
The DragonBeam Framework: Hardware-Protected
Security Modules for In-Place Intrusion Detection

Man-Ki Yoon
University of Illinois at

Urbana-Champaign
mkyoon@illinois.edu

Mihai Christodorescu
Qualcomm Research

mihai@qti.qualcomm.com

Lui Sha Sibin Mohan
University of Illinois at

Urbana-Champaign
{lrs,sibin}@illinois.edu

Abstract
The sophistication of malicious adversaries is increasing every
day and most defenses are often easily overcome by such
attackers. Many existing defensive mechanisms often make
differing assumptions about the underlying systems and use
varied architectures to implement their solutions. This often
leads to fragmentation among solutions and could even open
up additional vulnerabilities in the system.

We present the DragonBeam Framework that enables sys-
tem designers to implement their own monitoring methods and
analyses engines to detect intrusions in modern operating sys-
tems. It is built upon a novel hardware/software mechanism.
Depending on the type of monitoring that is implemented us-
ing this framework, the impact on the monitored system is
very low. This is demonstrated by the use cases presented in
this paper that also showcase how the DragonBeam frame-
work can be used to detect different types of attack.

Categories and Subject Descriptors K.6.5 [Management of
Computing and Information Systems]: Security and Protection

1. Introduction
As attackers expand their reach into well protected systems,
no layer is safe from intrusions. The targets of attacks in recent
years have ranged from applications to middleware services,
operating system (OS) kernels and device drivers, hypervi-
sors and even firmware. The sophistication of such attacks,
then, makes it harder to identify and build a trusted comput-
ing base (TCB) to develop security mechanisms. The com-
mon approach has been to move security monitoring (e.g., the
reference monitor) functionality into a secure domain (say, a
virtual machine separated from the virtual machine that must
be secured) [14, 26]. This suffers from the existence of a se-
mantic gap between the interface used for monitoring and the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SYSTOR ’16, June 6–8, 2016, Haifa, Israel.
Copyright c© 2016 ACM 978-1-4503-4381-7/16/06. . . $15.00.
http://dx.doi.org/10.1145/2928275.2928290

interface useful for security decisions. Another problem is that
different security mechanisms use a variety of architectures to
implement their solutions. Trying to combine one or more of
these to improve the overall security of the system could result
in a spaghetti of architectural mechanisms that, in itself, might
open up new vulnerabilities. Hence, there is a need to provide
system designers with a cohesive framework for implement-
ing their monitoring and analysis techniques.

Our approach to solving such problems is to start with se-
cure hardware and then to bootstrap security into higher lay-
ers. We propose a system where the secure hardware is the
first level TCB and introduces security monitoring compo-
nents into the system layer above (in this case, the OS kernel).
By running the monitoring component in the layer that is the
target for attackers, we gain significant visibility into local op-
erations as well as effects of attacks – thus avoiding the seman-
tic gap. The secure hardware ensures the runtime integrity of
the upper-layer security monitoring component(s) by protect-
ing it and continuously validating its liveness and behavior.
Designers can then implement methods/hooks (to monitor the
system resources/components that they care about) in our se-
curity monitoring component. The gathered information can
be offloaded to a redundant hardware component where the
designers can apply their own analysis techniques on the col-
lected data. We call this the DragonBeam framework.

The DragonBeam framework is a set of software and hard-
ware mechanisms that allow us to develop and maintain a two-
level monitoring system that consists of: (i) a kernel module
that resides in the OS kernel – it carries out any desired se-
curity checks and measurements and (ii) capabilities to mon-
itor the behavior of this module and to establish its integrity
by a combination of (a) integrity measurement and (b) run-
time challenge-response protocol – these latter components
actually execute on a trusted computing base that resides on
a different core of the processor. One advantage of using such
methods is that the DragonBeam framework does not require
modifications to the OS or the applications. In addition, since
the DragonBeam architecture provides a separate core for ex-
ecuting the TCB-related components, (i) the overhead for the
continuous security interactions is low and (ii) the effects on
the critical executions paths is limited (and often negligible).

The methods presented in this paper lay the groundwork
for DragonBeam to become a generic framework for de-
veloping/implementing security solutions. System designers
can implement their favorite monitoring and/or data capturing
methods in the kernel module that can then either analyze the
data itself or relay it to additional analysis components on the
TCB. These components can perform more extensive analyses
as required.

Our paper makes the following contributions:

1. We introduce a novel framework, DragonBeam, for im-
plementing monitoring and intrusion detection solutions –
it provides hardware-guaranteed integrity for the security
monitoring system. The latter can be extended to other sys-
tem layers to create a multi-level monitoring system rooted
in the secure hardware. An overview of the framework is
presented in Section 2 while details are in Section 3.

2. We have implemented the framework and carried out eval-
uations on an FPGA softcore processor (Section 5). This
helps us in gauging the real hardware costs for implement-
ing such a system. As we see later in the paper, the addi-
tional hardware costs are less than 1%.

3. Two use cases as well as a performance evaluation are
used to illustrate how to use the framework in Section 6.
These use cases not only demonstrate the ease of use but
also highlight the flexibility of our approach by showcasing
different types of attack detection methods. The evaluation
shows negligibly small performance overheads.

1.1 Threat Model and Assumptions
We aim to make our threat model as broad as possible which
is in line with recent developments [10, 22]. An attacker can
breach any part of the software stack (OS kernels, middle-
ware, runtime libraries, applications to name a few) and can
even have full control of any software running on the main
(monitored) system. We assume that the attacker does not per-
form physical attacks against the hardware. Thus trust can be
placed in the hardware components, and in particular in our
TCB. We further assume that the whole system (both software
and hardware) is secure during boot time as well as immedi-
ately after the boot sequence is complete; also updates to the
TCB require physical access.

While our threat model is quite broad, an attacker may
attempt to carry out malicious activities between operations
that verify the integrity of the DragonBeam framework – the
attacker could corrupt some components of our framework
and restore it just before the next check. Such transient at-
tacks [18, 38] cannot completely be ruled out in external mon-
itoring mechanisms [29] and the DragonBeam framework is
no exception. On the other hand, some of the mechanisms pre-
sented in this paper, viz., the randomization techniques (Sec-
tions 3.4, 6.1 and 6.2), will help mitigate such attacks.

2. Overview
The main idea that we propose in this paper is that of a
hardware/software mechanism to detect intrusions. This is

Secure
Memory

Monitored Core Secure Core

OS

Applicatio
nApplicatio

nApplication

SKM Command/Response

SecMan

Untrusted Layer Secure Layer

Figure 1. Overview of the DragonBeam architecture.

achieved by using a two-level monitoring framework that we
call DragonBeam. This architecture takes advantage of the
redundancy available in computing resources on a modern
multicore architecture – we trade off performance to improve
overall security by using one of the cores to monitor the other
core(s). This mechanism can monitor the operating system,
the applications executing on the monitored core, or both.
Figure 1 presents the DragonBeam architecture, which we
illustrate with use cases in the remainder of this section.

2.1 High-level Architecture
Figure 1 shows the DragonBeam framework, in which a
trusted on-chip entity, the secure core, continuously moni-
tors the runtime behavior of another (potentially untrustwor-
thy) entity, the monitored core. The secure core is part of our
trusted computing base. Since both cores are on the same die,
minor hardware modifications are required to extract the rel-
evant information directly from the monitored core. This in-
creases the trustworthiness of the monitored signal since they
are transparent to any code that executes on the monitored
core. On the other hand, the amount of information that can
be gathered is somewhat limited by the amount of hardware
changes (essentially probes) that can be made. Such changes
are often intrusive and might require significant efforts in de-
sign and verification.

To solve these problems and to increase the amount of
information that the secure core can gather, we introduce
a software module that executes inside the monitored core
as a kernel module. We call it the Secure Kernel Module
(SKM). The SKM is responsible for capturing information
about the applications as well as the OS that executes on the
monitored core and passes this information (with help from a
hardware unit) to the secure core. The SKM is controlled by
a software module that executes on the secure core called the
SKM Manager (SecMan). The SecMan also ensures that the
SKM is not attacked or prevented from executing or carrying
out its intended functions. The SKM acts as a bridge to gather
information about the behavior of the OS and/or applications
on the monitored core; this information is then sent to the
secure core for analysis.

Hence, the overall architecture of our solutions is com-
posed of three major components, viz.,

1. the Secure Kernel Module (SKM), which runs in the un-
trusted operating system,

2. the SKM Manager (SecMan), which protects the integrity
of the SKM, and

3. the secure core, which runs the SecMan.

We now elaborate on the SKM and SecMan components in
the following sections.

2.1.1 Secure Kernel Module (SKM)
The SKM is a kernel module that resides on the monitored
core. It is controlled by the SecMan and carries out a variety
of security functions, chief among which is to gather infor-
mation about the execution behavior of important OS com-
ponents and applications. It could either actively analyze or
passively send to the secure core the information that is gath-
ered. The specific tasks depend on (i) the particular issue that
is being tracked and (ii) what the designer of the system has
decided. For instance, it could (a) perform integrity checks
on the kernel code and/or data structures, (b) monitor the be-
havior of some critical applications, (c) actively monitor what
processes/modules are executing, and (d) what low level re-
sources are being requested by what processes and how they
are being used among other things. The SKM executes in the
most privileged mode as do other kernel components. Hence
it has access to all of the kernel data structures. This helps it
detect anomalous activities on the monitored core.

The DragonBeam framework does not prescribe in any
way the actual functionality of the SKM. The goal of the
framework is to ensure that the SKM operates without any
external effects on its code or data, even when the attacker has
root-level access to the system. The execution of the SKM is
closely tracked by the SecMan – this prevents the situation
that the SKM itself is taken over or prevented from executing.
The SKM is developed by the system designers themselves
and also has a fixed, limited, functionality. Hence, it is easier
to verify that the SKM itself does not expose any security
vulnerabilities.

2.1.2 Secure Kernel Module Manager (SecMan)
The SecMan actively manages and monitors the execution of
the SKM. The SecMan and SKM follow a command and re-
sponse protocol that has been developed by the system de-
signer. Consider the following example to illustrate this: (a)
the SecMan tells the SKM to capture the current state of the
process list in the kernel; (b) the SKM wakes up and gathers
this information; (c) the SKM communicates this information
back to the SecMan and finally, (d) analysis modules on the
secure core will compare the state of the process table to ones
that were captured previously to check for unexpected pro-
cesses – this might allow us to detect the execution of mali-
cious process on the monitored core. The overall protocol will
include a fixed set of commands that bound the operations of
the SKM. At runtime, the SecMan will issue one of these com-
mands (or a sequence of them) and the SKM will execute them
in the order received.

Another important function of the SecMan is to guarantee
the integrity and the liveness of the SKM itself via code hash
and a heartbeat mechanism. This is why we call this a two-
level monitoring architecture – the SKM monitors the behav-

ior of kernel components and applications while the SecMan
monitors the execution of the SKM itself.

As shown in Figure 1, the secure core is on-chip hardware
supplemented with a secure memory module that facilities
secure communication between the monitored and the secure
core. The secure memory relays commands from the SecMan
to the SKM and also the data from the SKM (i.e., results from
executing the commands) to the SecMan. The main aim is
to carry out these operations in a trusted manner. This secure
memory can only be accessed by either the SKM or the secure
core. This ensures that the commands and responses cannot be
intercepted, corrupted, or faked by an adversary.

2.2 Sample Use Cases
We now present simple use cases for this architecture to illus-
trate the power of this two-level monitoring mechanism.

The integrity of the system call table in the kernel is very
important. Some kernel rootkits often overwrite the entries
in the system call table to hijack the execution of benign
processes and hide the presence of malicious processes or
files [6]. One way to detect such rootkits is to regularly check
the state of the system call table – the state can be checked
against what was stored at the secure-startup. Hence, the Sec-
Man can send commands to the SKM to capture the current
state of the system call table and copy it into the secure mem-
ory. If the recently captured state of the table deviates from
what is expected, then the secure core can take corrective ac-
tion or raise alarms. Similar operations can be carried out to
verify the integrity of the interrupt vector and to find malicious
kernel module or user processes.

2.3 Requirements and Challenges
For the rest of this paper we will address the following require-
ments and challenges in implementing the two-level SKM-
based monitoring architecture:

1. The SKM must not be compromised even if the kernel
on the monitored core is successfully attacked; also, the
SecMan must be able to detect if the SKM is no longer
operating as expected.

2. The SKM should act promptly in response to commands
from the SecMan.

3. The secure memory must not be corrupted by an adver-
sary, even when the adversary has gained root access on the
monitored core. The access controller for the secure mem-
ory must ensure that only the SKM and the secure core
have access to the secure memory.

3. Detailed Architecture
We now present more details about DragonBeam framework.

3.1 DragonBeam Framework Operations
We will explain the details behind each step in the Drag-
onBeam framework using the example of detecting prob-
lems in the system call table (explained in Section 2.2). An
overview is presented in Figure 2. The steps are:

SKM

check_syscall_table() {
send_cmd(CMD_SYSCALL_TABLE);
settimer(TIMEOUT);

}

recv_syscall_table() {
cleartimer(TIMEOUT);
retrieve current syscall table;
for each entry i

if (cur.table[i]!=org.table[i])
Raise alert!

}

SecMan

send_syscall_table() {
get cur_syscall_table;
for each entry i

write cur_syscall_table[i];
response_ready();

}

Secure Data Memory

1

2

4

5

skm_ISR() {
save sp;
move sp to secure stack;
switch (*CMD) {

…
case CMD_SYSCALL_TABLE:

send_syscall_table();
break;

…
}
restore sp;

}
3

Figure 2. Overview of the execution of an example security task (integrity check of system call table) in the DragonBeam framework. The SecMan issues a
request (1) to the SKM via an interrupt. The SKM collects the data needed (i.e., the contents of the system call table) and passes the data back to the SecMan via
the secure memory in steps (3) and (4). Finally the SecMan verifies the integrity of the received data (5).

1. The SecMan sends a command (via the secure memory) to
check the system call table.

2. The above process results in an inter-core interrupt that is
handled by an interrupt handler on the monitored core.1

The interrupt-service routine, skm ISR(), is the main body
of the SKM and handles the command sent by the SecMan.
No entity on the main core (other than the SKM) can
know the command because access to the secure memory
is restricted.

3. The SKM calls the appropriate function to carry out the
required task.

4. The function carries out its operations by placing the re-
quired information in the secure memory.

5. The secure core receives an interrupt that the data it re-
quested is now available in the secure memory. On receiv-
ing the interrupt, the SecMan reads out the information
from the secure memory region and then sends it to the
appropriate module in the secure core that can analyze this
information.

The above process repeats for every command that is sent by
the SecMan to the SKM. Let us now look at the details that
enable the above process.

3.2 SKM Registration
The SKM is loaded onto the monitored core during the booting
phase of the OS. Our assumption here is that the system is in
a clean state at boot time (we could even use a secure-boot
mechanism such as IMA [31]).

The first task for the SKM (at load time) is to request the
SecMan to register it. Figure 3 shows the SKM registration
process. For the SecMan to test the veracity of the SKM’s
request for registration, it uses a hash of the latter’s .text

section. Since we do not trust the SKM yet, we do not wait
for it to send its hash; rather, we calculate it directly from the
main memory. This prevents malicious modules from copying
the SKM’s hash in order to pass off as legitimate modules.

1 We will use ‘monitored core’, ‘application core’ and ‘main core’ inter-
changeably.

Base
address

SKM .text

Page
Size

SKM
Size

Virtual Address Space Physical Address Space

Main Memory

CTP Page Table
Hierarchy

SKM SecMan

SKM Loading

Registration request
Find physical frames

of SKM .text

Calculate the hash of
SKM .text

If match:
Register the base addr,
SKM size, CTP with
the secure memory

Begin
operations

Halt and
alarm

Match Not

SKM .text
Physical
Frames

CTP +
4xCTXNR

Context Table

Figure 3. SKM registration during secure boot.

The SecMan needs the following information about the
SKM to compute this hash value: (a) the virtual base address,
(b) the size of the .text section, (c) the page size and the (d)
page table information—all for the SKM. In SPARC proces-
sors (that our prototype is based on; see Section 5), the last
piece of information corresponds to the context table pointer
(CTP) and the context number (CTXNR) [34]. The CTP points
to the root of the page table tree and the CTXNR is used to
index the context table (i.e., the page table) of the current pro-
cess (hence CTXNR is unique for each process). The SecMan
then translates the .text section of the SKM as defined by
the base (virtual) address and its size to a set of physical ad-
dresses that host the SKM code. The SecMan then calculates a
hash of the physical frames that store the SKM code using, for
instance, the SHA-1 algorithm [13] (or whatever hashing algo-
rithm that the systems designers favor). If the newly computed
hash matches what was calculated at the design time, then the
SecMan registers the base address for the SKM’s .text sec-

tion, its size, the page size, CTP and CTXNR with itself. Also,
the base address, size and CTP are registered with the secure
memory controller. From then on, the secure memory can only
be accessed by the code that is verified to be part of the SKM.

Note that a malicious module may make a registration
request to the SecMan. However, with the registration process
described above, the only way for the attacker to pass the
registration process is to implement the malicious code in such
a way that its .text section has the same hash value as the
SKM’s one – remember that the hash is directly calculated by
the SecMan from the given information about the malicious
module’s .text section.

3.3 Secure Memory and Access Control
The secure memory enables secure and trusted communica-
tion between the SKM and the SecMan. The secure memory
controller only allows the SKM on the main core (and any
from the secure core) to access this on-chip memory. To im-
plement this access control, we use the program counter value
to identify who initiated a memory transaction to the secure
memory. The program counter-based memory access control
has been used in the context of embedded devices with no
support of virtual memory [21, 24, 36]. In systems with vir-
tual memory, however, the program counter cannot be used as
a unique identifier. Hence we combine it with a coarse-grained
check on the address mapping information.

Figure 4 presents the overview of the secure memory ac-
cess control process. The secure memory controller accesses
the program counter (a virtual address) register (PC) on the
main core as well as the context table pointer register (CTP).
It then checks if (i) the CTP register matches the one regis-
tered by the SecMan during the SKM registration phase and
(ii) the value of the PC register is within the .text region of
the SKM. Note that we do not use the context number reg-
ister (CTXNR) because the kernel memory address mappings
are identical across all contexts on SPARC [34] and thus the
context number is ignored by the MMU during kernel address
translations. If the above two conditions are satisfied, we can
ensure that only the SKM can access the secure memory.

However, it is entirely possible that a smart adversary may
have modified the page table referenced by the legitimate
CTP register so that the virtual addresses indexed by [Base,
Base+Size] are mapped to the malicious code instead of the
SKM’s physical addresses. Also, the adversary may have set
up a whole new context table tree at a different location.
The malicious module might then be able to access the se-
cure memory by modifying the address mappings. To pre-
vent such problems, we could check the physical addresses
of the instructions trying to access the secure memory to ver-
ify if it falls within the SKM’s physical frames. However, we
avoid this option since it would involve an address transla-
tion each time the secure memory is accessed—this would
result in huge performance overheads. Our solution (as will
be elaborated in Section 3.4) is for the SecMan to (a) trans-
late the SKM’s .text section (indexed by [Base, Base+Size])
from virtual to physical addresses using the registered CTP

and CTXNR register values and (b) calculate the hash of the

Program
Counter

Context
Table
Pointer

Rdata

>=

<

=

Registered CTP

AddrWdata

Registered Base

Re
gi

st
er

ed
Ba

se
 +

 S
iz

e

=

ID
(S

ec
ur

e
C

or
e)

Transaction
Master ID

0/1

0/1

0/1

0/1

0/1

EnableAccess
Control
Logic

RAM Array

Monitored
Core

Bus
Interface

Re
tu

rn
s

0x
00

00
00

00

Dr
op

pe
d

Access violation if 0

Figure 4. Secure memory access control.

resultant frames—following exactly the same process as the
registration, only done often during execution, not just at the
registration time. If the attacker has modified the page table so
that the virtual address range [Base, Base+Size] points to its
malicious code, the resultant hash value will not match the
legitimate value. Otherwise, we can be sure that the range
[Base, Base+Size] is pointing to the SKM. Also, an altered
CTP value cannot be effective because this simply violates
the secure memory access control. Of course, these do not
eliminate the possibility where a carefully constructed mali-
cious module changes the address mappings and restores it to
the original between two hash check points. However, regular
hashing with random time intervals can significantly reduce
the possibility of success for such attempts.2

If the memory controller detects an illegal access attempt,
the controller returns 0 for read or drops write transactions.

3.4 Heartbeat and SKM Integrity Check
As mentioned earlier, we need to continuously check if (i)
the SKM’s code has not been tampered with; (ii) the SKM
is actually starting up when it is commanded to do so by
the SecMan and finally (iii) the SKM responds to requests
in a timely manner. We have already discussed a technique
to check for (i). The issues of liveness of the SKM, viz., (ii)
and (iii), require a more active approach.

Our solution for this problem is to occasionally send out a
special heartbeat command to the SKM. The SKM should re-
spond to this command right away. This ensures that the SKM
has not been deactivated by an adversary. No other process
can respond to this command since the communication hap-
pens through the secure memory that can be accessed only by
the SKM. When a heartbeat command is sent to the SKM, the
SecMan starts a countdown timer. If it does not receive the
expected response from the SKM then this is also indicative

2 The attacker would want to do this type of transient attack in an attempt
to impersonate the SKM and send fake response through the secure mem-
ory. The attacker would therefore try to alter the address mappings before the
SKM is activated by a command from the SecMan. Such a threat can be sig-
nificantly reduced if the SecMan performs the hashing right before sending
the command to the SKM.

SKM

Secure
stack

0xa0000000 0xa0020000

SecMan

.text

0xa0010000

SecMan

.data

SecMan

stack

Secure Data

(communication between
SKM and SecMan)

Accessible only by Secure CoreAccessible only by SKM and Secure Core

Figure 5. The secure memory map.

of an attack. The timer can be used for any/all commands that
the SecMan sends across.

Another precaution that we can take is to send out these
heartbeat commands, in addition to the SKM operations and
hashing, at random intervals so that an adversary cannot guess
the pattern of checks by the SecMan.

3.5 Secure Memory for SecMan and Secure Stack
To ensure the integrity of the SecMan we load its code and
data onto a part of the secure memory region that can be ac-
cessible only by the secure core, as shown in Figure 5. Hence,
an attacker that takes control of the main core cannot corrupt
the SecMan. The SKM is loaded onto the main memory (along
with the rest of the kernel),3 and we monitor and protect it by
the mechanisms described earlier.

The secure memory also hosts the secure stack for the
SKM. When an interrupt is raised and handled by the SKM,
the first step taken by the ISR is to change the stack pointer to
the secure stack (see Step 2 in Figure 2). Hence, a malicious
module cannot read or alter the data stored in the secure stack
even if it knew where the stack is.

4. Security Guarantees of the
DragonBeam Framework
The DragonBeam framework provides for the secure opera-
tion of a kernel module, in the presence of attackers with full
access to the system, including kernel-level access. We out-
line here the potential attack vectors and the defenses that the
DragonBeam framework provides.

SKM Code Integrity: An attacker may try to replace the
SKM with a malicious module and thus have it loaded onto
the system, either during the boot-phase or later during system
operation. This is prevented by the SKM registration process
which requires the exact hash value obtained at the design
time. Also, the hash is directly computed by the SecMan
using the page table information of the caller to dissuade such
attempts. The attacker may also try to modify the SKM’s ISR.
However, since it is placed in the SKM’s .text section, any
attempts by the attacker to change the ISR will be detected by
the hashing mechanism mentioned earlier.

SKM Control Flow: The attacker may try to change the state
or parameters used by the SKM in order to cause a buffer over-
flow and change its execution flow. This can take many forms,
from code-injection attacks, to return-to-library attacks and to
return-oriented-programming attacks. All of these attacks rely

3 The SKM could be loaded onto the secure memory. However, this requires
a modification of the OS, which we avoid.

on a software module processing its inputs in a vulnerable
way; for the purposes of this paper we assume the SKM is
well designed and implemented to avoid such problems. This
is a realistic assumption as the SKM is supposed to be func-
tionally self-contained and small.

SKM Availability: The attacker may try to disable the SKM
by preventing it from being scheduled for execution on the
CPU or disabling interrupts. Hence, to guarantee the liveness
of the SKM, we use a heartbeat mechanism (Section 3.4).
The attacker may try to impersonate the SKM by redirecting
the interrupts to itself and by responding to the heartbeats.
We prevent this situation by using the secure memory as a
communication channel; no entity, other than the SKM, can
write a response to the secure memory and thus the fake
response cannot be delivered to the SecMan.

SecMan Integrity: The attacker may try to corrupt the Sec-
Man directly so that none of its security functions are invoked
in the first place. This cannot happen in our architecture since
the attacker cannot access the memory region of the SecMan.

OS Integrity: An attacker may try to create a distinction
between the code and data of the actual running kernel and the
code and data inspected by the SKM. Indeed such attacks are
possible – more so with the runtime splicing support present
in kernels these days. Such a distinction between the running
and observed kernel states might allow an attacker to perform
malicious tasks – the SKM may not detect these anomalies if
it is not well designed. For example, an attacker who wishes
to hijack the system call table could modify the software
interrupt table to point to a new system call dispatch handler,
which in turn uses a new system call table placed elsewhere
in memory. Thus, the SKM’s task is not just to read and check
the system call table but also to verify that the code that is
supposed to use this table is valid and active. At a minimum
the SKM must check the interrupt descriptor table, the code of
the appropriate interrupt handler and, finally, the system call
table used by that code. We leave the design of such checks
to the designer of the SKM while we ensure the integrity and
confidentiality of the checks via the DragonBeam framework.

5. Implementation
We implemented the DragonBeam framework on a Leon3
processor [2] for a Xilinx ZC702 FPGA [4]. Leon3 is a soft-
core processor based on 32-bit, in-order, 7-stage pipeline
SPARC V8 architecture [34]. From the soft-core implemen-
tation, we demonstrate the ease with which we can make the
required modifications and (b) measure the hardware costs.

5.1 System Configuration
Figure 6 shows our DragonBeam framework implementation
on Leon3 processor and Table 1 lists the details about the im-
plementation. The system consists of two cores each of which
runs at 83.3 MHz and the system has a main memory of 256
MB. Each core has L1 instruction (16KB) and data (16KB)
caches. The MMU has split TLBs for data and instruction. The
Leon3 processor also includes a single-port on-chip RAM,

Secure Memory

Leon3 Core 1
(Monitored Core)

Controller

Leon3 Core 2
(Secure Core)

MMU

AHBRAM

Instruction
Pipeline PC

CTP

AHB2AXI
Bridge

Main
Memory

AHB2APB
Bridge

Multiprocessor
Interrupt
Controller

MMU

Instruction
PipelinePC

CTP

U
nu

se
d

CTP

Base
Size

Access
Control

AMBA AHB BUS

IRQIRQ

SKM
Linux

SecManSecure
Data/Stack

Figure 6. The DragonBeam framework implementation on Leon3.

AHBRAM, to which the cores can access through AMBA [1]
AHB (Advanced High-Performance Bus) bus, as depicted in
Figure 6. We instantiated it as an 128KB on-chip SRAM that
is addressable at 0xa0000000. The first half is used as the se-
cure communication channel between SKM and SecMan and
also for the secure stack of the SKM, as shown in Figure 5.
The bottom half is used by the SecMan. The entire region is
set to be uncacheable, otherwise a non-SKM process can ac-
cess the cached data without accessing the secure memory.

5.2 Secure Memory Implementation
We modified the control logic of AHBRAM, i.e., the on-chip
SRAM, to implement the secure memory. As explained in
Sections 3.2 and 3.3, the information about SKM’s .text

and page table are stored in the secure memory for the access
control. For this, we designate the first 16 bytes of the secure
memory (i.e., 0xa0000000–0xa0000010) as special memory-
mapped registers in which the SecMan can write the informa-
tion during the SKM registration phase. The controller checks
the AHB master ID of the memory transaction and grants ac-
cess to these registers only from the secure core. Hence, the
information can be set only by the SecMan. The bottom half
of the secure memory used by the SecMan (explained in Sec-
tion 3.5) is protected in the same way.

After the SecMan has validated the SKM at registration
time, the SecMan locks the memory that contains the control
data (i.e., the first 16 bytes) by asserting the lock bit in the
control register. From then on, access control to the secure
data and secure stack regions becomes enabled. As explained
in Section 3.3, the access control logic requires the current
program counter (PC) and context table pointer (CTP) values
from the monitored core. As shown in Figure 6, we extract the
PC value from the fetch stage of the core’s instruction pipeline
and the CTP value from the MMU and feed them to the secure
memory controller. It returns 0 or drops the transaction for an
illegal read and write request, respectively.

5.3 Software Configuration
The monitored core runs an unmodified Linux 3.8 kernel re-
siding on the main memory as shown in Figure 6. The SKM

Table 1. Details about the Implementation Platform.
Implementation Artifact Value

Platform Leon3 on Xilinx ZC702 FPGA
Processor SPARC V8 Dual Core @ 83.3 MHz each
Main Memory 256 MB
L1 cache Split, 16 KB, LRU
TLB Split, 8 Entries, 4KB page, LRU
Secure Memory 128 KB, Single-port
Monitored Core OS Linux 3.8
Secure Core OS None (Bare Metal Execution)

is implemented as a Linux Kernel Module and resides in the
main memory. The SKM has about 350 lines of C code (in-
cluding spaces) that implement the two use cases introduced
in our evaluation (Section 6) along with interrupt handling and
inter-core communication routines.

We implemented the SecMan as a bare-metal executive
running on the secure core for the purposes of our proof-of-
concept. A complete system can also have an OS and analysis
modules running on the secure core. The SecMan has about
450 lines of C code (excluding the SHA-1 library) a majority
of which is for interrupt and timer-related functionality. As
mentioned above, the SecMan resides in the bottom half of
the secure memory, accessible only by the secure core.

6. Evaluation
In this section we evaluate the DragonBeam framework along
the following lines: (a) how it can be used by system de-
signers to implement different detection mechanisms to catch
malicious activities; (b) the overheads imposed by the Drag-
onBeam framework on the main system; and (c) the costs for
implementation in hardware.

6.1 Implementation of Detection Mechanisms
To demonstrate the effectiveness and versatility of our frame-
work we implemented two existing detection mechanisms.
Note that we are not proposing new detection techniques for
any of the use cases presented here. We instead intend to
demonstrate how to use our framework for the benefit of sys-
tem designers. We also intend to show how SKM closes the
semantic gap by running directly inside the untrusted OS and
collecting information useful to security decisions.

6.1.1 Hidden Module Detection
Many kernel rootkits such as modhide [5], suterusu [3], etc.
hide themselves from the kernel module list to avoid detection
by anti-virus software. The hidden modules are invisible from
even lsmod or \proc\modules, both of which read the list of
currently loaded modules from the same kernel data structure.
For the following experiments, we used the suterusu kernel
rootkit that hides by deleting itself from the kernel module list.

Hidden kernel modules can be detected by scanning the
memory region where modules are typically placed. The main
idea is that every page that is present in this memory region
should be allocated to one of the modules present in the
kernel module list as such pages are not swapped out. If even
one page cannot be matched up to a known module, then
it is an indication of a hidden module. For instance, in our

experimental setup, the memory space where kernel modules
reside lies in the range of 12 MB which hosts 3072 pages of
size 4 KB each.

We implemented the detection method using our Drag-
onBeam framework as follows:

1. For each page in the module memory space, we check if
it has been loaded into memory by checking the requisite
flag, viz., the present bit. We collect information on all
pages in this region.

2. We traverse the module list. For each module, we obtain its
base address and size – this corresponds to the list of pages
used by the module. We mark off the pages associated with
each module from the list of pages obtained above.

3. If any of the pages from step 1 have not been marked off at
the end of step 2, then it is an indication of the existence of
hidden modules in the system.

The SecMan sends commands to the SKM to execute the
procedure described above. The SKM replies with the results
of this checking procedure. To prevent attackers from evading
the checking procedure mentioned above, the SecMan must
send the commands at random points in time.

We used the suterusu kernel rootkit that tries to hide its
presence in the system. Using our checking mechanism, the
SKM found two pages that had been allocated for this rogue
module’s code and data. Other rootkits that operate in a similar
manner will also be caught by this procedure.

6.1.2 System Call Table Integrity Check
Many rootkits hijack system calls [6] to intercept sensitive
data, hide malicious processes or files, etc. One way to detect
such attacks is to verify that the current state of the system
call table matches the original state immediately after a secure
boot. This will detect rootkits that rewrite entries in the table.

First, the SecMan asks the SKM to capture the initial state
of the system call entry table. This information is passed via
the secure memory to the SecMan. This happens right after
the SKM has registered with the SecMan, at which point the
OS state is still trustworthy. The SecMan stores this initial
state in its internal memory region, part of the secure memory.
During regular execution, the SecMan asks the SKM to send
snapshots of the system call table. The SecMan compares
the newly received state information with the one obtained
initially. If it detects a change in the table, then that is an
indication of a rootkit having hijacked certain system calls.

We used the modhide1 [5] rootkit for our experiment –
it hijacks the open system call to prevent the detection of a
module being inserted into the kernel (e.g., cat \hide hides
the module). Using the method described above, the SecMan
was able to detect this rootkit’s presence. More generally this
approach can check the state of any critical kernel data such
as the interrupt descriptor table and handlers (as described in
Section 4), page tables and translation base register, etc.

6.2 Performance Evaluation
We now analyze the overhead imposed on the main core due
to the execution of the DragonBeam mechanisms.

Table 2. Average latencies of SKM operations.
SKM Operation Avg Latency (stdev)

Heartbeat 0.010 ms (4.100 us)
SKM .text hashing 2.679 ms (7.474 us)

System call table check 0.108 ms (5.727 us)
Hidden module detection 3.914 ms (4.772 us)

Table 2 shows the latencies of the heartbeat and hashing
operations as well as the operations necessary for use cases
explained in Section 6.1. The latency is measured between
the time points when the SecMan sends a command to the
SKM and to when the SecMan completes the analysis after
receiving data from the SKM. Each entry in the table presents
the average of 1000 measurements and the standard deviation.
Note that the hashing operation does not involve the SKM
and thus the latency is simply the time required to (i) copy
SKM .text to the secure memory and (ii) perform the SHA-
1 operation. The time spent for the system call table check is
to copy a table of 343 entries (total size 1.3 KB in Linux 3.8 on
SPARC) and then to compare it (with the stored version of the
table) entry by entry. The hidden module detection operations
take much longer because it checks (i.e., looking up each entry
in the three-level page table) all the pages in the kernel module
space (3072 pages).

Beyond microbenchmarks, we used the SPECINT2006 [15]
benchmark suite4 and measured execution times for two situ-
ations: when the SKM is enabled versus when it is disabled.
Specifically, we executed each benchmark 20 times for each
of the following scenarios: (a) when the SKM is not running,
(b) heartbeat (c) SKM .text hashing (d) system call table
integrity check and (e) hidden module detection is enabled.
To obtain stable results, we used a fixed period (100 ms at
the CPU clock speed of 83.3 MHz) for the operations. Hence,
the SKM was sent commands to execute each operation about
1600–6400 times during one benchmark execution.

Figure 7 shows the average (geometric mean) ratios of the
execution times for each benchmark when the SKM is en-
abled (with an SKM operation) compared to when the SKM
is disabled. As the plot shows, the overheads associated with
the SKM operations are very small. Among them, the hidden
module detection incurs the biggest overhead (around 4%).
This is because it is an in-SKM procedure, i.e., the analy-
sis carried out inside the SKM module. We could reduce this
overhead by offloading the analysis to the SecMan – i.e., the
SKM can just send the list of modules with their base ad-
dresses and sizes to the SecMan. Since the latter can physi-
cally address the main memory it can obtain the page infor-
mation directly and check the flags. Overall, the overheads
are consistent with the latency of each SKM operation (except
hashing) shown in Table 2. As mentioned above, the hashing
operation does not directly involve the SKM, however it gen-

4 We used five benchmarks – bzip2, hmmer, libquantum, mcf,

sjeng– from the suite after excluding ones that are failed to cross-compile
to the Leon 3 SPARC platform or ones that took very long time to execute
one single execution trace (since the FPGA softcore is slower on average than
regular processors). The average execution time for each of these benchmarks
(without the DragonBeam framework) are 370, 198, 161, 511 and 639 sec-
onds, respectively.

Benchmark
bzip2 hmmer libquantum mcf sjeng

A
v
e

ra
g

e
 r

a
ti
o

 o
f

e
x
e

c
u

ti
o

n
 t

im
e

 t
o

 t
h

e
 c

a
s
e

 o
f

N
o

 S
K

M

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Heartbeat (100 ms)
SKM .text hashing (100 ms)
System call table check (100 ms)
Hidden module detection (100 ms)
Random (random interval)

Figure 7. The average ratio of execution time to the case when
SKM is disabled for different SKM operations.

erates a decent amount of bus traffic when copying the SKM’s
.text from the main memory to the secure memory. Hence,
the operation indirectly imposes overheads on the main core
by interfering with the memory traffic of the core. The sys-
tem call table integrity check operation affects the main core’s
memory traffic in the same way because it copies the system
call table between the main and secure memories. As we can
see from Figure 7 the overheads imposed by these two oper-
ations vary more (as compared to the other two sets of bars)
across the benchmarks. This is because of the different mem-
ory footprints of the benchmarks. bzip2 and mcf have a sub-
stantially larger memory footprint than the other three [16]
and hence they experience more overheads by such SKM op-
erations that require large memory transfers.

Lastly, we performed a similar experiment with random
operations that execute at arbitrary intervals. The SecMan
sends a command randomly chosen from the four operations
and then schedules the next event at some ∆t after the cur-
rent time. We configured ∆t to be randomly drawn from
[0, 1, . . . , 200] ms so that the median is 100 ms. However, we
configured the SecMan to send the next command as soon as
the SKM responds to the current one if ∆t < 10 ms. That is,
with 5% of probability, SKM operations can be back-to-back.
These make it very difficult for an adversary to predict when
and what kind of SKM operation(s) will occur next thus lead-
ing to a significantly reduced chance of success for transient
attacks. The right-most bar of each benchmark group in Fig-
ure 7 shows the overheads imposed by this randomized check.
The results are consistent with those of individual operation;
the overhead is close to the average of the four operations.

These results show that our DragonBeam framework im-
poses very little overheads on the main system and it can still
be an effective method to implement security mechanisms.
One can also use the results when finding a proper combi-
nation of random periods (for different operations) according
to the expected system load and allowable overheads.

6.3 Hardware Costs
Finally, we evaluate the hardware cost of the proposed archi-
tecture. The top half of Table 3 shows the cost of the hard-

Table 3. FPGA Resource Utilization* of Leon3 Processor with and
without the DragonBeam framework.

Resource Default W/ DragonBeam ∆

Dual Registers 10258 10356 0.96%
Core LUTs 19482 19511 0.15%
Quad Registers 18932 19029 0.51%
Core LUTs 37777 37835 0.15%

* Available resource: Registers (106400), LUTs (Look-Up Table, 53200)

ware change in terms of the FPGA resource utilization (based
on Xilinx ZC702 board [4]). The number in each cell is the
number of resources used and the last column shows the extra
resource due to the DragonBeam framework. The table shows
that the DragonBeam framework adds a very small amount of
hardware resources. This was possible because the only hard-
ware changes in the framework are (i) the logic to fetch the
30-bit CTP (context table pointer) register from the MMU, (ii)
the 32-bit PC (program counter) register from the instruction
pipeline and (iii) the logic to implement the access control pol-
icy of the secure memory (see Figure 4). The logic for the two
register fetch components is duplicated for each core although
those of the secure core are not used in the access control. This
result indicates that we can establish an on-chip secure com-
munication channel between the SKM and the SecMan run-
ning on different cores (and also protect the latter’s memory
region) using less than 1% of additional hardware resources.

6.4 Extension to Multiple Monitored Cores
So far we have considered the situation where the Drag-
onBeam framework runs on a dual core processor. While we
have shown how this works the issue remains that most mod-
ern systems have more than two cores. A typical configuration
for such systems is that they run a single OS that manages all
cores. In such situations, the SKM can run on any core at any
given time. Hence, every monitored core needs to be hooked
to the secure memory controller. Now, when a memory trans-
action comes in, the program counters and the context table
pointer registers of all monitored cores are multiplexed with
the transaction master ID. The rest of the logic remains un-
changed as only one SKM exists and thus only one set of base,
size, and CTP is registered.

We extended the original architecture (shown in Figures 6
and 4) to a quad-core configuration in which three cores are
monitored by one secure core. The bottom half of Table 3 indi-
cates that the extended architecture still imposes a very small
hardware cost. This SMP configuration with a single SKM in-
stance can reduce the performance overheads, especially due
to in-SKM operations such as the hidden module detection, on
the main cores because the SKM can run in parallel with the
main applications running on different cores. To see this, we
performed a similar experiment to the hidden module detec-
tion from Figure 7 in Section 6.2 with the quad-core config-
uration. The average overheads are between 0.8% and 2.1%,
which are substantially lower than what we observed (about
4%) with a single monitored core on the dual-core setup.

For systems that have multiple operating systems executing
on different cores (e.g., in the case of modern cloud comput-
ing systems with virtual machines that share a single under-

lying processor) the secure memory controller should be re-
architected as there can exist multiple SKMs running on dif-
ferent monitored cores. The controller, at the very least, needs
to have a separate register set for each individual SKM’s infor-
mation (i.e., the base, size, and CTP value) and these should be
multiplexed with the transaction master ID. Also, the secure
memory should be partitioned so that the SKMs do not inter-
fere with each other. However we have not fully investigated
if there needs to be additionally required HW changes.

6.5 Limitations
There exist some limitations of our approach. First of all, it
is constrained to integrity checks. In other words, the Drag-
onBeam framework does not cover information-leakage at-
tacks (e.g., via side channels). In our model, access control
mechanisms that are part of the DragonBeam framework are
used to ensure the integrity and liveness of security compo-
nents running in the untrusted OS but with no guarantees
about the various side (or covert) channels created during the
normal operation of the system.

Another important issue is that we trade off some perfor-
mance for security – essentially one of the cores is reserved
for security monitoring, which could otherwise be used as part
of the main system. But this is something that system design-
ers know about and can account for. This loss of performance
comes with increased security guarantees – that might be fine
for many systems where security is often very critical.

7. Related Work
The concept of hierarchically establishing integrity into a sys-
tem appeared before in the Integrity Measurement Architec-
ture (IMA) of the Linux kernel and part of the Trusted Com-
puting approach [31]. IMA ensures that the system was in a
secure state at some point in the past but we enable dynamic
monitoring at runtime. Additionally, IMA does not perform
integrity measurements for dynamically created data (e.g.,
transient runtime information) while our framework separates
the integrity measurement of the security component from the
integrity measurement done by the security component.

There exists work in which a multicore processor (or a co-
processor) is employed as security measure in different as-
pects: (a) INDRA [33] where a monitoring core verifies func-
tional behavior such as function return address using logs of
application executions on monitored cores; (b) Chen et al. [8]
delivers instruction-level traces (e.g., input/output operands,
memory access address) to another core for inspection for the
detection of memory leaks and access to unallocated mem-
ory; (c) Other work includes the use of hardware accelera-
tion [9] and the attachment of reconfigurable logic to the main
CPU checks [11]; (d) the Secure System Simplex Architecture
(S3A) [23] and the SecureCore architecture [41] monitor the
timing behavior of real-time embedded applications, the latter
of which is extended to monitor memory behavior [42]. The
common theme in these systems is that they dedicate hardware
resources to specific security tasks. DragonBeam differs fun-
damentally in that we use the dedicated hardware of the secure
core and the secure memory only to protect an in-memory se-

curity mechanism, i.e., the SKM. This allows us to support any
desired type of security monitoring, irrespective of the events
of interest, with no semantic gap in the way of accuracy.

Virtual Machine Introspection (VMI) [14] has been applied
to process execution monitoring [20, 35], kernel control-flow
integrity check [28], virtual memory and disk monitoring [25],
dynamic information flow tracking [17, 40], system call trac-
ing [30], etc. Although the ‘out-of-box’ approach can improve
the security of intrusion detection system due to the separa-
tion, it misses out on a detailed view of the untrusted VM, that
leads to semantic gap problems [12, 19]. Lares [26] closes the
gap by placing hooks inside kernel APIs from which relevant
information is passed to the security VM through the virtual
machine monitor (VMM). They modified the VMM to pro-
tect the hooks by making their memory regions read-only. The
switching between the VMs, however, cause a significant per-
formance overhead. Sharif et al. [32] proposed Secure In-VM
Monitoring (SIM) in which the hook handler runs in the same
VM that it monitors (and thus reduces switching overhead)
while being protected by the VMM through manipulation on
the shadow page tables. This is also used by Wang et al. in
[37] for in-VM hook memory protection.

One can implement our DragonBeam architecture with the
use of virtualization in a similar manner. VMI has advantages
in that no hardware modification is needed. However, VMI
techniques rely on the security and correctness of the VMM,
that in itself is susceptible to attacks [7, 27, 39]. DragonBeam
significantly reduces the scope of such vulnerabilities. It also
reduces overheads due to software interventions, at the cost of
the additional hardware on chip, in this case, secure memory.

8. Conclusion
System designers must often contend with different modes
and entry vectors of attacks, multiple security solutions and
various monitoring and analysis techniques. A framework that
can be used for integrating the different intrusion detection
and analysis methods will provide significant value to such
designers. In this paper, we presented such a framework that
we call DragonBeam. The use of this framework allows de-
signers to implement and carry out their own monitoring and
analysis without affecting the execution of the main system,
i.e., little to no effects on the critical paths of the system.

Acknowledgment
The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions. This work is sup-
ported in part by grants from NSF CNS 13-02563, NSF CNS
12-19064, NSF CNS 10-35736, NSF CNS 14-23334, Navy
N00014-16-1-2151, and Navy N00014-13-1-0707. Man-Ki
Yoon was also supported by Qualcomm Innovation Fellow-
ship. Any opinions, findings, and conclusions or recommen-
dations expressed here are those of the authors and do not
necessarily reflect the views of sponsors.

References
[1] AMBA Specifications. http://www.arm.com/products/

system-ip/amba-specifications.php.

[2] LEON3 Processor. http://www.gaisler.com/index.php/
products/processors/leon3.

[3] Suterusu Rootkit. http://poppopret.org/2013/01/07/suterusu-
rootkit-inline-kernel-function-hooking-on-x86-and-arm/.

[4] Xilinx Zynq-7000 All Programmable SoC ZC702 Eval-
uation Kit. http://www.xilinx.com/products/

boards-and-kits/ek-z7-zc702-g.html.

[5] modhide1 Rootkit. http://packetstormsecurity.com/

files/favorite/24880/.

[6] Hijacking system calls with loadable kernel modules. http:

//r00tkit.me/?p=46.

[7] S. Bratus, M. E. Locasto, A. Ramaswamy, and S. W. Smith.
Vm-based security overkill: A lament for applied systems se-
curity research. In Proc. of the Workshop on New Security
Paradigms, 2010.

[8] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. Mowry,
R. Teodorescu, A. Ailamaki, L. Fix, G. R. Ganger, B. Lin, and
S. W. Schlosser. Log-based architectures for general-purpose
monitoring of deployed code. In Proc. of the workshop on Ar-
chitectural and system support for improving software depend-
ability, 2006.

[9] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons,
T. C. Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and
E. Vlachos. Flexible hardware acceleration for instruction-grain
program monitoring. In Proc. of the International Symposium
on Computer Architecture, 2008.

[10] J. Criswell, N. Dautenhahn, and V. Adve. Virtual ghost: Pro-
tecting applications from hostile operating systems. In Proc.
of International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2014.

[11] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh.
Flexible and efficient instruction-grained run-time monitoring
using on-chip reconfigurable fabric. In Proc. of the IEEE/ACM
International Symposium on Microarchitecture, 2010.

[12] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee. Tappan zee
(north) bridge: mining memory accesses for introspection. In
Proc. of the ACM Conference on Computer Communications
Security, 2013.

[13] D. Eastlake, 3rd and P. Jones. Us secure hash algorithm 1 (sha1),
2001.

[14] T. Garfinkel and M. Rosenblum. A virtual machine introspec-
tion based architecture for intrusion detection. In Proc. Network
and Distributed Systems Security Symposium, 2003.

[15] J. L. Henning. SPEC CPU2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34(4):1–17, Sept. 2006.

[16] J. L. Henning. SPEC CPU2006 memory footprint. SIGARCH
Comput. Archit. News, 35(1):84–89, Mar. 2007.

[17] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand.
Practical taint-based protection using demand emulation. In
Proc. of the ACM SIGOPS/EuroSys European Conference on
Computer Systems, 2006.

[18] D. Jang, H. Lee, M. Kim, D. Kim, D. Kim, and B. B. Kang.
Atra: Address translation redirection attack against hardware-

based external monitors. In Proc. of the ACM Conference on
Computer and Communications Security, 2014.

[19] X. Jiang, X. Wang, and D. Xu. Stealthy malware detec-
tion through vmm-based ”out-of-the-box” semantic view recon-
struction. In Proc. of the ACM Conference on Computer and
Communications Security, 2007.

[20] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Antfarm: Tracking processes in a virtual machine environment.
In Proc. of the USENIX Annual Technical Conference, 2006.

[21] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan.
Trustlite: A security architecture for tiny embedded devices. In
Proc. of the European Conference on Computer Systems, 2014.

[22] Y. Kwon, A. M. Dunn, M. Z. Lee, O. S. Hofmann, Y. Xu, and
E. Witchel. Sego: Pervasive trusted metadata for efficiently ver-
ified untrusted system services. In Proc. of International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, 2016.

[23] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo.
S3A: Secure system simplex architecture for enhanced security
and robustness of cyber-physical systems. In ACM Conference
on High Confidence Networked Systems, 2013.

[24] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Her-
rewege, C. Huygens, B. Preneel, I. Verbauwhede, and
F. Piessens. Sancus: Low-cost trustworthy extensible networked
devices with a zero-software trusted computing base. In Proc.
of the USENIX Conference on Security, 2013.

[25] B. D. Payne, M. Carbone, and W. Lee. Secure and flexible
monitoring of virtual machines. In Proc. of Annual Computer
Security Applications Conference, 2007.

[26] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An
architecture for secure active monitoring using virtualization.
In Proc. of the IEEE Symposium on Security and Privacy, 2008.

[27] G. Pék, A. Lanzi, A. Srivastava, D. Balzarotti, A. Francillon,
and C. Neumann. On the feasibility of software attacks on com-
modity virtual machine monitors via direct device assignment.
In Proc. of the ACM Symposium on Information, Computer and
Communications Security, 2014.

[28] N. L. Petroni, Jr. and M. Hicks. Automated detection of persis-
tent kernel control-flow attacks. In Proc. of the ACM Confer-
ence on Computer and Communications Security, 2007.

[29] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh.
Copilot - a coprocessor-based kernel runtime integrity monitor.
In Prof. of the Conference on USENIX Security Symposium,
2004.

[30] J. Pfoh, C. Schneider, and C. Eckert. Nitro: hardware-based
system call tracing for virtual machines. In Proc. of the Inter-
national conference on Advances in information and computer
security, 2011.

[31] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and
implementation of a tcg-based integrity measurement architec-
ture. In Proc. of the USENIX Security Symposium, 2004.

[32] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-vm
monitoring using hardware virtualization. In Proc. of the ACM
Conference on Computer and Communications Security, 2009.

[33] W. Shi, H.-H. S. Lee, L. Falk, and M. Ghosh. An integrated
framework for dependable and revivable architectures using
multicore processors. In Proc. of the International Symposium
on Computer Architecture, 2006.

[34] C. SPARC International, Inc. The SPARC Architecture Manual:
Version 8. Prentice-Hall, Inc., 1992. ISBN 0-13-825001-4.

[35] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Process out-
grafting: An efficient ”out-of-vm” approach for fine-grained
process execution monitoring. In Proc. of the ACM Conference
on Computer and Communications Security, 2011.

[36] R. Strackx, F. Piessens, and B. Preneel. Efficient isolation of
trusted subsystems in embedded systems. In S. Jajodia and
J. Zhou, editors, Security and Privacy in Communication Net-
works, volume 50 of Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications En-
gineering. 2010.

[37] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel
rootkits with lightweight hook protection. In Proc. of the ACM
Conference on Computer and Communications Security, 2009.

[38] J. Wei, B. Payne, J. Giffin, and C. Pu. Soft-timer driven transient
kernel control flow attacks and defense. In Proc. of the Annual
Computer Security Applications Conference, 2008.

[39] R. Wojtczuk. Subverting the xen hypervisor - xen 0wning
trilogy part i. Black Hat USA, 2008.

[40] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama:
Capturing system-wide information flow for malware detection
and analysis. In Proc. of the ACM Conference on Computer and
Communications Security, 2007.

[41] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha. Se-
cureCore: A multicore-based intrusion detection architecture
for real-time embedded systems. In Proc. of the IEEE Real-Time
Embedded Technology and Applications Symposium, 2013.

[42] M.-K. Yoon, S. Mohan, J. Choi, and L. Sha. Memory Heat
Map: Anomaly detection in real-time embedded systems using
memory behavior. In Proc. of the ACM/EDAC/IEEE Design
Automation Conference, 2015.

