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Abstract—As the software complexity drastically increases for multi-resource real-time systems, industries have great needs for
analytically validating real-time behaviors of their complex software systems. Possible candidates for such analytic validations are
the end-to-end response time analysis techniques that can analytically find the worst case response times of real-time transactions
over multiple resources. The existing techniques, however, exhibit severe overestimation when real-time transactions visit the same
resource multiple times, which we call a multiple visit problem. To address the problem, this paper proposes a novel analysis that
completely changes its analysis viewpoint from classical per-job basis—aggregation of per-job response times—to per-resource
basis—aggregation of per-resource total delays. Our experiments show that the proposed analysis can find significantly tighter bounds
of end-to-end response times compared with the existing per-job based analysis.

Index Terms—Per-resource analysis, end-to-end response time analysis, controller area network, real-time and embedded systems.

✦

1 INTRODUCTION

RECENTLY, many cyber-physical systems such as au-
tomobiles and aircrafts are increasingly employing

electronic parts because of their functional diversity and
low-cost. Accordingly, the complexity of software that
works with those electronic parts is also increasing.
Thus, industries have great needs for analytically val-
idating real-time behaviors of such complex software
systems.

For that purpose, we may use the holistic analysis
technique proposed by Tindell [1] and its extensions [2],
[3], [4], [5], [6], [7] that can analytically compute the
end-to-end response times of transactions that consist
of a sequence of tasks running over chains of multiple
resources such as electronic sensors/actuators, networks,
and microprocessors. However, we identify that the
existing techniques give very loose bounds on the end-
to-end response time when a transaction visits the same
resource multiple times, which we call a multiple visit
problem.

• M.-K. Yoon is with the Department of Computer Science, Thomas M.
Siebel Center for Computer Science, University of Illinois at Urbana-
Champaign, 201 N. Goodwin Ave., Urbana, IL 61801-2302.
E-mail: mkyoon@uiuc.edu

• C.-G. Lee is with the School of Computer Science and Engineering, Bldg.
301 Room 454-2, Seoul National University, 599 Gwanangno, Gwanak-
gu, Seoul, 151-742, Korea.
E-mail: cglee@snu.ac.kr

• J. Han is with the Department of Telecommunication and Computer
Engineering, Korea Aerospace University, 100 Hanggongdae-gil Hwajeon-
dong, Deokyang-Gu, Goyang-City, Gyeonggi-do 412-791, Korea.
E-mail: junghee@kau.ac.kr

Manuscript received 16 Jan. 2009; revised 18 Sep. 2009; accepted 27 Sep.
2009; published online X XXX. 20XX.
Recommended for acceptance by
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number Digital Object Identifier
no.

As a simple example to motivate the multiple visit
problem, let us consider Fig. 1(a), which shows three
ECUs (Electronic Control Units) connected through a
CAN (Controller Area Network) bus. On top of these
resources, a high priority periodic transaction consists
of five tasks (➀,➁,➂,➃,➄) that visit ECU2, CAN , ECU1,
CAN , and ECU3, respectively. In addition, a low priority
periodic transaction consists of five tasks (➅,➆,➇,➈,➉)
that visit ECU1, CAN , ECU3, CAN , and ECU2, re-
spectively. For this system, existing techniques compute
the response time of each job assuming the worst case
scenario of high priority arrivals and then add up all
the per-job response times to compute the end-to-end
response time as shown in Fig. 1(b). Such per-job based
analysis, however, severely double-counts the high pri-
ority arrivals when a low priority transaction visits the
same resource multiple times. In the example, the low
priority transaction visits CAN twice, i.e., jobs ➆ and ➈.
For each of these two visits, the per-job based analysis
assumes the worst case delay by the high-priority jobs on
CAN, i.e., ➁ and ➃. Thus, execution times of ➁ and ➃ are
doubly-counted in the end-to-end response time of the
low-priority transaction as shown in Fig. 1(b). However,
considering the period of the high priority transaction,
we can note that at most a single instance of the high
priority transaction can delay the given instance of the
low priority transaction at CAN.

This overestimation becomes more serious as the mul-
tiple visit count becomes larger due to complex long
transactions. Due to this reason, the traditional per-job
based end-to-end response time analysis may conclude
that the system is not schedulable even when the re-
sources are severely underutilized. Our preliminary ex-
perimental results in Fig. 2 show that when the multiple
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Fig. 1. Multiple visit problem.

visit count on a resource gets larger, the traditional
per-job analysis can utilize only up to 30% while the
simulation says that the system is still schedulable up to
80% utilization. (The detailed experimental settings will
be given later.)

To address this problem, this paper proposes a per-
resource based end-to-end response time analysis. The
new analysis completely changes the analysis view point
from “per-job basis” to “per-resource basis”. That is, it
computes the total delay at each resource. By adding the
total delays at all the resources, we can find a bound
of the end-to-end response time. Fig. 3 conceptually
compares the per-job based analysis (see the horizontal
addition) and the per-resource based analysis (see the
vertical addition). The per-resource based analysis does
not suffer from “double-counting for multiple visits” and
hence gives a much tighter bound on the end-to-end
response time, especially when a transaction is complex
and long and thus visits the same resource many times.

The rest of this paper is organized as follows: The next
section summarizes the related work. Section 3 formally
defines the problem and motivates our new analysis. In
Section 4, we propose our per-resource based holistic
analysis that can find a significantly tighter bound on
the end-to-end response time. Section 5 presents the
experimental results. Finally, Section 6 concludes this
paper.

2 RELATED WORK

The famous classical work [8], [9] presents the worst
case response time analysis for multiple tasks on a single
processor fixed-priority scheduling system. This analysis
is first extended by Tindell for distributed systems with
multiple resources [1]. It basically computes the end-
to-end response time of a transaction consisting of a
sequence of jobs (and messages) over multiple resources
by aggregating the per-job response times. Its correctness
is revisited by [2].

This end-to-end response time analysis has been im-
proved in many ways. For example, its pessimism due
to release jitters is addressed by reducing or eliminating
the jitters with a sporadic server, release guards, or
best-case response time considerations [4], [10], [11].
The work in [7] explicitly considers precedence relations
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Fig. 2. Maximum schedulable utilization as increasing the
transaction length.

among jobs in the same transactions and also their
priorities to improve the accuracy of analysis. Another
group of work [5], [12], [13], [14] explicitly uses time-
correlations among jobs, called offsets, in order to less
conservatively estimate the preemptions by high priority
jobs. This consideration is further improved in [6] by
more accurately estimating the offsets relative to ar-
rival/completion times of predecessor tasks instead of
single reference point of the external event time.

However, all these works have their basis on Tindell’s
per-job analysis [1] and hence do not provide a fun-
damental solution for the aforementioned multiple visit
problem.

The delay composition theorem [15] is an innovative
idea for analyzing the end-to-end delay of a pipelined
distributed system. Unlike the previous work that as-
sumes the worst-case preemption pattern at each stage of
a pipelined transaction, the delay composition theorem
considers the overlapped executions in different pipeline
stages and hence reduces the pessimism of end-to-end
delay analysis. More importantly, the theorem provides a
way of transforming a pipelined distributed system into
a uniprocessor system. Thanks to this transformation,
rigorous schedulability analysis techniques developed
for uniprocessor systems can be applied to pipelined
distributed systems. One limitation, however, is that all
the transactions in the system should follow the same
path along the same resource stages. This limitation is
addressed in [16] by combining transactions following
different paths into a Directed Acyclic Graph (DAG) and
extending the delay composition theorem to a DAG.
Regardless of this extension, it still assumes that each
transaction follows an acyclic path without revisiting
the same resources. Therefore, the delay composition
theorem is not applicable to our target system where
transactions visit resources multiple times in arbitrary
manners.

There also have been efforts to apply the analysis
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techniques to automotive applications [17], [18], [19].
The analysis techniques used, however, are again per-
job based. Therefore, they are not free from the multiple
visit problem either.

In contrast, our analysis proposed in this paper
changes the analysis view point to the per-resource basis
in order to fundamentally address the pessimism due to
the multiple visit problem.

3 PROBLEM DESCRIPTION

In this paper, we consider a system that consists of M
resources denoted by {R1, R2, · · · , RM}. Some resources
are processors and others are communication links to
deliver messages among tasks on processors. However,
for the simplicity of explanation, we do not differentiate
the two resource types assuming that all the resources
schedule their jobs (messages in case of a communication
link) based on the fixed-priorities preemptive schedul-
ing. Non-preemptive messages on communication links
can be simply addressed by counting one message length
as a blocking factor [18].

On that system, we assume N periodic transactions
denoted by {Γ1,Γ2, · · · ,ΓN} where Γj has a higher pri-
ority than Γi if j < i. Each transaction Γi consists of |Γi|
tasks {τi,1, τi,2, · · · , τi,|Γi|} that are executed on resources
(ri,1, ri,2, · · · , ri,|Γi|) “in sequence” with the worst-case
execution times of (ei,1, ei,2, · · · , ei,|Γi|), respectively. The
first task τi,1 of Γi is released periodically with a period

of pi and the subsequent tasks released at the completion
times of their immediate predecessor tasks. Thus, a
transaction Γi can be represented by

Γi = (pi, {τi,1 = (ri,1, ei,1), τi,2 = (ri,2, ei,2), · · · ,
τi,|Γi| = (ri,|Γi|, ei,|Γi|)}). (1)

One instance of the whole sequence of τi,1, τi,2, · · · , τi,|Γi|
is called a Γi transaction instance. Fig. 4 shows two
periodic instances of an example transaction Γi to
visualize the meanings of its notations. Note that
each instance of this transaction visits ECU1 twice,
ECU2 once, and CAN twice. For every instance,
the whole sequence of Γi’s tasks must be completed
within a period, that is, the end-to-end deadline is
equal to the period pi. Although we assume that
the end-to-end deadline is equal to the period for
the simplicity, the proposed analysis still works even
when the end-to-end deadline is shorter than the period.

Problem description: For such a given set of N pe-
riodic transactions {Γ1,Γ2, · · · ,ΓN} over M resources
{R1, R2, · · · , RM}, our problem is to check whether
every transaction Γi can always meet the end-to-end
deadline pi.

For this problem, we may use the traditional end-
to-end response time analysis [1]. Its short overview is
given in the following. For each task of a transaction Γi,
its per-job worst case response time wi,k is calculated
with the following response time equation 1:

wi,k = ei,k +
∑
∀j<i

∑
∀{a|rj,a=ri,k}

⌈
Jj,a + wi,k

pj

⌉
ej,a (2)

1. When the deadline is less than or equal to the period, we do
not have to consider the delay by the previous instances of the same
transaction. Omitting such factor, Equation (2) is a simplified one from
the original in [1].
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where Jj,a is the worst case release jitter of a-th task τj,a
of a higher priority transaction Γj . Jj,a is simply given
as the worst case response time until the completion
of (a − 1)-th task τj,(a−1) of Γj . The equation means
that the per-job worst case response time of τi,k can
be calculated by adding (1) its own execution time
ei,k and (2) the largest possible delay due to higher
priority jobs on the same resource, which is given
as
∑

∀j<i

∑
∀{a|rj,a=ri,k}

⌈
Jj,a+wi,k

pj

⌉
ej,a. In the second

term,
⌈
Jj,a+wi,k

pj

⌉
is the largest number of releases of

τj,a of Γj during the time window wi,k assuming the
worst case release pattern where its first release of τj,a is
delayed the most, i.e., Jj,a and succeeding releases are
with the maximum rate, i.e., 1/pj . Applying the above
equation for all the tasks τi,k of Γi, the worst case end-
to-end response time denoted by e2eRspT imei can be
calculated by adding-up all the per-job response times,
i.e.,

e2eRspT imei =

|Γi|∑
k=1

wi,k. (3)

This per-job based analysis can severely overestimate
the end-to-end response time when a transaction Γi visits
the same resource multiple times. In the example of
Fig. 4, if we individually apply Equation (2) for τi,2 and
τi,4 of Γi that visit the CAN resource, the worst case
delay by higher priority jobs represented by the second
term of Equation (2) is counted twice in the final end-to-
end response time calculation of Equation (3). The same
problem happens for τi,1 and τi,5 that visit ECU1.

Our new analysis aims at addressing this pessimism
by changing the analysis view point from per-job to per-
resource.

4 PER-RESOURCE BASED ANALYSIS FOR
END-TO-END RESPONSE TIME

For our per-resource based analysis, we introduce a
notion of “per-resource total delay”. The worst case total
delay that one Γi instance experiences due to a higher
priority transaction Γj at resource Rl is denoted by
TDj

i (Rl). Using this notion, the time that one Γi instance
spends at Rl can be calculated by adding its execution
times at Rl and its total delays by all the higher priority
transactions at Rl, that is,⎛

⎝ ∑
∀{(i,k)|ri,k=Rl}

ei,k

⎞
⎠+

i−1∑
j=1

TDj
i (Rl).

Therefore, the end-to-end response time of Γi can be
calculated by summing up the times spent at all the
visiting resources as follows:

e2eRspT imei =∑
Rl∈{R1,··· ,RM}

(( ∑
∀{(i,k)|ri,k=Rl}

ei,k

)
+

i−1∑
j=1

TDj
i (Rl)

)
. (4)
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Fig. 5. The concept of total window TWi(Rl).

Note that for any resource Rl that Γi does not visit,
both parts of e values and TD values in Equation (4) are
zero.

Now, the remaining problem is to find an upper-
bound on the per-resource total delay TDj

i (Rl). In the
following, we explain how to find it focusing on a
transaction Γi assuming that analysis for all the higher
priority transactions Γj (j = 1, 2, · · · , i − 1) has been
completed.

4.1 Total delay bound for a known total window

In order to find an upper-bound on the per-resource total
delay TDj

i (Rl), let us introduce another notion of a “per-
resource total window”. The per-resource total window
denoted by TWi(Rl) represents the time window during
which an instance of a transaction Γi has uncompleted
jobs to be executed on a resource Rl. In order to explain
the concept of the per-resource total window, consider
an example in Fig. 5 where two transactions Γ1 and Γ2

are concurrently running on three resources, R1, R2, and
R3. In this example, the total window of Γ2 at resource
R2, i.e., TW2(R2), is the time span from the release time
of its first visit on R2, i.e., τ2,2, to the completion time of
its last visit on R2, i.e., τ2,6. The total window is depicted
as dotted boxes in Fig. 5.

Supposing that we can somehow find an upper bound
of the total window TWi(Rl), the number of instances
of a higher priority task τj,a that can be released during
TWi(Rl) and hence delay one Γi instance at resource Rl

(i.e., rj,a = Rl) can be upper-bounded by:

Zj,a(TWi(Rl)) =

⌈
Jj,a + TWi(Rl)

pj

⌉
(5)

assuming the worst case release pattern of τj,a, i.e., the
first release is delayed the most by the amount of jitter
Jj,a and subsequent releases are most packed with the
maximum release rate of 1/pj . Later, we will explain how
to calculate Jj,a in Section 4.3. In the example of Fig. 5,
considering p1, the maximum number of instances of τ1,4
during TW2(R2) is one. In contrast, the per-job analysis
counts one instance for each job of three visits on R2, i.e.,
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τ2,2, τ2,4, and τ2,6, and thus totally three instances are
pessimistically counted in the final end-to-end response
time of Γ2.

Now, for the known duration of total window,
i.e., TWi(Rl), we are clear in that no more than
Zj,a(TWi(Rl)) instances of τj,a can delay one Γi instance
at resource Rl. However, if we count all of Zj,a(TWi(Rl))
instances as contributions to the total delay TDj

i (Rl), it
would be too pessimistic, especially when the period of
a high priority transaction Γj is much shorter than the
total window TWi(Rl). As an example, Fig. 6 shows two
cases: (1) Case I where the high priority period pj is
longer than the total window TWi(Rl) and (2) Case II
where pj is shorter than TWi(Rl). In Case I, it is okay to
count Zj,a(TWi(Rl)) = 1 in the total delay estimation.
In Case II, however, it is pessimistic to count all the
4 instances of τj,a as contributions to the total delay,
since Γi may not be “busy”—having jobs released but
not completed, in the whole duration of TWi(Rl).

In both Cases I and II, in order to more tightly but
still sufficiently count the number of instances of τj,a
instances that should be included in the total delay, we
compute the worst case per-job busy interval one-by-one
by using Zj,a(TWi(Rl)) as the limit of delay as follows:

wi,k = ei,k+∑
∀j<i

∑
∀{a|rj,a=ri,k=Rl}

(
min

(⌈
Jj,a+wi,k

pj

⌉
,Zj,a(TWi(Rl))

)
ej,a

)
. (6)

In Case I of Fig. 6, if we apply the above equation to
the first job with Zj,a(TWi(Rl)) = 1, the one τj,a instance
is included in the first busy interval and there is no
more τj,a instance in the duration of the total window
TWi(Rl). Thus, when we apply the above equation to
the second and third jobs of Γi, Zj,a(TWi(Rl)) = 0 is
used. Thus, no more instances of τj,a are counted for
the second and third job delays. Overall, only one τj,a
instance is counted for all the three jobs of Γi. Although
the Case I of Fig. 6 shows a specific scenario where the
first visit of Γi is delayed by the single instance of τj,a, it
does not matter which visit is actually delayed. The thing
that matters is that the total delay by τj,a that a single
Γi instance experiences at resource Rl is upper-bounded
by one ej,a. This is the case where we can find a tighter
estimation of the total delay than the per-job analysis [1]
that counts one ej,a for each of the three jobs.

In Case II of Fig. 6, when we apply the above equa-
tion to the first job, the given value of 4 is used as
Zj,a(TWi(Rl)). When calculating the first job’s busy
interval, we assume the worst case release pattern of the
four τj,a-instances as shown in the middle of the Case II
figure. Hence, we include Jj,a in the ceiling function of
Equation (6). This way, we can maximally include ej,as in
the first job’s busy interval, regardless of various release
scenarios. Once the above recursive equation converges,
we can notice how many ej,as are included in the busy
interval of the first job of Γi on Rl. Suppose that the

number is one as shown in Case II of the figure. Then, we
apply the above equation to the second job of Γi on Rl

with left-over instances of ej,a, that is, Zj,a(TWi(Rl)) =
3. For the second job, we again assume the worst case
release pattern of the three τj,a-instances as shown in
the bottom of the Case II figure using Jj,a again in
Equation (6). When the recursive equation converges,
we can notice the maximal number of ej,as that are
included in the second job’s busy interval. Suppose that
the number is one as shown in Case II of the figure.
Then, the left-over two instances of τj,a have no way
to be included in the total delay TDj

i (Rl), because all
the Rl visiting jobs of Γi have already included maximal
delay effects by τj,a assuming the worst case, just like the
per-job analysis [1]. Therefore, we can sufficiently count
only two as contributions to the total delay TDj

i (Rl) as
shown in Case II of the figure. This is the case where we
find the same estimation of the total delay as the per-job
analysis [1].

This way, in both Cases I and II, the delay contribu-
tions counted in our analysis is always smaller than or
equal to that of the per-job analysis by Tindell [1].

Applying Equation (6) for all the tasks τi,k of Γi

that visit Rl, we can obtain the worst case numbers of
instances of ej,a that can contribute to the total delay
TDj

i (Rl) within the given duration of the total window
TWi(Rl). Denoting such a number of instances of ej,a by
Cj,a

i (TWi(Rl)), the total delay TDj
i (Rl) of Γi caused by

Γj at resource Rl for the given total window TWi(Rl)
can be computed as follows:

TDj
i (Rl) =

∑
∀{a|rj,a=Rl}

(
Cj,a

i (TWi(Rl))× ej,a

)
. (7)

Lemma 1. TDj
i (Rl) computed by Equation (7) is an upper-

bound of the total delay that an instance of Γi experiences
by tasks of Γj at resource Rl during the given total window
TWi(Rl).

Proof: If we omit Zj,a(TWi(Rl)) from Equation (6),
the resulting count Cj,a

i (TWi(Rl)) used in Equation (7)
is exactly the same as the Tindell’s count [1]. Note that,
for each task τi,k of Γi that visits Rl, Tindell’s count
assumes the worst case release jitter of τj,a as we can
see in the ceiling part of Equation (6). Thus, Tindell’s
count is an upper bound of the number of instances of
τj,a that can delay all the tasks τi,k of Γi that visit Rl,
as proven in [1]. Only if Tindell’s count is larger than
Zj,a(TWi(Rl)) (as in Case I of Fig. 6), Equation (6) gives
Zj,a(TWi(Rl)) as the value of Cj,a

i (TWi(Rl)). Thus, it is
sufficient to prove that Zj,a(TWi(Rl)) is also an upper-
bound of the number of τj,a instances that can delay all
the tasks τi,k of one Γi instance at Rl. Supposing that
TWi(Rl) is an upper bound of the total window of Γi at
Rl, we can pessimistically consider the whole duration
of TWi(Rl) as the worst case busy period of Γi at
Rl. Therefore, Zj,a(TWi(Rl)) computed by Equation (5)
safely upper bounds the number of τj,a instances that
can delay the execution of Γi during its busy period
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Fig. 6. Contributions to the total delay TDj
i (Rl).

TWi(Rl), as proven in [1]. With the above two argu-
ments, Cj,a

i (TWi(Rl)) counted using Equation (6) is an
upper bound of τj,a instances that can delay one Γi

instance at Rl during the duration of TWi(Rl). Since it
holds for every task τj,a of Γj , TDj

i (Rl) computed by
Equation (7) is an upper-bound of the total delay that
one Γi instance experiences by tasks of Γj at resource Rl

during the given total window TWi(Rl).
As a side note, if we additionally consider inter-task

offsets of a higher priority transaction as in [5], [6], [12],
counting the contributions to the total delay can be more
accurate. This improvement will be made in our future
work.

4.2 Iterative calculation of total delay and total win-
dow

The total delay TDj
i (R) and the total window TWi(R),

in fact, are inter-dependent. To find an upper bound
of TDj

i (R) addressing the inter-dependency, we use an
iterative convergence approach, which is similar to the
iterative solving of traditional recursive response time
equation [8], [9].

Initially, we set TDj
i (R) = 0 for all the high priority

transactions Γj ∈ {Γ1, · · · ,Γi−1} and for all the resources
R ∈ {R1, · · · , RM}.

Once the total delay values TDj
i (R) for all j and R are

given (initial values of them are zero), we can compute
an upper-bound of the total window TWi(R) for all R.
To explain this, let us denote the Γi’s tasks visiting R as

(τi,v1 , τi,v2 , · · · , τi,vm)

where ri,v1 = ri,v2 = · · · = ri,vm = R and v1 < v2 <
· · · < vm. Using this notation, an upper-bound of Γi’s
total window at R, i.e., TWi(R), can be computed as
follows:

TWi(R) =
∑

v1≤k≤vm

ei,k

+
∑

∀Rl∈{R1,··· ,RM}

i−1∑
j=1

TDj
i (Rl)X

vm
v1 (Rl) (8)

where Xvm
v1 (Rl) =

⎧⎪⎨
⎪⎩
1

if there is a visit on Rl in the
subsequence from τi,v1 to τi,vm

0 otherwise

This equation can be best explained with Fig. 7.
Suppose that total delays so far at all resources R1,
R2, R3, and R4 are given as the shaded boxes in the
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∑i−1
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j
i (R4)

ei,1

ei,2

ei,3

ei,4

ei,5

ei,6

ei,7

ei,8

subsequence = (τi,2, τi,3, τi,4, τi,5, τi,6)

(τi,v1 , τi,v2 , τi,v3)

= (τi,2, τi,4, τi,6)

Fig. 7. Total window estimation TWi(R2) from total delays.

figure. Then, the total window TWi(R2) at R2 is given
by adding (1) the execution times of the subsequence
(τi,2, τi,3, τi,4, τi,5, τi,6) from the first visit on R2, i.e., τi,2,
to the last visit on R2, i.e., τi,6, and (2) the delays that
Γi experiences while executing the subsequence. The
former can simply be represented by the first term of
Equation (8) which adds all the execution times of the
subsequence, i.e.,

∑
2≤k≤6 ei,k = ei,2+ei,3+ei,4+ei,5+ei,6.

The latter can be calculated by conservatively assuming
that all the portions of the total delays happen within
the subsequence as depicted in the figure. This is rep-
resented by the second term of Equation (8). Note that
there is no visit on R4 within the subsequence. Thus,
X6

2 (R4) = 0 by definition of X . This prevents the total
delay at R4 from being added in the second term of
Equation (8).

Lemma 2. Supposing that TDj
i (Rl) is an upper-bound of

the total delay of Γi by Γj at Rl for every j and Rl, TWi(R)
computed by Equation (8) is an upper-bound of the total
window of Γi at R.

Proof: The total window of Γi at R starts from the
release time of τi,v1 and ends at the completion time
of τi,vm . In between these two time points, Γi may
visit other resources and revisit R as shown in Fig. 7.
Thus, the total window is given as the sum of (1)
execution times of all the tasks of Γi from τi,v1 to τi,vm—
ei,2 + ei,3 + ei,4 + ei,5 + ei,6 in Fig. 7 and (2) delays they
experience at their visiting resources by higher priority
tasks—see Fig. 7. The former can be exactly counted
by the first term of Equation (8). Thus, the remaining
problem is to show that the second term of Equation (8)
is an upper-bound of the delay part. Since TDj

i (Rl) is
an upper-bound of the total delay by Γj that the whole
task sequence of one Γi instance experiences at Rl, it
also upper-bounds the delay that tasks within the subse-
quence experience at Rl by Γj . By summing up TDj

i (Rl)s
for all visiting resources Rl and for all higher priority
transactions Γj , the second term of Equation (8) upper-
bounds the delay part. Therefore, TWi(R) computed by

Equation (8) is an upper-bound of the total window of
Γi at R.

Once we have the total windows for all the
resources, i.e., TWi(R1), TWi(R2), · · · , TWi(RM ), we
can compute new upper-bounds of total delays, i.e.,
TDj

i (R1), TD
j
i (R2), · · · , TDj

i (RM ) for all j ∈ {1, · · · , i −
1} with Equations (6) and (7). If any of these new total
delays is larger than its previous value, we continue the
iterations. When all the total delay values no longer in-
crease, that is, “convergence”, we terminate the iteration.
With the converged values of the total delays TDj

i (Rl),
we can finally compute an upper-bound of the end-to-
end response time of Γi, i.e., e2eRspT imei, based on
Equation (4).

Theorem 1. e2eRspT imei computed by Equation (4) is
an upper-bound of the end-to-end response time of one Γi

instance.

Proof: TWi(Rl) for all Rl and TDj
i (Rl) for

all j and Rl are monotonically non-decreasing.
Due to this fact, and by Lemmas 1 and 2, the
converged value of TDj

i (Rl) for every j and Rl

is an upper-bound of the total delay that one Γi

instance experiences by tasks of Γj at resource

Rl. Therefore,
( ∑

∀{(i,k)|ri,k=Rl}
ei,k

)
+

i−1∑
j=1

TDj
i (Rl)

is an upper-bound of the total time that one
Γi instance spends at resource Rl. Consequently,∑
Rl∈{R1,··· ,RM}

(( ∑
∀{(i,k)|ri,k=Rl}

ei,k

)
+

i−1∑
j=1

TDj
i (Rl)

)
in

Equation (4) gives an upper-bound of the total time
that one Γi instance spends at all its visiting resources.
(Note that for a non-visiting resource Rl, both parts
of e values and TD values in Equation (4) are zero.)
Therefore, the theorem holds.
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TABLE 1
Experimental Parameters

parameter value

number of resources M 10 (1 CAN and 9 ECUs)

number of transactions N 5
transaction period pi uniform from [pmin, pmax]

transaction length |Γi| L

task sequence {τi,1, · · · , τi,L} random ECU and CAN alternating
task execution time ei,k uniform from [1 ms, 5 ms]

4.3 Jitter calculation for analysis of low priority
transactions

For analyzing a low priority transaction, we have to
compute the worst case release jitters for all the tasks
{τi,1, τi,2, · · · , τi,|Γi|} of Γi. Since a task τi,k is released
by the completion of its immediate predecessor task
τi,k−1, its worst case release jitter Ji,k can be given as the
worst case response time until the completion of τi,k−1.
It can simply be calculated by applying the above per-
resource based end-to-end response time analysis to the
subsequence (τi,1, · · · , τi,k−1).

5 EXPERIMENTS

This section validates our proposed analysis in terms
of the analysis accuracy. For this, we consider an
automotive-style resource model with 10 resources, i.e.,
{R1, R2, · · · , R10}, one of which is a CAN bus and
other 9 resources are ECUs communicating each other
through the CAN bus. On top of this resource model, we
assume five periodic transactions {Γ1,Γ2,Γ3,Γ4,Γ5}. The
set of five periodic transactions is randomly generated
as follows: The period of each transaction is randomly
selected from the range of [pmin, pmax] following the
uniform distribution. The priority of a transaction is
assigned according to the period, that is, a transaction
with a shorter period is assigned with a higher priority.
Every transaction has the same length L—the number
of tasks |Γi| is L for all Γi ∈ {Γ1,Γ2,Γ3,Γ4,Γ5}. The first
task of a transaction is mapped to an ECU randomly
selected out of 9 ECUs. The second task is mapped to
the CAN modeling the message transmission to the third
task. Then, the third task is again mapped to a randomly
selected ECU and so on, until we make a sequence of
L tasks. By increasing the transaction length L, we can
control the visit count on CAN. The execution time of a
task mapped on a resource is randomly selected from
the range of [1 ms, 5 ms]. Table 1 summarizes these
experimental parameters. The results in the following are
the averages for such 300 generated random sets.

With these parameters, we compare four analysis
methods:

• Tindell’s per-job analysis [1] denoted by T indell,

• Palencia’s and Turja’s enhanced per-job analysis
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Fig. 8. End-to-end response time as increasing the
transaction length.

considering inter-task offsets [5], [12] 2 denoted by

WCDO meaning “Worst Case Dynamic Offset”,

• Henia’s further improved analysis [6] denoted by

Henia, and

• Our proposed per-resource analysis denoted by

OurPerResource.
We also present simulations results. Although the

simulation does not give upper-bounds of end-to-end
response times, it can give typical end-to-end response
times. We use the simulation results to see the overesti-
mation by the analysis methods.

Fig. 8 compares the end-to-end response time
e2eRspT ime5 of the lowest priority transaction Γ5, as
increasing the transaction length L and hence the visit
count on CAN. The x-axis shows L together with the
CAN visit count in the parenthesis. In this experiment,
the period selection range [pmin, pmax] is fixed as [100
ms, 1000 ms]. When the transaction length is short, all
of the above four analysis methods give a pretty tight
bound on the end-to-end response time, which is close
to the one by simulation. As increasing the transaction
length, the end-to-end response time increases since the
average workload on all the resources increases. How-
ever, the increase rates are quite different. All of the per-
job based analysis methods, i.e., T indell, WCDO, and
Henia, show a sharp increase of the end-to-end response
time due to many double-counts for increasing multiple
visits. On the other hand, our per-resource analysis suffer
less from the double-counting problem and thus shows
a much less increase of the end-to-end response time.
Consequently, when the transaction length is 19, the
end-to-end response time by our analysis is over four
times shorter than those by per-job analysis methods.
Moreover, our result is quite close to the simulation
result.

2. We use Turja’s method [12] since it is most up-to-date.
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Fig. 9. Maximum schedulable utilization as increasing the
transaction length.

In order to see how much we can utilize the resources
under the schedulability constraint, we perform another
experiment as scaling-up all the execution times until
the system becomes unschedulable. At the saturation
point, we observe the utilization of the resource with the
largest utilization, which we call a maximum schedulable
utilization. Fig. 9 compares the maximum schedulable
utilization as increasing the transaction length L with
the period selection range of [100 ms, 1000 ms]. As
expected by Fig. 8, when the transaction length is long,
say 19, the maximum schedulable utilizations by the per-
job analysis methods are below 30%. On the other hand,
our analysis can achieve the maximum schedulable uti-
lization above 60%. This implies that, with our analysis,
industries can better utilize their given resources by ac-
commodating more transactions for advanced features.
The other way around is also true—the same set of trans-
actions can be implemented with lower-speed resources,
which can save the unit cost of production.

Another important factor that affects the analysis ac-
curacy is the period ratio of high and low priority trans-
actions. In order to study this factor, Fig. 10 compares the
maximum schedulable utilization as varying the period
selection range [pmin, pmax] from [100 ms, 100 ms] to [100
ms, 5000 ms] while fixing the transaction length L = 10.
When the period ratio pmax/pmin is not that large, our
per-resource based analysis can significantly reduce the
double counts made by per-job analysis since Case I of
Fig. 6 is common. Thus, our per-resource analysis can
achieve a much higher maximum schedulable utilization
than the per-job analysis methods, i.e., T indell, WCDO
and Henia. However, as the period ratio pmax/pmin

becomes large, Case II of Fig. 6 becomes common and
thus the gap decreases. When the period ratio pmax/pmin

is extremely large as 50, our analysis eventually degen-
erates into T indell. However, in practical applications
such as automotive systems, many transactions have
comparable periods with reasonably small period ratios.
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Fig. 10. Maximum schedulable utilization as increasing
the period ratio.

Thus, our analysis can have significant improvements in
many practical settings.

One interesting observation from the above experi-
ments is that there is no significant improvement by
WCDO and Henia over T indell. This is because the
improvement is possible only when a low priority job
can be fit into the inter-task time gaps, called offsets, of a
high priority transaction. Such cases did not commonly
happen in our previous experimental setting. In order
to give a favor to WCDO and Henia, in the next ex-
periment, we pick execution times of the lowest priority
transaction Γ5 from very short values in [0.01 ms, 0.05
ms]. In addition, for other transactions to have large
inter-task offsets on CAN, their execution times on ECUs
are picked from large values in [10 ms, 50 ms] but those
on CAN are picked from medium values in [1 ms, 5
ms]. With this special setting, Fig. 11 compares the end-
to-end response time e2eRspT ime5 of the lowest priority
transaction Γ5 as increasing the transaction length of the
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Fig. 11. Experiment giving a favor to WCDO.
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Fig. 12. The ratio of end-to-end responses time by (a) OurPerResource over WCDO. (b) OurPerResource over
Henia.

lowest priority transaction while fixing other transaction
lengths as 10. When the length of the lowest priority
transaction is 3, it visits an ECU, CAN, and another
ECU, in sequence. Thus, it does not have any multiple
visits. In this case, our per-resource analysis degenerates
into T indell since we do not take advantage of inter-task
offsets in the total delay estimation of Equation (6). On
the other hand, WCDO and Henia explicitly consider
the inter-task offsets and hence gives a slightly better
estimation than ours. However, as soon as the lowest pri-
ority transaction length becomes 5 visiting CAN twice,
the double count reduction by our per-resource analysis
catches up the benefit of the offset consideration by
WCDO and Henia. After that, our per-resource analysis
gives significantly better results than WCDO and Henia.

In order to further compare OurPerResource with
WCDO and Henia, we now consider a new resource
model consisting of 10 resources of the same type (e.g.,
processors). Transactions can visit the resources in any
sequence instead of alternating ECUs and CAN. We also
generate sets of 5 transactions in a purely random way:
(1) each transaction length is randomly picked from
[5, 30], (2) each transaction period is randomly picked
from [100 ms, 1000 ms], (3) each task of a transaction
is mapped to a randomly picked resource out of 10
resources, and (4) each task’s execution time is randomly
picked from [1 ms, 5 ms]. The priorities of the transac-
tions are determined according to their random periods.
Fig. 12 shows the results for 2000 random sets. Each dot
in Fig. 12(a) represents a random set showing the ratio of
e2eRspT ime5 by OurPerResource over that of WCDO.
On the other hand, each dot in Fig. 12(b) shows the same
ratio between OurPerResource and Henia. The x-axis
is the total count that the lowest priority transaction
visits the same resources more than once. When the
lowest priority transaction length is small without any

multiple visit, WCDO and Henia are always better than
OurPerResource. However, as we increase the length of
the lowest priority transaction making many revisits, our
analysis is significantly better than WCDO and Henia in
most cases. In addition, there is a potential that our per-
resource analysis can be further improved by taking the
idea of WCDO and Henia in the total delay estimation
of Equation (6) since the total delay estimation is an
orthogonal issue to the view point change from per-job
to per-resource.

6 CONCLUSION

In this paper, we propose a fundamental change from the
per-job based analysis to the per-resource based analysis
to find a tighter bound on the end-to-end response
time of a real-time transaction over multiple resources.
Instead of aggregating the per-job response times, our
proposed analysis aggregates the per-resource total de-
lays. An iterative convergence method is proposed to
find the per-resource total delays at all the resources and
in turn the end-to-end response time.

The proposed analysis handles the pessimism caused
by the multiple visit problem. Therefore, it can signif-
icantly improve the analysis accuracy of the end-to-
end response times, especially when there are complex
long transactions and thus they visit the same resources
many times. Our extensive analysis shows that, when
the multiple visit count is large, the proposed per-
resource analysis can reduce up to 77% of the end-to-
end response time estimation by existing per-job analysis
methods. This improvement of estimation makes the
mathematical timing analysis to be practically applicable
to emerging distributed real-time application domains
such as autonomously driving vehicles and collaborating
autonomous robots.
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In the future, we plan to extend our per-resource anal-
ysis by addressing deadlines longer than periods and
also by further improving the accuracy of total delay es-
timations considering inter-task offsets as in WCDO [5],
[6], [12]. We also plan to investigate the possibility of
combining the idea of capturing pipelining effects as
in [15], [16] with our per-resource analysis, in order to
fundamentally address the pessimism of our jitter-based
total delay estimation. Another direction of our future
research is to apply the proposed analysis technique to
the actual real-time transactions in automotive systems.
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