0001, 27+*0001
and 00++0001, and resulted in probabilities close to 1 due to
a significant pattern in data sequence in the form of templates.
This led to a considerable reduction in false positives as
Figure 8(b) shows; with data clustering, most of the points (the
message probabilities) moved towards the higher probabilities.
As a result, only 362 messages (1.57%) were classified as
abnormal. It should be noted that the data clustering method
does not decrease the FPR since the clustering naturally
reduces variations and thus increases the chance of exhibiting

8The similarity between two data dy and dp is calculated as L=HL ¢

[0,1] where L = I(d1) = I(d2) is the data length and HD € [0, Lf is the
Hamming distance between them. If I(d1) # I(d2), we define the similarity
as 0. Wild-cards do not count toward L and HD.
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(a) Without data clustering. FPR=87%.

Fig. 8. Message-level probabilities for Connection 43.

a significant pattern. In fact, although not presented here, the
FPRs at the message-level of all connections decreased after
applying the data clustering.

B. Evaluation with Synthetic Dataset

We now evaluate the PST-based pattern modeling with a set
of synthetic data to determine how well it can detect anomalies
while keeping the false alarms rates low. In what follows, we
assume that we monitor command sequences only.

1) Input Generation: A set of random sequences is gener-
ated with the following parameters. For each sequence, a base
pattern is first generated. Its length can range from 2 to 10
and it is randomly generated with 5 command types. Then, to
build a command sequence, the base pattern is simply repeated.
Each repetition, however, can vary according to the missing
probability, Py;, which is given as an input parameter. This
parameter controls the drop rate of a command. If Py, = 0,
the entire sequence is simply a perfect repetition of the base
pattern, while if Py, > 0, each command can be dropped with
probability Pp;. A higher Py, makes the resulting sequence
look more random. To mimic attack scenarios, some random,
abnormal subsequences are embedded into the dataset under
test. At any position, a short sequence (that is randomly
generated with the same command type pool) whose length
ranges from 1 to the base pattern’s length is inserted with the
attack probability, P4 € [0,40%)]. With these rules, a sequence
of length 30000 is generated. For the missing probability, we
used 10% and 50%. For each, we generated 4000 sequences.
Each marker in the following plots represents the average of
the 4000 sequences for a given Pj;.

2) Detection and False Positive: Given a sequence and
the maximum PST depth, D, we calculate the probability of
commands ¢, ¢(®) ..., as learning the PST incrementally.
If ¢® is deemed abnormal, and there was indeed an attack
sequence (or a part of it) within the recent D commands, the
attack is detected. If there was no attack sequence, then this
decision is a false positive. If ¢*) is deemed normal, but there

P(c®lecmd hist)x P(d?)c?, data hist)

(b) With data clustering. FPR=1.57%.

was an attack sequence (or a part of it) within the recent D
commands, we missed the attack.

3) Result: Figure 9 presents the receiver operating char-
acteristic (ROC) curve of the sequences generated with 10%
missing probability. For each method, six values of thresholds
are tested: § = 0.01,0.1,0.2,0.3,0.4,0.5 (markers in the plot,
left to right). First, similar to the result obtained with the
real data in Section IV-A, the false positive rate of INC_INF
is considerably lower than the others. However, there is no
performance hit in terms of the detection rate; for a similar
level of detection accuracy, BATCH and INC generate more
false alarms. In other words, INC_INF outperformed the other
methods in terms of the ability to distinguish attacks from
legitimate noises.
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Fig. 9. Receiver operating characteristic (ROC) curve when Py = 10%.
This can be supported also by the signal-to-
noise ratio (SNR) plot in Figure 10, computed as

DetectionRate/FalsePositiveRate (higher values mean
better results), where INC_INF’s SNR is higher than the
others for every threshold. Another important result that
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should be pointed out in Figure 9 is the low detection
rate of BATCH, especially compared to INC. As mentioned
earlier in Section IV-A, this is due to the fact that attack
sequences and their subsequences are smoothed out and thus
are deemed normal (probabilities are low but still above
the threshold).” This also increases the chance of missing
attacks. The performance gaps among the methods, however,
are dependent on whether or not there exists a dominant
pattern in the sequence under monitoring. As the ROC
curve in Figure 11 shows, INC_INF’s ability to sort out
attack sequences has degraded with Py, = 50%, i.e., more
randomness in the sequence under monitoring. In such a
case, employing a recovery of missing element may rather
lead to more false positives by setting up a wrong context
for near-future elements. Hence, it is recommended to apply
the INC_INF method for monitoring sequences that exhibit a
dominant pattern.

9However, as explained earlier, the two methods will be converged as time
goes by.

V. RELATED WORK

So far, anomaly detection approaches have not been fully
explored in the ICS context. Bigham et al. [10] analyzed n-
grams [16] of power readings in an electricity network to detect
anomalous events. The authors also proposed a technique that
learns invariants, i.e. relationships between different power
readings to model the normal behavior of the system. Diissel et
al. [18] evaluated different combinations of feature extraction
and similarity measurement techniques for SCADA network
payload. These techniques were used to build the center of
mass of the normal data, performing n-gram analysis on
payloads. Abnormalities were determined by computing the
distance from the center. Moreover, Cheung et al. [12] demon-
strated the regularity in communications among SCADA net-
work devices and developed a communication-pattern-based
detector that triggers an alert when the availability of (Modbus)
server or service is changed due to, for example, a denial-
of-service attack. Valdes et al. [28] proposed a flow-based
anomaly detection approach, which keeps a library of flows
and, using simple statistics, such as mean and variance, detects
flows that are unexpected or exhibit significant change in
parameters such as packet inter-arrival time, volume, etc.
Hadziosmanovic et al. [21] analyzed network- and host-based
data traces from a real-world industrial control system network.
The traces included communication topology and patterns,
message type and content, and also host-level information such
as system log and memory traces. The authors evaluated each
of these data-trace types in terms of various criteria including
threat scope, approach validation, analysis granularity and so
on. Good summaries of SCADA-specific intrusion/anomaly
detection are provided by Zhu and Sastry [29] and Gari-
tano et al. [19].

To the best of our knowledge, probabilistic suffix trees
have been mainly used for modeling and predicting discrete
sequences, with applications including biological sequence
modeling [9], corrupted text correction [25], part-of-speech
disambiguation resolving [26], music representation [17], efc.,
but not for the ICS context. Begleiter et al. [8] compares
PSTs against other types of variable-order Markov models
(VMMs) such as context tree weighting (CTW) and prediction
by partial match (PPM). Chandola et al. [11] provides an
extensive survey on various anomaly detection techniques for
discrete sequences, considering among different applications,
sequences of system calls or user commands.

VI. CONCLUSION

This paper proposed a novel anomaly detection method for
ICS devices. Our approach is to build adaptive behavior models
and use the intrinsic characteristics of the environment where
the models are created to improve performance and reduce the
false positive rate. The proposed method has been implemented
and applied to a Modbus network testbed and a synthetic
dataset. The experimental results showed that our framework
exhibits a high detection rate for the synthetic dataset while
successfully keeping the false positive rate in check.

A complete evaluation on real operational datasets will
be a critical next step. However, due to the sensitivity of
the data, obtaining real ICS traffic from the research or
industry community is a difficult process, and most research



organizations are prevented from sharing data by active non-
disclosure agreements. We are currently pursuing different
paths for getting access to real ICS data to further evaluate our
framework. Moreover, we plan to extend the set of protocols
that we investigate and to target different industry sectors.
Last but not least, we plan to also extend the ICS-specific
anomaly detection techniques within a more flexible and
general framework, that can cope with long lasting attacks
targeting our architecture.
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