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Dynamic Behavior of Shortest Path 
Routing Algorithms for Communication 

Networks 

Abstract-Several  proposed  routing  algorithms for store  and  forward 
conlmunication  networks, including one currently- in  operation in the 
ARPANET. route  messages  along  shortest  paths  computed by using some 
set of link lengths.  When these lengths  depend  on  current  traffic  conditions 
a5 they must in an adaptive  algorithm,  dynamic  behavior  questions  such as 
stabilitv,  convergence,  and  speed of convergence are of interest. This paper 
is the  first  attempt to analyze sy-stematically these issues. It is s h o m  that 
minimum queuing delay path  algorithms  tend to eshibit violent oscillaton 
behavior in the  absence of a damping mechanism. The  oscillations  can be 
damped by means of several typs of schemes two of which are analyzed in 
this  paper.  In  the  first  scheme  a  constant  bias  is  added to  the  queuing delay 
thereby providing a preference towards paths with a small number of links. 
In the  second  scheme  the  effects of several  past  routings are averaged as 
for esample when the  link  lengths are computed  and  conmunicated 
a y  nchronously throughout  the network. 

I. INTRODUCTION 

A CENTRAL  operational problem of a  communication 
network involves the  choice of routes used by mes- 

sages to travel from origin to  destination.  It is possible. of 
course. to choose a fixed route  for  each  origin-destination 
pair,  but this  precludes  the possibility of adjusting  routes 
to alleviate congestion  due  to  variations in average traffic 
conditions. For this reason attention  has focused on adap- 
tive routing  strategies whereby congestion  in  the  network  is 
continuously  monitored  and  routes between origin- 
destination  pairs  are modified in real time so as to keep 
average delay  per message at  a  reasonable level. A  routing 
scheme of this type was implemented  in  the ARPANET in 
1969 and  attracted  considerable  attention.  The main idea 
in this scheme is to  compute in real time an  estimate of the 
minimum average delay per message for each origin- 
destination  pair  and to route messages along  the  current 
minimum  estimated delay path. When this scheme was first 
implemented,  it was noticed  that it was prone to severe 
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oscillations. This behavior  is due  to the  fact  that  delay 
estimates used to  choose  routes are themselves affected by 
the  route choice with a  feedback effect resulting. To re- 
medy this situation it was decided on heuristic  grounds to 
introduce  an additive  factor, called bias, to the estimated 
delay of each link. thereby  building into  the algorithm  a 
preference  towards paths with small  number of hops to the 
destination [5]-[7]. This  had  a stabilizing effect albeit  at 
the expense of considerable loss of sensitivity to  traffic 
congestion. 

The implementation of the  minimum delay path idea in 
the original ARPANET algorithm  had  a  number of flaws 
allowing, for example. the  formation of loops. For this 
reason alternative schemes based on the same idea were 
studied. and a new algorithm called SPF has been devel- 
oped  and  implemented [ 11, [4], [ 1 I ] .  The present  paper is an 
outgrowth of the author’s participation  in  the design study 
of this  algorithm  during the summer of 1978 at Bolt 
Beranek and Newman (BBN). Inc. However. our analysis 
does not focus on the ARPANET  and the SPF algorithm 
in  particular, but rather is geared towards  understanding 
the effect of feedback and  the  nature of the  dynamic 
behavior of shortest  path  algorithms where link lengths 
depend  on  current traffic conditions. We note  that the 
algorithms of this paper  are far from  optimal since they are 
single path  algorithms in the sense that  at  any given time 
there is only one  path per  origin-destination  pair  along 
which messages can travel. Better  performance  can  be 
achieved by allowing multiple paths  as for example in the 
optimization  algorithm of Gallager [9] or  its  second  deriva- 
tive versions [2]. [12]. We note  also  that  optimal  routing 
algorithms based on shortest path generation have been 
given recently in [13]. On  the  other  hand.  the  hardware 
limitations of some of the  presently existing networks 
including  the ARPANET preclude  the use of such more 
sophisticated algorithms. Furthermore. we feel that  the 
mere fact that  the  algorithm  has been successfully imple- 
mented in a  network  as  interesting  and  influential  as  the 
ARPANET makes it worthy of analysis  and investigation. 
This is reinforced by the fact that  the  behavior  exhibited by 
the  algorithm is quite  interesting and can pose nontrivial 
design problems. 

The  paper is organized as follows. 
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In Section 11, we provide  a  deterministic  finite-state 
Markov  chain  framework for studying  a  simple  version of 
the  algorithm.  We  show  that  for  ring  networks the algo- 
rithm  may  tend  to oscillate between poor  routing  paths  and 
become itself a  major  contributor  to  congestion.  We  also 
demonstrate how  the  use of a  bias  factor  can  provide  a 
mechanism for damping oscillations as  confirmed by expe- 
rience with  the original ARPANET algorithm. 

The  finite-state  model  does  not  lend itself to analysis of 
more  sophisticated  routing  schemes  and  more  general  net- 
work topologes.  We consequently introduce in Section 111 
a  model of a  ring  network  with  a continuum of nodes and 
a single destination. This allows us to  employ  techniques of 
stability analysis of discrete-time systems  with  continuous 
state space, and enables us to further  quantify the relation- 
ship between  choice of link lengths  and  algorithmic  behav- 
ior. 

The analysis of Section 111 focuses  primarily on  the 
effect of using  a  bias  factor  as  a  damping  mechanism. In 
Section IV we show that oscillations can  also  be  damped 
effectively by  making  the link lengths  dependent  on several 
preceding  routing  paths via some  averaging  mechanism 
such  as an  exponential  fading  memory  scheme  or  asynch- 
ronous link length  updating. To  our knowledge  the fact 
that averaging can  provide  a  damping  mechanism in a 
shortest  path  algorithm  has  not  been  noticed earlier and  in 
fact when  we originally approached this problem  at BBN 
there was considerable  concern  regarding  its effect on 
algorithmic  behavior.  It is now  believed  that the significant 
degree of averaging  inherently  present  in  the SPF algo- 
rithm is in large measure  responsible  for  the  stable  dy- 
namic  behavior  observed in experiments  conducted thus 
far [ 1 I]. 

The analysis of Sections 11-IV focuses  on ring networks. 
The ring topology is central for the extension of our  earlier 
results to more  complex  network topologies. This extension 
is carried  out in Section V under  the  assumption  that  an 
equilibrium  routing exists. However,  by contrast with  ring 
networks, an  equilibrium  routing  need  not  always exist for 
more  complex topologies. We demonstrate via example  the 
mechanism  by  which  such  a  phenomenon  can occur. 

The results and analysis of the  present paper  can  be 
generalized to  the case  where there are  more  than one 
destinations.  This analysis is straightforward  but  consider- 
ably  more  complex technically and may  be  found in  [3]. 
The  continuous  node  model of Sections 111-V may  be 
criticized on the grounds  that i t  is unrealistic. On the other 
hand,  it is very difficult to  provide  an extensive analysis of 
a  more realistic finite node  network  model. In particular,  it 
appears impossible  to demonstrate the effect of averaging 
in such  a  context.  Furthermore, we believe that the realism 
of any  algorithmic  model  must  be  judged on the  basis of 
the validity of the conclusions  it  provides  regarding  the 
behavior of the related practical  algorithm.  These  conclu- 
sions in our case  have  been verified by extensive  numerical 
experiments  with  finite-node  networks [3], [4]. I n  particu- 
lar. the validity of our  qualitative results regarding the role 

of a bias factor  and  averaging  as  damping  mechanisms 
have  been  amply  demonstrated. 

11. A FINITE-STATE MARKOV CHAIN MODEL 

Consider  a  communication  network  with  modes  denoted 
by 1,2,. . -, N and directed links denoted  by ( i ,  I )  where i is 
the  head  node and 1 is the tail node. We consider  the 
following  algorithms for periodically updating  paths  for 
routing messages. 

( A )  At  the  beginning of every  time  period  a  nonnegative 
length D,, of every link ( i ,  I )  becomes available to  each 
node. Based on these lengths  each  node  computes  a  short- 
est  path  to each  destination  and  routes  messages  over  that 
path  during  the  period. 

The  standing  assumption for algorithm ( A )  is that  the 
lengths Dl/ used.  in  computation of a new shortest  path 
depend exclusively on one  or more  preceding  shortest 
paths. This dependence is deterministic via a rule that for 
the  moment we leave unspecified. As an  example D,, may 
represent  some  measure of average delay  per  message on 
link ( i ,  I )  during  one  or  more  preceding  periods  perhaps 
with an  added bias factor-a  scheme  currently  imple- 
mented in  the  ARPANET 111: [ll]. By assuming that  the 
dependence of Di, on previous  shortest  paths is determinis- 
tic 1t-e also implicitly assume  that the input  traffic  originating 
at each node is a stationay stochastic  process whose  ensenz- 
bie  parameters can be  adequatelv  nleasured by time acerages. 
This  assumption is not valid, of course, in  practice  but is a 
reasonable  approximation  to  the  situation  where the time 
constant of traffic  statistic  variations is large relative to  the 
shortest  path  updating  period  (a quasi-static assumption, 
cf. [9]). 

Consider first algorithm ( A )  applied  to  a given network 
for the case  where  the  lengths D,, depend exclusively on  the 
preceding  shortest  path.  Assume also that the shortest  path 
algorithm has  a fixed rule for  breaking ties between 
equidistant  paths.  Then  each  shortest  path  uniquely  de- 
termines  the  next  shortest  path.  There is a finite number of 
possible  shortest paths (also referred to  as routings) which 
we denote by R , ,  R,; . S , R , , ~  where M is some integer. To 
any initial routing  say Rlu, there  corresponds  a  unique 
sequence of subsequent  routings R,, ,  Ri2, .  . . . Thus.  even- 
tually some  routing will be  repeated  (say R I A =  R , h - , , ) ,  and 
once this happens the routing  sequence will become peri- 
odic. Thus,  starting  at R,o the algorithm will eventually  end 
up cycling  through R I h ; .  Of course  it is possible 
that Rlo  itself  is part of the cycle ( k  = O ) ,  and  that the cycle 
consists of a single routing ( n  = 1) in which case  the 
algorithm stabilizes at the routing. 

The model just described is one of a  deterministic finite- 
state Markov  chain  with  states R I :  . . , R,,{. From Markov 
chain  theory  or by elementary  reasoning it follows that  the 
set of all routings { R l , .  . . , R ,%,} can be partitioned  into  a 
collection of cycles (or ergodic classes). and  a collection of 
transient routings. If the initial routing is transient i t  is 
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Fig. I 

Fig. 2 

never repeated by the algorithm. and if it is part of a cycle 
the  algorithm  returns to it periodically. More  than  one 
cycles may exist. Furthermore,  each  transient  routing  leads 
to a  unique cycle. 

When the  lengths Dl, depend on a fixed number  (say rn ) 
of preceding  routings,  a  finite state model  for  the  algorithm 
can  be similarly constructed whereby the state  space of the 
model is the set of all m-tuples of routings. Similarly, the 
state space  can  be  partitioned  into cycles and  transient 
states. Analysis of such a model is naturally more difficult 
in view of the  increased size of the  state space.  and  this is 
more so if Dl/ depends  on all preceding  routings in which 
case  a  countable  state  Markov  chain model is necessary. 

In  what follows in this  section we will restrict attention to 
the case of a ring network with N nodes  shown i n  Fig. I .  
Node N is  the  only  destination and all links are  bidirec- 
tional. By reversing the  directions of flow and the role of 
origins and destinations  the  subsequent model can  be 
converted to  one with a single origin and many destina- 
tions. It is recognized that few practical  networks  can  be 
expected to have a ring topology. However, this topology is 
not only analytically tractable. but  also provides a  funda- 
mental  building block for analysis of more general topolo- 
gies as will be seen in  Section V. The  traffic  input  originat- 
ing at node i and destined  for N is denoted by r,. The 
routing R, .  i = 1. - + . .h' is the  one for which all nodes j < i 
route their traffic  in  the clockwise direction and all nodes 
j 2 i route their traffic in the  counterclockwise  direction  as 
shown in Fig. 2.  Given  a  routing R,,  the flows on each 
undirected link ( j  - 1 .  j )  in the clockwise and  counter- 
clockwise direction  are  denoted byf,-(i)   andfi-(i)  respec- 
tively and  are given  by 

We  will consider  the case where the  length Dl, of  a  link 
( i .  I )  is given by an equation of the  form 

Dl/ = d(  f , / )  (1) 

where h, is the flow on link (i. 1 )  during  the  preceding 
period  and d is a real valued, continuously  differentiable 
and  monotonically  increasing  function of flow with d ( 0 ) 8 0 .  
For simplicity we assume  that  the  function d is the  same 
for all links but  this  does  not affect materially the analysis 
that follows. Since the flow 1, depends only on the  preced- 
ing  routing  the  same is true for the  length Or/. It appears 
that this simplest of all possible situations  is  the only one 
that  can  be analyzed effectively in  a  finite-node  network 
context. The practical  situation where Dl, is taken  to be  the 
average time delay for a message to traverse link (i, 1)  can 
be reasonably modelled by a  function d of the  form 

d( f ; , )=G+T,+Q; , (h />  (2 )  

where 
PI,  average processing plus  propagation  delay  per 

T /  average transmission delay per message. 
Q,,(L,)  average queuing delay per message when the 

average flow on link (i,  I )  is f;/. 

message. 

The  quantities PI, and 7;, are  independent of the flow 
while the  dependence of Qr, on i., is determined by the 
statistics of the  traffic arriving at i  and  routed  through 1. If 
these  statistics  can  be  adequately modeled by an M/M/ l  
queue then Q,, takes  the  form [6].  [7] 

where C,, is the  transmission  capacity of link (i,  I ) .  Even 
though this  function is convex and monotonically  increas- 
ing  only on the interval [O.C,,) rather  than  the  entire real 
line. our subsequent results apply to i t  assuming  that  the 
average flow in the link lies within [O. C,,) as it will in a 
practical network in view of flow-control restrictions. We 
mention, however, that  on  the basis of experiments  con- 
ducted thus far i t  is unclear  whether  the  average  delay  per 
message in the ARPANET can indeed be modelled as in 
( 2 ) .  This may be due  to  peculiarities  of the ARPANET 
hardware  and software which are little  understood  at pres- 
ent. 

We now define  the  shortest  path  algorithm.  Given  a 
routing R ,  we define the distances 0,-( i ) ,  D,-( i )  of nodej  
to  the  destination in the counterclockwise  and clockwise 
directions respectively by 

J 

D y ( i ) =  2 d[f[-(i)] 
/ = I  

D;(i)= 2 d[f,'(i)]. 
:x 

I ' J - 1  
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If D,-( i )=D+(i)  then  the  algorithm leaves the routing 
unchanged  at R j .  If Dl:( i)# Dt( i )  the  algorithm sets the 
next  routing  to R,, where  the  node n is such that 

D,:( i )aD;(i)  f o r j a n  

D[( i )<D;( i )  f o r j c n .  

It  can  be easily shown  that  the  next  routing is uniquely 
determined by the  relations  above.  Given  an  initial  routing 
Ro we consider  the  sequence of successive  routings 
R'. R2; . . Rk  R k f ' :  . ., generated  by the algorithm. 

We note  that this algorithm is  not  claimed  to  be  optimal, 
or even good. Rather,  it  approximates  the  ARPANET 
algorithm, and  it is applied to  the simple  ring in  order  to 
analyze  its  properties in a special case which  is tractable. 

The  quantity d(0)  may  be viewed as  a bias factor. It 
represents link length at zero flow. The following  proposi- 
tion  shows that if d(O)=O and  the first two  routings  are 
different, i.e., Ro # R'  then  the  algorithm  ends  up oscillat- 
ing between the two  extreme  routings R ,  and R,v which is 
the  worst  possible  behavior that  can  occur.  In the context 
of (2 )  the  case d(O)=O corresponds  to  the  situation  where 
the processing and transmission  delays PI, and T,, are 
negligible relative to the queuing  delay Q,,. 

Proposition 1: Let d(O)=O and  assume  that Ro # R'. 
Then there exists an index k such  that for all k > k either 
R k  = R,  and Rk" = R,v or R k  = R,v and R"+'= R 

Proof: Let R,  be a  routing  and  assume  that  the  rout- 
ing  subsequent  to Ri is R ,  with n # i. For concreteness 
assume  that n < i. We will show  that either i = N or else the 
routing  subsequent  to R,, is R j  withj>i .  

If i f N then since R,, is the  routing  subsequent  to Rj we 
have 

3 ,  

I .  

D,~-,(~)~D~-,(~)=DT(~) (4) 

where the last equality holds  because d(O)=O and the links 
(n-1.n);-.(i-1,i)carrynoflo~whentheroutingisR~. 
We  also  have 

From (4)-(6): we have 

D ~ ( n ) ~ O , , , ( i ) < D ~ ( i ) ~ D ~ ( n )  

so finally 

D , ( t 1 ) - q + ( n ) .  

It follows that in the  routing R, which  is subsequent  to R,, 
node i will switch  his  traffic to  the clockwise  direction so 
that j > i. 

We can  show  using  a very similar argument  that if n > i 
then  either i =  1  or else the  routing  subsequent  to R,, is R, 
withj  < i. 

Thus, we have that the number of nodes that lie between 

two successive  routings is increasing at each  iteration if 
none of these routings is R ,  or R,. On the other  hand, if 
the  current  routing is R ,  or R,v then  the  next  routing will 
clearly be R,%, or R, ,  respectively. This proves  the  proposi- 
tion. Q.E.D. 

Notice  that, if d(O)=O, the  situationR' = R1  can  only 
occur if Dl-( i )= DT( i) where i is the  node for which 
Ro = R,.  Thus, if m7e add  any E > O  to  any  one of the  node 
inputs we will have Ro # R1  and  the algorithm will again 
end  up oscillating between R ,  and R,. We  provide an 
example  illustrating  the result of Proposition 1. Several 
additional  examples  involving  more  general  topologies  and 
multiple  destinations  may  be  found  in 141. 

Example: Consider  a  16-node ring network  where node 
16 is the destination.  Let r, = 1  for i = 1; - ..7,9; . ., 15 and 
r, = E ~ O .  If E = O  and  the  initial  routing is R ,  then  by 
symmetry all subsequent  routings  equal R,. If E is very 
small but positive then  for  the  case  where 

the  sequence of generated  routings  is R,, R,,, R,, R,,, 
R,,  R,,, R , ,  . . . . T h s  fact can  be verified via a  straightfor- 
ward calculation in Fig. 3 which  shows the flow patterns 
corresponding  to  successive routings. 

We now turn  our  attention  to various  notions of equi- 
libria  and  stability.  We  say  that R ,  is an equilibrium routing 
if 

D , Z , ( i ) < D ~ , ( i )  and D : ( i ) S D - ( i ) .  

It follows  from  this  definition that Rj is an  equilibrium 
routing if and only if it repeats itself  via the  shortest  path 
algorithm. 

We  say that  a  node i is an equilibrium  node if 

D L ( i ) < D T ( i )  and D T ( i + l ) < D L ( i + l ) .  

In words,  a  node i is an  equilibrium  node if, for both  cases 
where the routing is R ,  and R,-  ,, he switches his traffic in 
the  opposite  direction  at  the  next routing. 

We  say that  an equilibrium  routing R, is local& stable if 
routing Rj+, generates either R ,  or R,- ,  through  the 
algorithm, and  routing R,- ,  generates  either R,  or R,+,. 
We  say that  an equilibrium  node i is local& stable if routing 
R ,  generates R,+, via the  algorithm,  and  routing R,- ,  
generates R,. The  definition of local stability is based  on 
the  idea  that  when  the  algorithm  starts  "close  enough  to 
equilibrium"  it  should  not lead to  a "growing" oscillation. 
The following  proposition  complements  Propositon 1 and 
suggests  that the bias level d(0)  should exceed a  certain 
positive value in order for an equilibrium  routing  or node 
to  be locally stable. 

Proposition 2: a) An  equilibrium  routing R j  is locally 
stable if 
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1st Aoutina 
4 t h  Routing 

R. 

2nd Routing 

R3 

5th Routing 

Ri6 

6th  Routing 
3rd Routing 

Fig. 3. 

where 

~ ~ / = m a x { d ’ ( J ) ( f , - ( i - l ) 4 f ~ f , - ( i ) } ,  
f o r / = I ; . . , i - l  

m , = m a x { d ’ ( f ) l f , I , ( i ) ~ f a f , ~ , ( i - l ) } .  
f o r I = i + l : - - . N - l  

~ ~ , = m a x { d ‘ ( f ) ) f , ~ ( ~ ) 4 J ~ f , - ( i + l ) } ,  
f o r I = I . - . - , i - 2  

~ / = m a x { d ’ ( f ) J f , = , ( i + I ) ~ f s f , ~ , ( i ) }  
f o r I = i , . . .  .A‘-1 

where d’( f )  denotes  the first derivative of d at J .  
b) An equilibrium  node i is locally stable if 

d ( 0 )  2 2 !b; ‘ m, 
I =  1 

where 

f i l = m a x { d ’ ( J ) l f , - ( i ) G f G f , - ( i + l ) } .  
f o r / = ]  , - e . .  i 

m / = m a x { d ’ ( f ) I f , + ( i + l ) ~ f ~ f , f , - ( i ) ) .  

Fig. 4. 

The proof of Proposition 2 involves a  straightforward 
but lengthy argument  and will be  omitted. It  can be  found 
in [4]. 

Proposition  2 implies that in  order to ensure local stabil- 
ity  the bias d(0) should exceed a level that  depends  strongly 
on the  traffic  conditions.  This level is proportional  to  the 
input  at  or near  the  equilibrium and  to a global measure of 
the  derivative d‘ along  the ring. Thus, it may be necessary 
to choose a value of d(0)  which is large relative  to r and d‘ 
in  order  to  ensure  stability for a  broad  range of input 
traffic  conditions.  This  can be accomplished by adding  a 
large constant  to d. On the  other  hand, this would intro- 
duce a tendency in  the  algorithm to generate  routings close 
to  the  min-hop  routing (i.e., one  that selects routes  accord- 
ing to minimum  number of links to the  destination). As a 
result, the algorithm would tend  to  be insensitive to  con- 
gestion. This  tradeoff will  be reencountered  in the next 
section. 

The point of view that  has  been  adopted in this  section  is 
one whereby the  algorithm is viewed as  a  dynamic system 
with  a  finite  number of states  (the  finite  collection of 
possible routings).  Unfortunately,  the  study of dynamic 
behavior and stability  properties of such systems is notori- 
ously difficult. To begin with there is no accepted  defini- 
tion of equilibrium,  and in fact we saw that in the  ring 
network  context  there  are two types of “equilibria”  that are 
of interest-equilibrium  routings  and  equilibrium nodes. 
Furthermore,  there  are no established  methodological  tools 
that  can  be helpful in  a  finite state system framework. As a 
result,  our  progress has been limited to  the results just 
discussed. We are thus  motivated to consider  approxima- 
tion of the discrete system with a  continuous system having 
a  continuum of states. For such systems there is an effec- 
tive and well developed stability  theory  that can  be utilized 
for analysis. We take this approach in the following two 
sections where we introduce  a network with a  continuum 
of nodes. Despite  the  radical  nature of this step  the  analy- 
sis provides informative results and clarifies  the role of 
averaging the effects of several past  routings  as  a  means of 
damping  oscillatory  behavior. The validity of our  approach 
is supported by the fact that  qualitative  conclusions  drawn 
from  the  continuous  node model have been verified com- 
putationally in finite  node models [3], [4]. 

111. A CONTINUOUS MODEL OF A RNG NETW-ORK 

We consider  a  continuum of nodes  arranged  in  a  ring 
and sending  traffic  to  a single destination  as shown in Fig. 
4. Points on the ring are identified with their  distance t 
from the destination in the counterclockwise direction, 
where t is normalized to  take values in the  interval rO.11. 
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For every t in [0,1] we denote  by r( t )  the input  density at 
t. The meaning of the  function r is  that  for an subinterval 
[ t l ,  t 2 ]  of [0,1]  the  total  input  traffic  originating  at  nodes  in 
[ I I ,  t z l  is 

[“.(t) dt. 
I 

W e  assume  that r is  continuous  on [0,1] and r(t)>Ofor at 
least one tE(0,l).  Note that  a  network  with  a  finite  number 
of nodes can  be modeled by a  function r containing 
impulses and such  a  function  can  be  approximated by a 
continuous  function  consisting of narrow  triangular  pulses 
of finite  height. We  are interested  in  routings  specified by 
points y in  [0,1], where the flow splits, i.e., points  larger 
than y send  their flow counterclockwise  (or in the  positive 
direction)  and  points smaller  than y send  their flow clock- 
wise (or  in  the negative  direction). To a given function r 
and  routing y ,  there  corresponds at every point t a flow in 
the  positice direction f +( y , t ) ,  and a flow in  the  negative 
f - ( Y ,  2 )  given by 

In order to introduce an algorithm  such as  (A)  in  the 
framework of the  continuous  model we consider  a  function 
d mapping flows into  the nonnegative  real  numbers. The 
meaning of d is that given a  routing y and  any  point t ,  the 
distances D-  and D+ from t to the destination in the 
negatirje and  positive  direction are given by 

.D- (y , t )=I ‘d[S - (y . . ) ]   d r  (9) 

D + ( y , i ) = l ’ d [ f + ( y , ~ ) ]  t d r .  (10) 

W e  will assume  that  d  is  a  monotonically  increasing  function 
o f f  with meywhere continuous derizjatirje. W e  further as- 
sume that d(O)>O. As Proposition 1 shows, the  case  where 
d(O)=O is not  interesting  from  a  practical  point of view. 

We consider  the  following  algorithm (Al) for  generating 
routing  sequences  {yk). 

(Al) Given  a  routing y,, the  next  routing y k + l  is  the 
solution of the  equation 

0 

D - ( y k , Y k + I ) = D f ( Y k , L ’ k + l ) .  (11) 

It will be  shown as part of Proposition 3 that (1 1) has a 
unique  solution  for every y,E[O, 11. Note  that since we have 

and 

it follows that  a  routing y k +  determined  from (1 1); is such 
that every point t routes  its  flow  in  the  positive or negative 
direction  according  as D-(yk,  t)aD+(,vk, t )  or  D-(yk, t )  
& D + ( y k ,  t ) ,  i.e., according to minimum  distance  to  the 
destination. 

We say that y* E[O, I] is an equilibrium if 

D - ( y * ,  y*)= D + ( y * ,  y * ) .  (12) 

We first show some  preliminary  results  relating to ex- 
istence and optimality  properties of equilibria. 

Proposition 3: There  exists  a  unique  equilibrium y* E 
(0,l). Furthermore, (11) has  a  unique  solution yk+ for 
every Yk. 

Proof: Using (9) and (10) we have  for  all y and t 

(13) 
We have d(O)>O and d is  monotonically  increasing, so 
aD-( y ,  t ) / a t  > O  and aD’( y ,   t ) / a t  (0. Thus, for fixed y, 
the  function D - ( y ,  .) is continuous,  monotonically  increas- 
ing  and satisfies D-(y,O)=O, while the  function D + ( y ,  a )  

is  continuous,  monotonically  decreasing,  and  satisfies D f  
( y ,  1)=0. Hence,  the  equation D - ( y ,  t ) =  D’(y, t )  has  a 
unique  solution in t lying  within (0,l). Denote by g( y ) the 
solution  corresponding to y.  By using  the  implicit  function 
theorem, the  function g: [0,1] -, [0,1]  can  be  easily  shown  to 
be  continuous  and, by Brower’s fixed point  theorem [8: p. 
1611. g has a fixed point y * .  This y* is an equilibrium. If 
there exist two  equilibria y r  and y; with yr  < y;. then 
since d( f ) > O  for  all f 20, we must  have 

o - ( r l * , y : ) < D - ( y : , y ~ ) ~ D - ( Z ’ r * . y 2 * ) = D + ( ? ! ~ , y ; )  

0’( , .2*,y;)<D+(y; ,y:)GD+(y: ,y:)=D-(I: ,Y:)  

which is impossible.  Hence,  the  equilibrium  is  unique. 
Q.E.D. 

Proposition 4: The equilibrium  minimizes  over  all y E  
[0,1] the  expression 

where p is any  function  satisfying  for  all f 

P ‘ ( f  ) = d ( f )  (14) 

and p‘ denotes  the  first  derivative  of p .  
Proof: The  first  derivative J ‘ ( y )  of J is given by 

It  can be seen from (7) and (8) that 
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~ 

Proposition 4 shows that  one  can minimize the  integral 
of average delay over the  ring by choosing  the  function d to 
be marginal delay and by guaranteeing  that  the  algorithm 
converges to  an equilibrium. The need to use marginal 
delays as link lengths in order  to minimize total average 
delay has been  pointed  out  earlier in a  different  algorith- 
mic context [9]. Proposition 1, however. casts  doubt  as  to 
whether  the  algorithm will converge to  an equilibrium 
when  the d is chosen to  be marginal delay, since  in  this 
case value of d at zero flow  will typically be  near  zero 
(d(O)=O). In  any case, Proposition  4 suggests that conver- 
gence of the  algorithm  to  an  equilibrium is desirable  since 
a  function p satisfying (14)  is  monotonically  increasing and 
convex and hence penalizes at an increasing  rate large link 
flows. As a result, an  equilibrium will at least be  a  reasona- 
bly good routing even if it is suboptimal  in terms of a 
different objective function. 

We now  consider  the convergence properties of the 
algorithm. For  any y E [ O ,  11 we denote by g ( y )  the unique 
solution  in t of the  equation D - ( y ,  t ) =  D+(  y. t )  (cf. Pro- 
position 1). Thus,  Algorithm (AI) can be written 

We have for all yE[O, 11 

(19) 

We evaluate  the first derivative g'( y } =  d g ( y ) / d y  for YE 
(0.1). Differentiation in (19) yields 

At  the  equilibrium y*, we have y* = g( y * )  and f-( y * ,  y * )  
= / + ( y * ,  y*)=O, so (23) yields 

g ' ( y * )  

(24) 

By using a  theorem of Ostrowski [8, pp. 300-3011 we can 
state the following local convergence  and rate of conver- 
gence result for  Algorithm (Al ) .  

Proposition 5: Let y* be the  equilibrium.  Then if I g'( y* )  
I< 1  or  equivalently 

( 2 5 )  

there exists an open  interval Z containing J* such that if 
yo€ Z the  sequence { y k }  generated by Algorithm (Al) 
remains  in I and converges to y*.  Furthermore. if yk # y* 
for all A- there  holds 

IYk'I - Y*I lim sup = limsupIy, - - J * ] ' ! ~  = l g ' ( y * ) l .  
k - w  lykk-*l k - x  

(26) 

When  the  equilibrium y* has  the  property specified in 
the first conclusion of Proposition 5 we say that it is locdk 
stable. If ( g ' ( y * ) ( >  1 then the linearized system corre- 
sponding  to yk+ I = g( y k )  is unstable, so the  algorithm 
tends to diverge from ):* when started close to it. Notice 
the  similarity of (25) with corresponding local stability 
conditions for finite  node  networks (cf. Proposition 2). 

A sufficient condition for global convergence of Algo- 
rithm (Al) can  be  obtained by requiring  that g be a 
contraction  mapping, i.e.. for some  pE(O.1)  there  holds 

Ig(y)-y*lGply- ,*l .  VyE[O31]. (27) or 
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From Taylor’s  theorem and  the  fact g’(y)GO we have 

Let 

P =  max d‘(f) .  
o < f s l ’ r ( t )  dt 

From (23) we obtain for all z 

Thus, (27) is satisfied if 

.v =# V *  I 

or equivalently if 

This will be  true in particular if 

where 

R =  max r ( t ) .  

The conclusions of the  preceding  discussion are sum- 
marized in the  following  proposition. 

Proposition 6: If condition (28) or  the  stronger  condi- 
tion (29) holds, every  sequence { y k }  generated  by algo- 
rithm ( A I )  converges  to  the  equilibrium y* .  

When the equilibrium y* has  the  property specified in 
Proposition 6 we say that  it is globalb  stable. 

In  order  to  put  the results obtained  thus  far in better 
perspective let us write d( f ) as 

O - Z t G l  

d ( f ) = a + & f )  

where a = d(0)  represents  the bias factor.  For fixed input 
density r we have that  to each positive value of bias a there 
corresponds  an  equilibrium yz .  The equilibrium is locally 
stable for a satisfying [cf. (25)] 

and globally stable for a satisfying [cf. (29)] 

61 

As a increases the  corresponding  equilibria  tend to become 
stable.  Furthermore,  from (24) and (26) it  can  be seen that 
the  speed of convergence of the  algorithm is accelerated as 
a increases. On  the  other  hand,  it is easy .to see that yz + 3 
as a+ x), which in  the  context of the routing  problem 
means  that  the  algorithm becomes  increasingly insensitive 
to congestion  as a * co. 

Since in  a  practical  situation we are interested in the 
stability  properties of the  algorithm  for  a  broad  range  of 
inputs let us consider  input densities of the  form 

rx( t ) =   h r (  t )  (32 )  

where A is a positive parameter.  Then  it is clear  that  as h 
increases a larger value of bias is necessary in  order  to 
stabilize  the  algorithm. 

For  example if d is of the form 

d ( f ) = a + P f ”  (33 )  

where P >O, n > O  then  from (30) and (3  1)  we see the if r is 
changed to hr as  in (32), then the  stability  threshold level 
of the  bias is multiplied by x”. Thus, for fixed a and r there 
is a  choice of h for  which  the  corresponding  equilibrium is 
unstable.  Incidentally,  the  expression (33) for d has an 
interesting  property,  namely,  that  the set of all possible 
equilibria {y,* I a > O }  as well as  the set of all locally or 
globally stable  equilibria is independent of the level of 
input X and  depends only on r .  This is straightforward  to 
verify using (33) and  the fact that if r is changed to h r  and 
a is changed  to Ana then  the  routing  sequences  generated 
by  the  algorithm are  unaffected. 

Choosing  the Bias-m a Function of the  Current  Routing 

Since  stability of the algorithm  depends  strongly  on  the 
level of bias  and  the level of input we are  motivated to 
consider  schemes  where  the bias is not  held fixed but is 
rather  adjusted  adaptively  on  the basis of currently availa- 
ble  information.  An  interesting  scheme is to  use  a  length 
function of the  form 

d ( f 3 y ) = 4 y ) + d < f )  

where d is a  continuously differentiable, monotonically 
increasing  function  with d ( O ) = O ,  and a( y)  is taken to be 
some  monotonically  nondecreasing  function of DT( y )  given 
by 

D T ( , v ) = l i L j [ f + ( y ,  t)] dt + l I ~ j [ f - ( y :  t ) ]  dr. 
0 0 

For  example  a  quadratic  function of the  form 

a(y)=Yo+Y,~T(y)+Y*ED,(y)l2 (34) 

where yo: y,,  y2 are some  experimentally  determined  non- 
negative constants seems  suitable.  In  the  context of a  finite 
node  network  with  not necessarily a  ring  structure  a scheme 
like this can be very easily implemented.  In this case D,( y )  
can be  calculated as the sum of all reported link “delays” 

L 
d( lr). The  bias a( y )  can  be  computed  by  each  node via a 
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formula such as (34) and  the  link  length  can  be  computed 

A scheme of the type just  described can be  analyzed 
along similar lines as earlier in this section. It has been 
tested in quite extensive numerical  experiments involving 
finite  node  networks and  it was shown to have very satis- 
factory  performance [3]. [4]. This  can  be  attributed to the 
fact  that  the level of bias  increases  or  decreases with the 
level of input  thus  providing automatic scaling with respect 
to input leuel. In  fact, it  can be easily seen that if 2 has  the 
form d( f)= bf where /3 >O, n > O  and we choose a( y)=  
AD,( y )  where X >O, then  for every input  density  function 
of the  form h r ( t ) ,  X > O ,  the sequences generated by the 
algorithm do not  depend on X. 

as Dl, = a(,.)+ 41,). 

IV. AVERAGIKG THE EFFECT OF SEVERAL 
ROUTINGS 

In this section, we show that  the  stability  properties of 
the  shortest path algorithm of the preceding section can  be 
improved if link lengths  suitably  depend on flows corre- 
sponding  to several past  routings.  There  are several possi- 
bilities along  these lines. Some examples  are  as follows. 

A. Averaging  Over  the  Present  and  the Past n Routings 

Given  a  sequence of past  routing)?,, ~ i -  ,, ' ' '. we define 
for  any 1 in [01 I ]  "averaged" distances  to 0 and 1 by 

( 3 5 )  

Thus.  distances  are  calculated by intergrating 
1 I1 

which is an averaged length over the  routings j l k , .  . . ,xk - l l .  

in place of d [ f (  l t k r  T)] which is the  length  corresponding  to 
the last routing. 

The new routing yk+ , is obtained  from  the  equation 

d-(,, ..?,_,:...?..,-,,.I.,+,) 
=d"(?.., , ~ , - l , . . . . Y k - l l . Y , - l ) .  (37) 

I t  is easily seen that this defines uniquely , in terms of 
JZ. y,- . . ,y,-,,. As earlier we write  the  corresponding 
equation  as 

~~+,=g( , , , I .A- l , . . . . l ?~- , , ) .  (38) 

A routing)?" is said to  be  an equilibrium if 

It is clear that ? I *  is an equilibrium  in  this  sense for a  given 
bias leuel if and onb! if it  is an equilibrium  in the sense given 
in the preceding section. 

We can define local stability of y* in the  obvious way. 
We have that y* is locally stable if it is also a stable 
equilibrium of equation (38) linearized around y* (see [ X ,  p. 
3531). It is a  known fact that this is true if all roots of the 
characteristic  polynomial 

lie inside the  unit circle, (Le.. have modulus less than 
unity). We calculate  the  derivatives a g / d y - , .  

We have for a>O similarly as earlier  for every i 

ag(y* )  r ( y * )  1 
ay, -, 

- 
2d(0)  n + l  

Define 

(39) 

Note  that, from Proposition 5. y* is locally stable  for 
algorithm ( A l )  if 1-1 < 1. The characteristic  polynomial  can 
be written as 

We now use the following fact. 
Lemma: Let [ be  a positive scalar and n be a positive 

integer. The roots  of  the  polynomial 

P r l + l  + t P "  + &y-' + . . . + t P + t  
lie inside  the  unit circle if and  only i f  ( < 1. 

Proof: This result can  be shown by straightforward 
application of Jury's stability test [ 10. p. 97-98]. Q.E.D. 

We now apply  the result of the lemma to  our problem. 
We have that  the  equilibrium J" will be locally stable if 

p < n + l .  

It follows using (39) that  in  the averaged algorithm  the  bias 
level must satisfy 

in  order for the  corresponding  equilibrium J* to be  stable. 
v*= g(l?*, I!*.. . . +*). If we compare this with the earlier  algorithm  [cf. (25)]  we 
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see that in the averaged algorithm the bias threshold level for 
stability is reduced by the factor I / (  n + 1) over the one of 
algorithm (Al). For a given traffic  input,  and  any given 
bias level the  corresponding  equilibrium  can  be  made 
stable by  averaging  delays  over  a sufficiently large number 
of periods. 

Regarding rate of convergence,  Ostrowski's  theorem 
again applies. We  have  from the proof of [8, Theorem 
10.1.31 that given any z > O  there exists a n o m  1 1 .  II on R"+I 
such  that, if yk  # y* for all k, then 

where p(p,  n )  is the  maximum  root  modulus of the  char- 
acteristic  polynomial C( p )  of (40). It can  be seen that  for 
fixed n we have p(p ,  n)+O as p -0. If pl,.  * ,P, ,+~ are  the 
roots of C ( p )  we have )p l . - -pn+ l I=p / (n+ l ) ,  so that 
p(p,  n ) > ( p / ( n  + I ) ) l / ( f l r l ) .  It follows  that for fixed p we 
have p ( p ,  n)+ 1  as n --t x ,  so that  the  rate of convergence 
deteriorates as n + 00. Thus,  too  much  damping  can slow 
down the speed of convergence of the  algorithm. 

B. Fading Memoly  Scheme 

This scheme is similar to  the preceding one except that 
the lengths  corresponding  to all past  routings  are  averaged 
via a  fading  memory  scheme.  Given  the  sequence of all 
past  routings { y k ,  y k -  . . . }. the  next  routing yk+ I is 
determined  as  the solution of the equation 

Jo'^-'S, ( t )  dt = J' 8: ( t )  dr 
I!.+ I 

where 8, and 8: are  obtained  by  the  following  exponential 
fading memory  scheme  with  decay  factor p E[O, 1) 

s , ( t )=ps , I ( r )+ ( l -P )d [ f - ( y , l t ) ]  

s , ( t ) = p s ~ - l ( t ) + ( l - p ) d [ f + ( y k , t ) ] .  

Alternatively, we can  write 
k 

s , ( t ) = ( l - P )  2 ~ ~ - ' d [ f - ( ~ i ? t ) ]  (42) 
j = - - r x  

k 

s, '(t>=(1-p> 2 p k - i d [ f + ( y i , r ) ] .  (43) 
j x - m  

Let  us  write  the  solution of (46) as 

y k + I = g ( y k r Y k - l ? . * * ) .  (44) 

Let us also  consider the linear  system obtained by formal 
linearization of (44) around  the  equilibrium y*. Similarly, 
as  mentioned earlier, this linearized system is 

Y k + I = - p ( 1 - 8 ) [ . ~ ~ + p y k - I f P 2 Y k - 2 f  " ' 1  (45> 

where p is  given by (39). Let  us  denote 

z k + I = ~ ~ + p ~ k - l + ~ , ~ ~ - , +  . ' - .  

Then we have  for all k 

Y k + , = - p ( l - P ) r k - p ( I - p ) p z k  (46) 

z k - l  = Y k  + p z k  (47) 

and  it follows  that the linearized system (45) is in effect the 
two-dimensional  system  described  by (46) and (47). This 
latter system is stable if both  eigenvalues of the  system 
matrix 

[ - P ( : - P )  - P ( l - B ) B ]  
P 

lie within  the  unit circle. These  two  eigenvalues  can be 
calculated  to  be 0 and p - p( 1 - 8). It follows that  the 
linearized system is stable if 

Although we do  not provide  a  proof, it is possible to 
establish  rigorously that stability of the linearized system 
(45) implies local stability of the  algorithm (44) and  thus 
we have the result that the threshold calue of bias for 
stability in the fading  memoly scheme is reduced by the factor 
(1 - P ) / (  1 + p )  ouer the one of algorithm (Al) .  The  optimal 
speed of convergence is  obtained  when  the  eigenvalue 
/3 - p( 1 - p )  equals  zero in which case  a  superlinear  rate of 
convergence is obtained.  This is so when p = p/( 1 + p). 
For  other values of p in the interval ((p - l) /(p + l)! 1) the 
rate of convergence is linear,  and for <(p - 1)/(p + 1) 
the  equilibrium is unstable. As p is increased  from the 
optimal  value p / (  1 + p )  towards  unity  the  rate of conver- 
gence  deteriorates. 

C. Asynchronous Length Reporting 

This  type of scheme is patterned  after  a  shortest  path 
routing  algorithm  where  nodes  report  asynchronously  the 
lengths of their outgoing links and  the  shortest  paths  are 
updated  after  each  report.  The set of nodes  [0,1] is parti- 
tioned into n subsets  which we call S ,  ~ S,, . . . . S,, . At  some 
time, say 0, the  nodes in SI report their lengths  averaged 
over  the  flows  corresponding to  the preceding n routings 
and  a  routing  update takes place. Then  at time a, > O  the 
nodes in S, do the  same thing. Similarly, for i = 1,. . . . n - 1, 
attime(a,+a,+,-.-,+a,)thenodesinSf+,dothesame 
thing.  At  time (al + a, + . . + a,?) the  nodes in SI again 
report their lengths, an  updating takes  place and  the  pro- 
cess is repeated. This type  of  asynchronous  operation is 
currently in use in  the  ARPANET [4] where, in a  finite-node 
network  context, Si consists of a single node  for all i. There 
are  also  other  variations of asynchronous  operation involu- 
ing for example  averaging  over  all  preceding  routings via a 
fading  memory  scheme.  This  type of algorithm is described 
and tested computationally in [3] and [4]. The analysis of 
all these schemes is very similar as  that of the averaging 
schemes  described earlier in this section. The  details  are 
quite messy and may  be  found in [4], where  it is shown, via 
analysis and  computational  experiment,  that  asynchronous 
operation  has  a  substantial beneficial effect on  the  stability 
properties of the shortest path  algorithm. 
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V. THE CASE OF A NETWORK WITH AN ARBITRARY 
TOPOLOGY 

The extension of the  continuous model to  the  case of a 
network with arbitrary topology is quite  straightforward. 
However, the  notation  required  for  a precise mathematical 
description is very cumbersome and tends  to  cloud  the 
main ideas. For this reason our presentation will be some- 
what  informal. 

Consider  the  case of an undirected  network with a single 
destination. Let r be  the  input  density  function  mapping 
points  on  the  undirected  links of the network to  the 
nonnegative real numbers. The meaning of r again is that, 
given any  interval I on a  link,  the  total  traffic  input 
originating at this  interval is the  integral of r over I .  We 
view the  set of points  on the network as  a subset of a 
Euclidean  space of dimension 2 or 3 (depending  on whether 
the network is  planar or not),  and  assume  that r is a 
continuous  function.  In  order to consider  notions of length 
we associate with each undirected  link ( i .  I )  two directions 
i + I and I + i. (There may be more than  one links connect- 
ing  a  pair of nodes within our framework. When we refer 
to  a link (i, 1 )  we mean  a  particular link connecting i and 1 
and specify further when there is danger of confusion.) A 
length function 6 is  a  function which assigns to each point 
on  an undirected link ( i .  I )  two nonnegative  numbers one 
associated with the  direction i + 1 and  the  other associated 
with the direction 1 - i. We assume  that 6 is piecewise 
continuous  along every link in each  direction.  The  meaning 
of 6 is that given any two points  on a link ( i .  I )  their 
distance  in  the  direction i - I is obtained by integrating 6 
as defined in that  direction between the two points. The 
distance in the  opposite  direction I + i is defined  analo- 
gously. Similarly, we can  consider  paths between points  on 
possibly different  links  and  define  their  length in one or 
the  other  direction. 

We  now associate to a given length function 6 a  shortest 
path of every point,  and  an associated  routing. W e  assume 
rhar 6 is et-etywhere positice. Given  any  point we consider 
the collection of paths  to  the  destination  and their associ- 
ated  distances specified by  the  function 6. A path of 
minimum  distance is referred to  as a  shortest path from the 
point  to  the  destination,  and  the  corresponding  distance is 
referred to as  the  shortest  distance of the  point  to  the 
destination.  The rouring corresponding  to 6 is the set of 
points for which there  are more than  one  equidistant paths 
to  the  destination.  A  routing is said to  be regular if it does 
not  contain  any  nodes of the network. otherwise it is said 
to singular. 

For a given 6, a  shortest path of each point  and  the 
corresponding  routing  can be constructed in a  simple 
manner  along similar lines as for usual  networks. We first 
construct  a  shortest path tree for the network in the usual 
manner by using as (directed) link lengths  those specified 
by the  length  function 6. (The length of the  directed link 
(i. 1 )  is the integral of 6 along ( 2 .  I )  in the  direction i - 1.)  
This gives us a  shortest  path and the associated shortest 
distance for every point  on  the  shortest  path tree including 
all the nodes of the network. A  shortest  path for points on 

links  that are  not  part of the  shortest path tree  can be 
obtained  as follows. 

Let (i.  I )  be  a link that is not on the tree. Let D, and D/ 
be  the shortest  distances of nodes i and 1. The shortest 
distance of a  point t on ( i .  I )  is 

D(r)=min D,+ ‘~,,(T)~T,~,+jj$,,(.i)dr) 

where 6,, is 6 in the  direction 1 - i and 6,, is 6 in the 
direction i - 1. It  can be seen that  the  routing  correspond- 
ing to 6 is regular if and  only if each  (ordinary)  node of the 
network  has only one  shortest path associated with it. If a 
routing is regular then every one of its  points lies in  the 
“interior” of some link. Notice  that  the  preceding  construc- 
tion shows that  a  routing  (regular or not) consists of 
( L  - N + 1) points where L and N are  the  number of 
undirected  links  and nodes. respectively. 

Given  a  shortest path tree  and  the  corresponding  routing 
constructed as just described, we can  define  the flow 
corresponding to it.  At each point,  say t ,  of a link ( i ,  /) 
there  are two flows to  consider (one of which is zero);  the 
flow in  the  direction i - 1 and  the flow in the  direction 
1 - i. Each is defined in the  natural way by integrating  the 
input  density  function r over the  portion of the  network 
that lies “upstream” from the  point t ,  i.e.. over  the  set of 
points  the  shortest  paths of which meet t on  their way to 
the  destination.  At  the  points of a regular routing  the flow 
is zero in either  direction.  Notice  that if 6 is such that  the 
corresponding  routing is regular the flow is uniquely de- 
termined  by 6. Otherwise. the flow will depend  not  only on 
6 but also on the  shortest  path  tree selected. 

Suppose we are given a  monotonically  increasing,  con- 
tinuously differentiable  function d mapping flow into  the 
positive numbers.  Given  a  shortest path tree T corre- 
sponding  to  a  length  function 6 with routing Y we can 
define  a new length  function 6 which assigns to points I in 
any  one of the two possible directions  the length 6(r)= 
d [  f( r )] where f( t )  is the flow at t corresponding to 6 and T 
in  the  appropriate  direction.  The  corresponding  routing is 
denoted r. Note  that if Y is singular then 8 and r depend 
not only on 6 but  also on T. If Y is regular than r is 
uniquely determined by 6. 

We are now in a  position to define  an  algorithm  similar 
to  the  one of Section 111. Given a length function 6, and a 
corresponding  shortest  path - tree To and  routing Yo. the 
next length  function is 6 ,  = 6, with  corresponding  routing 
Y, = q. A  shortest  path tree TI corresponding  to 6, is 
selected and is used to define similarly Y2, and T,. 
Similarly. the  algorithm  generates 6,. Y A ,  and Tk for all k.  

We say that  a  routing Y* corresponding to a  length 
function 6* and  shortest  path  tree P is an equilibriunz 
routing i f  @ = 6* and = Y*. 

Contrary  to  the case of a  ring network where we were 
able  to  prove existence of an equilibrium. in general there 
need not exist an equilibrium.  This fact is demonstrated  in 
the following example and provides  an  indication of the 
complexity of the  dynamic  phenomena  that \ve are in- 
vestigating. 

( I  
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Example: Consider  the  network  shown in Fig. 5. There 
are two  nodes 1 and 2 and  three  links  connecting  them 
denoted  by A ,  B, C. Node 2 is the  destination.  Points  on A ,  
B. and C are parameterized  by their Euclidean  distance to 
the  destination.  The  Euclidean  lengths of A ,  B, and C are 
all  taken  equal to unity. Let the  input density  function  be 
as follows: 

ForlinkA: r ( ~ ) = l %  vt E [o, 11 
For link B :  r ( t ) = r B ,  Vt€[O, 11 
For link C :  r ( t ) f r c ,  Vt€[O,'l]. 

We  assume  that 1 G r, G rc, 1 < re. Let 

d ( f ) = a +  f 
where a>O is the  bias  factor. 

In view  of the fact 1 G r, G rc, 1 < rc, it is clear that  an 
equilibrium  routing  cannot  contain  a  point in the  interior 
of link A ,  while it  must  contain  a  point in the  interior of 
link C .  We  consider the following two cases. 

Case I :  r, = 1. Then an equilibrium  routing  cannot  con- 
tain  a  point in the interior of link B so the  only candidate 
for equilibrium are  the  two  types of singular routings 
shown in Fig. 6. In  routings Y, and Y, the  incoming  traffic 
at  node 1 is routed  through link A and link B? respectively. 
None of the two routings  can  be  an  equilibrium.  In  routing 
Y,  there will be  points in the  interior of link A which  will 
have  a  shorter  distance to the destination  (corresponding  to 
Y , )  through link B rather  than  through A ,  and the reverse 

situation  occurs  in  routing Y,. Notice  that  this  argument 
makes use only of the  magnitude of r, and rc and is 
independent of the  form of the  function d. 

Case 2: 1 < r,. Then  it can be seen that  the only  candi- 
dates for equilibria  are  routings of the  form  shown in Fig. 
7. Each  equilibrium  routing  candidate is specified by  the 
points y,, yc E[O, 11 where  the  flow  separates on  links B 
and C. We  have that  the  distances D+(y,), D - ( y B )  of y ,  
corresponding  to  routing (y,,  yc) along  the  counterclock- 
wise the  clockwise  paths, respectively, are given by 

~ - ( y B ) = a y B + r B ~ ( y , - t ) d t  

D + ( u B ) = ( ~ - ~ B ) . + I B J I ( ~ - ~ ~ ) ~ ~  .r;B 

If (y,, y,) is an equilibrium we must  have 

D-(Y,)= D+(Y,) 

which  after  some calculation can  be  written  as 

By symmetry  the  equation D-(y,) = D+(yc)  can  be  writ- 
ten  as 

Equations (48) and (49) are  in  fact  necessary and sufficient 
conditions  for ( y B ,  yc)  to  be  an  equilibrium routing. Thus, 
there exists an  equilibrium  routing if and only if the 
solution ( y g ,  y z )  to these equations satisfies y;E[O, 11, 
y:€[O, 11. After  some calculation, this  condition  can  be 
shown to  be equivalent to 

If 2rB 2 rc + 1  then for every level of bias  there exists an 
equilibrium  routing ( y,, ye). If,  however, 2rB < rc + 1, then 
there exists an equilibrium  only for a above  the  threshold 
level indicated in (50). 

The preceding  example  shows that existence of an equi- 
librium  can  depend  on  both  the level of bias and the input 
density  function.  Furthermore,  it  may  happen  that, for a 
given input  density  function,  no  value of bias  can  be  found 
for which an equilibrium exists. This last phenomenon is of 
a  singular  nature  and is due  to  the fact that  the Euclidean 
lengths of links A ,  B, and C are all equal  to unity. To see 
this  consider  the  routing Y, corresponding  to the length 
function 8' ( t )  1, s-(t)r  1. The  routing Y, is analogous 
to the min-hop  routing in discrete  node  networks,  and  can 
be associated  with  infinite level of bias. It is an  equilibrium 
routing for the  case d( f )E 1. If Y, is a  regular  routing, 
i.e., each  node  has  a  unique  minimum  Euclidean  distance 
path  to  the  destination,  then it is clear that,  for  any  given 
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input  function r ,  there exists a  threshold level of bias CU 
such that  for all cy 2 CU a regular equilibrium  routing exists. 

Characterizing  the  dynamic  behavior of the  algorithm in 
the  absence of an equilibrium is certainly an interesting 
problem  but we have been unable  to  make much progress 
in  this  direction.  Computational  results for finite  node 
networks given in [3] suggest that  the  stability  properties of 
the  algorithm  are improved by high  level of bias  and 
averaging similarly as  in  the presence of an  equilibrium. In 
what follows in this section we restrict attention  to  the case 
where a regular equilibrium  routing exists. 

Given a  regular  equilibrium  routing Y* = {J.;. 
v ; * .  . . 
taining $ and  the two shortest  paths  from ?;* to  the 
destination. A simple  but  fundamental  observation  is  that 
these two paths  join at  some  point  thereby  forming a ring of 
the  type considered in  Section III .  The zero point on this 
ring is the  point where the two paths  join. Let e, be  the 
Euclidean  length of the  ring  containing$. Forj = 1.2,. . . , n 
we parameterize  points  on  the  ring  containing .);* by the 
number  in [0, e j ]  going from smaller to larger numbers  as 
we traverse the  ring in a chosen direction similarly as in the 
previous two sections.  Thus,  points yj on the link ( ij. /,) can 
and will be identified by the  number  in [01 e,] specifying 
their position  on  the  ring  corresponding to >;*. It is easy to 
see now that given Y*, any collection Y = {J!,, y2.. . .JI,,} 
such that yj lies in  the  interior of (i,, 1,) specifies a flow f F  

through  each  point in the network  that follotvs the 
(ordinary)  shortest path tree  corresponding to 6* and Y* 
and  separates on each link (i,. 1,) in the two opposite 
directions at the point yJ. This flow defines a length func- 
tion 6,- via the  relation 6, ( t )=d[ / , . ( t ) ]  in the  direction of 
the flonr, and 6, yields in the  manner described earlier  a 
shortest path tree and a  routing  denoted by g(  Y 1. It is easy 
to show (using  the regularity of Y*) that if Y is sufficiently 
close to Y* then  the  (ordinary)  shortest  path tree corre- 
sponding  to 6,. is the  same as the  one  corresponding to I-* 
and that  the  elements of the  routing g ( Y )  lie on the links 

The algorithm described earlier can now be redefined as 

. _  ,J:} consider for j = 1.2.- . . , I I  the  link ( i , ,  I , )  con- 

(i,. I]). 

y k + , = g ( z ; , ) .  (51) 

The  definition is local within a sufficiently small neighbor- 
hood of Y* and is associated with the  (ordinary)  shortest 
path tree corresponding to Y* and  the associated para- 
meterization of the ring subnetworks  containing  the  links 

Similarly, as in the preceding section we say  that an 
equilibrium Y* is locally stable if there is a  neighborhood of 
Y* (defined in terms of the  parameterization of the rings 
associked with Y* as discussed earlier), such that  the 
sequence {g(Y,)} generated by (50) is well defined  and 
converges to Y* for every choice of Yo within this neigh- 
borhood. 

In order for Y* to  be locally stable i t  is sufficient that 
the n X n matrix ag( Y*)/aY be defined and have all its 
eigenvalues within the  unit circle. The  computation of 

(iJ'l,>. 

ag( Y * ) / a Y  is straightforward  along  the lines of Section 111. 
We first introduce  some  notation. For j = 1.2,- . . .n let 
RE, c? denote  the set of points t € [  y,.. e j ]  on  the j t h  ring, 
and R;,e ,  denote  the set of  points i € [ O .  J ; ]  on  the  same 
ring. Note that for every j .  rn = 1.. . -.n the  direction of 
flow on R;1, e ,  and R:n3* e.: (or R-;",, must coinside if these 
sets have intersection  with positive Lebesgue measure. This 
implies that  at least one of the  sets R:,e, n R;n,,ena and 
RT,.P, n R-;n,,e, is either  empty or has Lebesgue measure 
zero.. Similarly, at least one of the  sets R ;  e n R.;n,.ent and 
R;,.,, n R:p,.e, is either  empty or has  Libesgue  measure 
zero.  The  equations  defining g( Y )  can  be  written  as 

By differentiation with respect to ym we obtain similarly as 
earlier  at  the  equilibrium Y* 

where 

andf,-(  Y*, t ) , J - (  Y*. t )  are  the flows on  thejth ring in the 
positive and negative directions. In  view  of the  preceding 
discussion, at least two of the  integrals  in (52) are zero for 
every j and m .  

Let R be the  diagonal  matrix having r(y;*) as j t h  diago- 
nal element, and let 0 be  the n X n matrix ha\ing  as 
elements  the  scalars qm. Then we have 

We can  show  that  the matrix 0 is negatice semidefnite. 
Indeed the matrix - 0 is the Gram matrix  associated with 
the  functions 

where xs is the  characteristic  function of a  set S (x([)= 1 
if rE S. x(l)=O otherwise). By using the fact  that R is 
diagonal it can  be shown that  the eigenvalues X,: . -.X,, of 
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ag(Y*>/aY are real and nonpositive.  Consider  the  spectral 
radius 

Then the equilibrium Y* is locally stable for 

P < 1  (53) 

and hence there exists a  threshold level for d(0) above 
which the corresponding  equilibrium is stable. Similarly, as 
in the  preceding section, we can  show  that if a  fading 
memory  scheme  with  decay  factor ,f3 is used to average  the 
effects of past  routings  the  equilibrium Y* is locally stable 
if 

l + P  
PC- 1-P (54) 

and  there is a  value of P which  optimizes the rate of 
convergence. It is also  possible  to  show that  the  other 
forms of averaging the effects of several past  routings 
improve  the  stability  properties of the  algorithm. 

For the  purpose of aiding  the  reader in understanding 
the method of calculation of the  matrix ag(Y*)/aY we 
provide  an example. 

Example: Consider  the  network  shown  in Fig. 8 where 
node 4 is the  destination,  and  assume  that the regular 
routing { y r ,  y;. y;} shown is an  equilibrium.  The figure 
shows also the  chosen positive direction  on  the ring corre- 
sponding to each y:. 

We  calculate  the  symmetric  matrix 0 with  elements e,,,, 
given by (52). The  interval  between  any  two  nodes i and I is 
denoted [ i. 4. The  interval  between  some y; and  a  node I is 
denoted [y:, I ] .  We  have 

e,,  = - d’[ f,+ (Y* ,  I ) ]  dt 

4 
Fig. 8. 

VI. SUMMARY AND CONCLUSIONS 

The analysis of this paper shows  that  adaptive  shortest 
path  routing  algorithms for packet  communication  net- 
works exhibit complex  dynamic  behavior that should be 
taken into  account in their design. This is particularly so if 
link lengths are chosen  to  be  a  measure of delay on  the 
corresponding  queue,  and  the  delay  per  packet  due  to 
processing and transmission is small relative to average 
queuing delay. A  stability analysis based on  a discrete and 
a  continuous-node  model  shows  that oscillatory behavior 
can be  damped  by  making  use of a bias factor  at  the 
expense of reduced sensitivity of the routing  algorithm  to 
traffic  congestion. Oscillations can  also  be  damped  by  a 
scheme that averages  the effects of several past  routings 
such  as the one  introduced by asynchronous link length 
reporting  by  nodes (e.g., the  one  used in the  ARPANET 
[ 1 11). This is particularly  fortunate since asynchronous 
length  reporting offers significant practical  implementation 
advantages.  Most of the analysis given relates to a ring 
topology but. as  shown in Section V. the ring structure is a 
fundamental  building  block for the analysis and extension 
of our results to  more  complex topologies. The  qualitative 
conclusions  drawn  from the analysis of single destination 
networks  with  continuum of nodes  have  been  extended to 
multiple  destination  networks in [3]. Their validity for 
finite-node  networks  has  been verified by extensive  compu- 
tational  experimentation  the results of which are given in 
[3] and [4] .  
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Short Papers 

Reconstruction  of  Atmospheric  Pollutant 
Concentrations  from  Remote Sensing Data-An 
Application of Distributed  Parameter  Observer 

Theollv 

MASATO  KODA AND JOHN H. SEINFELD 

Abstract -The  reconstnrction of a  concentration  distribution  from  spa- 
tially averaged  and  noise-corrupted  data is a  central problem in processing 
atmospheric  remote  sensing  data.  Distributed  parameter obsener  theon-  is 
used to delelop  reconstructibility  conditions for distributed  parameter 
systems having measurements @@tal of those  in  remote  sensing.  The 
relation of the  reconstructibilih  condition  to  the  stability of the  distributed 
parameter  observer is demonstrated. The theor?  is applied to a  varieh of 
remote  sensing  situations,  and  it  is  found  that  those in which concentra- 
tions  are  measured as a  function of altitude  satisfy  the  conditions of 
distributed  state  reconstructibility. 

1. INTRODUCTION 

In  the  remote  sensing of tropospheric species. a ground-.  aircraft-. or 
satellite-based  platform  performs an  instantaneous  scan of a region of the 
atmosphere  and  measures  the species burden  within  the field of view. 
With  aircraft or satellite  remote  sensing  the  platform is in  motion  and  the 
field of view is constantly  changing.  An  object of remote  sensing of the 
atmosphere is to  enable  reconstruction of the  concentration  distribution 
of trace  species  over an  entire region based on  the  data  available  from  the 
instrument. 

Manuscript receivd September 9. 1980: re\lced  September 22. 1980 and March 9. 19x1 
Paper  recommended h? A .  Ephremides.  Past  Chairman of the €\hmatmn  Comrnlttee  This 
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The  reconstruction of a concentration  distribution  from  spatially  aver- 
aged  and  possibly  noise-corrupted data is a  central  problem  in  processing 
remote  sensing  data.  In  the  absence of a mathematical  model  describing 
the  spatial  and  temporal  concentration  distributions.  the  reconstruction 
can  be  carried  out  by  standard  data  interpolation  methods.  Howe\-er, 
when a mathematical  model exists. the  problem  becomes  one of matching 
the  remote  sensing data  to  the model solution  in  such a way that  the 
incomplete  data  can be used in  conjunction  with  the  model  to  produce  an 
estimate of the  region-wide  concentration  distribution.  This  problem of 
the  matching or assimilation of remote  sensing data  into  mathematical 
models for atmospheric  constituents  is  the  subject of this paper. 

There exist a few recent  studies  that assess the  capabilities of remote 
sensing for monitoring  regional  air  pollution  episodes. For example. 
Barnes er a / .  [ I ]  conducted a comparative  analysis of satellite visible 
channel imager?: in  ground-based aerosol measurements. For three cases. 
each of tvhich represented a significant  pollution  episode  based on low 
surface visibility and high sulfate levels. the  results  shon-  that  the  extent 
and  transport of the  haze  pattern  can be monitored  from  satellite  data. 
The study  demonstrated  the  potential of the  satellite  to  monitor both 
magnitude  and  aerial  extent of pollution  episodes.  In a related  study. 
Lyons et a / .  [2] reported on a demonstration  project  showing  that  cur- 
rently  available  synchronous  satellite data  can  detect  the  aerial  extent of 
large-scale hazy a i r  masses associated \vith sulfate  and  ozone  episodes. 

A  study  related  to  that of the  present work was reported  by  Diamonte 
er a / .  [3]  in  which they considered  the  comparison of remote and in  situ 
data on pollutant  concentrations  from  point  sources.  They  considered 
typical  remote  sensing  geometries to provide  insight on estimation of 
plume  properties  from  these  measurements.  In a study  also  related  to  the 
present.  Kibhler  and  Suttles [4] considered  the  estimation of unknown 
parameters  in a pollutant  dispersion  model  by  comparing  model  prcdict- 
ions  with  remotely  sensed  air-quality  data.  A  ground-based sensor pro- 
vided  relative  pollutant  concentration  measurements as a function of 
space  and  time.  The  measured  data were compared xvith the  dispersion 
model  output  through a numerical  estimation  procedure  to yield parame- 
ter  estimates  that  best fit the  data. 


