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A  Minimum Delay Routing Algorithm 
Using  Distributed  Computation 

Absfruct-An algorithm is defined  for establishing routing tables in 
the individual nodes of a data network. The  routing fable at  a node i 
specifies, for each other  node j ,  what fraction of the  traffic destined far 
node j should leave node i on each of the links  emanating  from node i. 
The algorithm is applied independently at  each node  and successively 
updates  the  routing  table  at  that  node based on information communi- 
cated  between adjacent  nodes about  the marginal delay to each destina- 
tion. For  stationary  input  traffic statistics, the average delay per mes- 
sage through  the  network converges, with successive updates of the 
routing tables, to  the minimum average delay over all routing assign- 
ments. The algorithm has  the additional property  that  the traffic to  
each destination is guaranteed to be  loop free at each iteration of the 
algorithm. In  addition, a new global convergence theorem for non- 
continuous  iteration algorithms is developed. 
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INTRODUCTION 

T HE problem  of  routing assignments has been one of the 
most intensively studied areas in the field of data  networks 

in recent  years. These routing problems  can be roughly classi- 
fied as static  routing, quasi-static routing, and dynamic routing. 
Static routing can be typified  by the following type of 
problem. One wishes to establish a new data  network  and 
makes various assumptions about  the  node  locations,  the link 
locations,  and  the capacities  of the links. Given the  traffic 
between each  source  and destination, one can calculate the 
traffic  on each  link as a  function of the routing of the  traffic. 
If one approximates  the queueing  delays on each  link as a 
function  of  the link traffic,  one can calculate the  expected 
delay per message in the  network. The  problem then is to 
choose routes in such a way as to minimize expected delay. 
This is a  multicommodity flow problem, and the reader is 
referred to  Cantor and Gerla [ l ]  for a particularly elegant 
algorithm and  for  other references. 

Quasi-static  routing  problems can be typified by the 
following situation.  A  data  network is in operation,  but over 
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time, new source-receiver pairs establish data transmission 
sessions and old sessions are terminated.  It is necessary at the 
very least to establish routes  for these new sessions and it 
might in addition be  ‘desirable to occasionally change routes 
for established sessions or to change the fraction of  the traffic 
for  a session that takes different  routes. Over a longer range 
time  scale,  links or nodes  fail, new links and nodes are added, 
and  routings must  be changed accordingly.  The usual approach 
to this problem is: to have a special node in the  network  that 
makes all decisions about routings. In principle such  a node 
periodically  gets information  from all the  other nodes about 
traffic requirements  and uses this information  to solve the  cur- 
rent  static  routing  problem.  Such  a  strategy seems simple and 
straightforward,  but in fact  it is not. First  there is the need for 
protocols  for  the  nodes in the  network  to send updating  infor- 
mation  to  the  control  node. Similarly protocols are required 
for the  control  node  to send its  routing decisions to  the  other 
nodes.  There is also a serious  problem about  what  to  do  when 
nodes or  links in the  network fail. The  routes  by which noti- 
fication of such  catastrophes are sent to  the  control  node 
might  in fact be destroyed  by  the  catastrophe.  Finally,  there is 
the possibility that  a failure of  the  control  node may cause the 
whole network  to fail. The  point of this is not  that central 
node  routing is unworkable,  but  rather to convince the reader 
that  the problems of communicating information  about 
routing  through  a  network is conceptually as difficult as 
making routing decisions once all the  information is available. 

Finally,  dynamic  routing refers to  the kinds of problems 
that arise in a  network  when messages or packets are routed 
according to  the  instantaneous  states  of  the queues  at the links 
of the  network.  The  routing of a particular message or packet 
is not  determined  when  it  enters  the  network;  instead,  each 
node that receives the message selects the  next  node  to which 
the message  is routed on its  path to the  destination.  Here, in 
addition to  the  problem of determining an algorithm to make 
these  decisions, there is also the  problem  of conveying infor- 
mation  about  queue lengths through  the  network  and  the 
problem of coping with  lost messages and messages which 
arrive out of order  at  the  destination  node. 

Our  major interest here is in distributed algorithms for 
quasi-static routing, i.e., in algorithms in which  each node 
constructs  its  own  routing tables based on periodic updating 
information  from neighboring nodes. We first  develop a  num- 
ber of  theoretical results that should  be  applicable to any  such 
algorithm  and then we develop a particular  algorithm. The 
analysis is based on a  static model with  stationary  traffic 
inputs  and an unchanging network. We show that  the average 
delay  per message converges under these conditions  to  the 
minimum over all routing assignments. We have not addressed 
the  problem  of  how well the algorithm adapts to variations in 
the  input traffic or  the  network. Qualitatively, an algorithm’s 
ability to  adapt  to variations is intimately  connected  with  its 
speed of convergence in the  static case and with  its robustness. 
We feel that  distributed algorithms have important advantages 
in both these areas. A  distributed algorithm can react  rapidly 
to  a local disturbance  at  the  point  of  the  disturbance  with 
slower “fine tuning” in the rest of the  network.  The  robust- 
ness comes from lack of reliance on a  central  node  that might 

fail and from avoiding the “chicken and egg” problem of 
centralized  routing where one needs routes  to transmit the 
routing information required to establish routes. 

The  algorithm  here is quite similar to the  algorithm used in 
the Advanced Research  Projects Agency Network (ARPANET) 
[2].  The major  difference is that  the ARPANET attempts  to 
send  each  packet over a  route.that minimizes that packet’s 
delay with no regard to  other packet’s delays, whereas here 
packets are sent over routes to minimize the overall delay of 
all messages. This difference  between  “user optimization” and 
“system optimization” was evidently  first noticed by Pigou 
[3] ,  later used by  Dafermos  and  Sparrow [4], and then  by 
Agnew [SI,  161. Angew analyzed a  network  with  a single 
source  and destination and described an algorithm very similar 
to  that described here. Kahn and Crowther  [7] also developed 
a  distributed algorithm  which meters traffic so as to change 
routes slowly in response to quasi-static  variations. Stern [8] 
developed another  distributed algorithm based on an electrical 
network analogy of a  communication  network. Finally our 
algorithm  has similarities to  the centralized flow deviation 
strategy of Fratta et al. [8]. Their  algorithm was the first to 
effectively exploit  the marginal change in network delay with 
a change in link flow,  a  notion which we also use extensively. 

One important characteristic of  the algorithm, not pos- 
sessed by  any  other  routing algorithm t?  our  knowledge, is its 
property  of being loop free  at every iteration. Aside from 
reducing delay, it appears that  loop  freedom can be important 
in simplifying  higher level protocols. In fact,  the major reason 
for  building loop  freedom  into  the algorithm was to prevent 
a  potential deadlock  in the  protocol  for  communicating  up- 
date  information  between  the nodes. 

FORMULATION OF THE MODEL 

Let  the nodes of an n-node  network be represented  by the 
integers 1,  2 ,  .e., n and  let a link from node i to  node k be 
represented  by (i,k). Let L be the set of links, L = {(i,k): 
a link goes from i to k} .  In order  to discuss traffic flow, we 
distinguish  link (i,k) from (k,i), but assume that if one exists 
the  other does  also. 

Let ri(j)  2 0 be the  expected  traffic, in bits/s,  entering  the 
network at  node i and  destined for  node j (see Fig. 1). We 
assume that this input  traffic  forms an ergodic prqcess such as, 
for  example,  a Poisson process of message arrivals with  a geo- 
metric  distribution on message lengths. Let ti(j) be the  total 
expected  traffic  (or  node flow)  at node i destined for  node j. 
Thus t i ( j )  includes both ri(j) and  the  traffic  from  other nodes 
that is routed  through i for  destination j. Finally  let @ j k ( j )  

be the  fraction  of  the node flow ti(j) that is routed over link 
(i,k). We take @ i , h ( j )  = 0 for (i,k) 6 L (i.e., no traffic is routed 
over nonexistent links). We also take &( j )  = 0 for f = j (i.e., 
traffic which  has reached its destination is not sent back  into 
the  network). Since the node flow ti(j).at  node i is the sum of 
the  input  traffic and the  traffic  routed  to i from  other  nodes, 

Equation (1) implicitly expresses the conservation of flow 



GALLAGER:  ROUTING  ALGORITHM  USING  DISTRIBUTED  COMPUTATION 75 

r2(3)  

Fig. 1 .  Nodes, links, and inputs in a data network. 

at  each  node;  the  expected  traffic  into  a node for  a given des- 
tination is equal  to  the  expected  traffic  out  of  the  node  for 
that  destination.  Note  that (1) deals with  expected  traffic  and 
thus does not preclude the existence of  traffic queues at  the 
nodes. 

Now let f i k  be  the  expected  traffic,  in  bits/s,  on link (i,k) 
(with f i k  = 0 if (i,k) @ L). Since t i ( j ) G i k ( j )  is the  traffic 
destined for j on (i,k), we have 

In what follows we refer to  the set of  expected  inputs 
{r i ( j ) }  as the  input set r ;  the  set  of  expected  total  node flows 
{ t i ( j ) }  as the node flow set t, the set  of fractions { @ i k ( j ) }  as 
the routing variable set @, and the set of expected link  traffics 
u i k }  as the link flow set f: We have seen for an arbitrary 
strategy  of routing (subject to  the existence of  the  expecta- 
tions { t i ( j ) }  and  the conservation  of  flow) that r, t, @, and f 
all have meaning and satisfy (1) and (2). We are interested in 
distributed  routing algorithms in which  each node i chooses its 
own routing variables & ( j )  for each k, j .  The  question  then 
arises whether  the  inputs r and the  routing variables set @ 
uniquely specify t and f: Before answering this  question, we 
define @ precisely,  adding one  additional  constraint. 

Definition: A  routing variable set @ for an n-node  network 
with links L is 'a set of nonnegative numbers @ik( j ) ,  1 < 
i,  k, j < n,  satisfying the following conditions. 

1) @ i k ( j )  = 0 if (i,k) @ L or if i = j .  
2 )  Ck @ i k ( j )  = 1. 
3) For each i, j (i f j )  there is a  routing  path  from i to j ,  

which  means there is a sequence of  nodes i, k, 1, -, m, j such 

Theorem I :  Let  a  network have input  set r and  routing 
variable set @ (according to  the above definition). Then  the set 
of equations (1) has a  unique  solution  for t. Each component 
t i ( j )  is nonnegative  and continuously differentiable as a  func- 
tion of r and @. 

This theorem is proved in  Appendix A. It  turns  out  that  the 
constraint  on  the existence of  routing  paths in the  definition 
of routing variables is necessary for  this  theorem. If this  con- 
straint were eliminated,  one  could still show,  by  the  method in 
Appendix A, that t i( j)  has a  unique  solution  for  each i, j for 
which a  routing  path  from i to  j exists.  If no  routing  paths 
exist from  some set  of i to  j ,  then  there are two possible cases: 
1) if no  traffic  for j comes into any  of  these nodes,  either  from 

that Gik(1) > 0, @ k l ( j )  > O ,  ' * ' >  @ m j ( j )  > 0- 

inputs  or  from  other nodes outside  the  set,  then  there are 
multiple solutions  to (1); 2) otherwise there is no  solution  to 
(1). Physically, the first case above corresponds to  a set of 
nodes  which have no  traffic  for  a given destination coming  in 
or going out,   but  whch might have some messages circulating 
around  within  the  set.  The second case corresponds to  traffic 
coming into  the set for  a given destination,  -but  none going 
out, leading to an infinite build-up  of  queues or lost traffic. 

The more customary way to  treat routing  in a  network is 
to regard it as a  multicommodity flow problem (see, for 
example,  Frank and Chou [9]). The traffic flow to each des- 
tination can be regarded as a  commodity, and then ( 1 )  is 
equivalent to  the  multicommodity flow constraints.  Our 
restrictions on the routing variables @ are somewhat more 
restrictive than  the usual multicommodity flow constraints. In 
particular @ j k ( j )  = 0 prevents traffic  at  a  destination j from 
looping back into  the  network,  and  the existence of  routing 
paths prevents the isolated looping referred to in case 1) above. 

We have seen that any  routing  policy,  subject to  the 
previously mentioned restrictions,  leads to  the sets t ,  @, andf, 
and  any distributed algorithm  in  which @ is selected by  the 
individual nodes leads to.  a unique t, f We now turn our atten- 
tion  to delay of messages in  the  network. 

Let D i k  be the  expected  number  of messages/s transmitted 
on link (i,k) times the  expected delay/message (including 
queueing  delays at  the link input). Assume that D i k  is a  func- 
tion  only of the link  flow f i k ,  i.e., that Dik depends  on  the 
routing variables only  through f i k .  We also make the assump- 
tion  that messages are delayed only  by  the links of  the  net- 
work. This is reasonable if the processing time  at an intermediate 
node is associated partly  with  the  link  on  which  the message 
arrives and  partly  with  the link on which it  departs. 

It can  now be seen with  a  little  thought  (or see Kleinrock 
[I  11) that  the  total  expected delay per message times the 
total  expected  number of message arrivals/s is  given by 

i .  k 

Since f i k  = 0 for (i,k) 6 L ,  we also take D i k ( f i k )  = 0 for 
(i,k) 6 L .  Since the  total message arrival rate is independent  of 
the  routing algorithm,  we  can  minimize the  expected delay/ 
message on  the  network  by minimizing D, over all choices of 
routing variables (recall that f is a function  of r and 4). The 
algorithm  we describe subsequently will be an iterative 
algorithm for performing this  minimization. 

Before  proceeding,  however, we should  point  out some  of 
the consequences of  our assumption that Dik is a  function 
only  of f i k .  Suppose  that  there are two  paths  from  node i to  
j and  that half the  traffic is sent over each path,  but  the delay 
is greater on  one  path  than  the  other.  Then we could  reduce 
the delay/message  by sending the  short messages over the small- 
delay path  and  the  long messages over the long-delay path. 
Keeping the same traffic (in bits/s)  on each path, we would 
have more messages on  the  short  path  than  the  long, and thus 
would  reduce  delay/message. The  assumption  that D i k  is a 
function  only of f i k  restricts us from  comparing  such  alterna- 
tives. Another consequence arises with  dynamic  routing, where 
one would  .hope  to reduce the  queueing delays on  the links 
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without reducing the  long-term  expected link  flow. This, how- 
ever,  would change the  functions D i k ( f i k ) .  Thus our assump- 
tion effectively masks the  distinctions  between  dynamic  and 
quasi-static routing (and for this reason makes the  problem 
analytically  tractable). 

Kleinrock [ 1 I 3 showed that  if queueing  delays are the  only 
nonnegligible source of delay  in  a network,  and if each link 
traffic can be modeled as Poisson message arrivals with  inde- 
pendent  exponentially  distributed lengths, then D i k ( f i k )  = 
f i k / ( C i k  - f i k )  where c i k  is the  capacity  of link (i,k). This 
formula  has also been  refined to account  for overhead and 
propagation delays  (Kleinrock [12]). For  our  purposes,  it is 
immaterial  what  function Dik is, although we shall make  the 
reasonable assumption  that Dik is increasing and convex U in 
f i k  . Before describing the algorithm, we develop necessary and 
sufficient conditions on @ to minimize D T .  

NECESSARY  AND SUFFICIENT CONDITIONS 
FOR MINIMUM DELAY 

First we calculate the partial derivatives of  the  total delay 
D T  with respect to  the  inputs r and  the  routing variables @. 
Assume a small increment E in the  input r i ( j ) .  For  each adja- 
cent  node k, an increment f @ i k ( j )  of  this new incoming  traffic 
will flow over (i,k), and to first order,  this will cause an incre- 
mental delay on that link of 

If node k is not  the  destination  node,  then  the  increment 
f @ i k ( j )  of  extra  traffic  at  node k will cause the same increment 
in  delay from  node k onward as an increment e @ i k ( j )  of new 
input  traffic at node  k. To first  order this incremental  delay 
will be e @ i h ( j ) a D T / a r k ( i ) .  Summing over all adjacent  nodes k, 
then, we findl  that,  for i # j ,  

We take aDT/arj(j) = 0 in  this  and subsequent  equations  and 
also take  terms  for whch  (i,k) $E L to be 0.  Theorem  2, which 
follows, gives a  rigorous justification  of ( 5 ) .  

Next consider a D T / a @ i k ( j ) .  An increment E in &( j )  causes 
an increment q ( j )  in the  portion  of t i ( j )  flowing on link (i,k). 
If k # j ,  this causes an addition eti(j)  to  the  traffic  at k des- 
tined  for j. Thus  for (i,k) E L, i # j ,  

Theorem 2: Let a network have inputs r and  routing vari- 
ables q5, and  let  each marginal link  delayDik'(fik) be contin- 
uous in f i k ,  (i,k) E L. Then  the set of  equations (S), i # j ,  has 
a unique (and correct) set of  solutions  for a D T / a r i ( j ) .  Further- 

' Agnew [SI, [ 6 ]  develops an  equation similar to (5) but  omits 
the final term a&/ark(i); his  algorithm, however, effectively includes 
the effect  of  this term. 

more,  (6) is valid and both aDT/ari(j) and a D T / a & k ( j )  for 
i # j ,  (i,k) E L are continuous in r and @. 

This theorem is proved in Appendix A. The appendix also 
gives explicit  expressions  for aDT/ari(j) and  a D T ) a @ i k ( i ) ,  

but  it  turns  out  that  the implicit forms  in ( 5 )  and (6) are 
needed  in the algorithm to be presented. 

One might now hope  that all that is required to minimize 
D T  is to find a stationary  point  for D T  with respect to varia- 
tions in @. Using Lagrange multipliers  for the  constraint 
x k   @ i k G )  = 1, and taking into  account  the  constraint @ i k ( j )  2 
0,  the necessary conditions  for a minimum of DT with respect 
to @ are,  for all i #= j ,  (i,k) E L ,  

This states  that  for a given i, j ,  all links (i,k) for which & ( j )  > 
0 must have the same marginal delay a D , / a @ i k ( j ) ,  and  that 
this marginal delay  must be less than  or  equal  to a D T / a @ i k ( j )  

for  the links on which @ i k ( j )  = 0.  Unfortunately, as Fig. 2 
illustrates, (7) is not a  sufficient condition  to minimize D T  

(i.e., D T  can have inflection  points as a function  of @). 
In Fig. 2,  the  only  input traffic goes from  node 1 to 4. It is 

easy to verify that (7) is satisfied at each node.  The  trouble is 
that  the  traffic  at  node  2,  t2(4), is zero, which automatically 
satisfies (7); one does not get  a better  routing by decreasing 
$ ~ ~ , ~ ( 4 ) ,  but  one does move to a point, when @2.3(4) < 1/2, 
where the  routing can be improved by increasing @1.2(4). 
After  studying this example,  it is not difficult to hypothesize 
that (7) would  be  sufficient to minimize D T  if the  factor t i ( j )  
were removed from  the  condition. 

Theorem 3: For each (i,k) E L assume that D i k ( f i k )  is 
convex U and  continuously differentiable for 0 < f i k  < c i k  

where the  capacity c i k  satisfies 0 < c i k  < 00. Let $ be the  set 
of @ for which the link flows satisfy f i k  < c i k  for all (i,k) E 
L .  Then (7) is necessary for @ to minimize D T  over $ and (8), 
for all i f  j ,  (i,k) E L is sufficient. 

This theorem is proved in Appendix B. Note  that  the 
theorem  does  not assert the existence of a minimum;  the  con- 
ditions  of  the  theorem  do  not even assert that $ is nonempty. 
Note also that if we multiply  both sides of (8) by & ( j )  and 
sum over k, then we see from (5) that (8) must be  satisfied 
with  equality  for Gik('j) > 0.  Thus (8) is equivalent to 

a D T  
D i k ' ( f i k )  + - 

ark (i) 

for all i # j ,  (i,k) E L with equality for & ( j )  greater than 0. 

THE ALGORITHM 
The general structure of an algorithm to minimize D ,  

(assuming stationary  traffic  inputs) should  now  be clear. Each 
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D ' =  3 

Fig. 2. Inflection point in DT(@). 

node i must incrementally decrease those  routing variables 
@ i k ( j )  for which the marginal delay Dik'(fik) + aD,/ark(j) 
is large,  and  increase those  for  which  it is small. The algorithm 
breaks into  two  parts: a protocol  between  nodes  to 'calculate 
the marginal delays  and  an  algorithm for  modifying  the 
routing variables; we discuss the  protocol  part  first. 

Each node i can estimate, as a  time average, the  link  traffic 
f i k  for each  outgoing  link. Thus  with an appropriate  formula 
for Dik(fik), the  node can also calculate Dik'(fik). Since 
formulas for Dik involve many  assumptions which  might be 
unwarranted,  it might be preferable to  estimate Dik' directly; 
such  estimation  procedures are developed by Segall [13] and 
Bello [ 141 . 

In  order  to see how node i can calculate aD,/ar,(k) for a 
neighboring node k, define node m to  be downstream from 
node i (with respect to  destination j )  if there is a routing  path 
from i to  j passing through m (i.e., a path  with positive routing 
variables on each  link).  Similarly,  we  define i as upstream from 
m if m is downstream  from i. A routing variable set @ is loop 
free if for  each  destination j ,  there is no i, m (i  # m) such  that 
i is both  upstream  and  downstream  from m. Note  that if such 
an i, m pair existed,  there  would  be a routing  path  from i to  j 
that  looped  from i to m and  back  to i on  its  way  to j. If @ 
is loop  free,  then  for  each  destination j ,  the  downstream (and 
the  upstream) relation form a  partial ordering  on  the set  of 
nodes. 

The  protocol used for an update,  now, is as follows: for 
each destination  node j ,  each  node i waits until  it has received 
the value aD,/ark(j) from each of  its  downstream neighbors 
k # j (i.e., nodes k with @ i k ( j )  > 0). The  node i then calculates 
aD,/ari(j) from ( 5 )  (using the  convention  that aD,/arj(j) = 
0) and  broadcasts  this to  all of  its neighbors (except to  the 
destination  node j which  has no need of  the  information).  It 
is easy to see that  this  procedure is free of deadlocks (i.e., a 
node waiting  forever for  updating  information  from a down- 
stream neighbor) if and  only if @ is loop  free.  In  fact,  for a 
given j ,  the  nodes can broadcast  their values in any  order  con- 
sistent with  the  downstream partial  ordering. For  this reason 
we will be careful to  ensure that  the algorithm  generates only 
loop free @. 

It can be seen that in  an update,  each link (i ,k) must  trans- 
mit aD,/ari(j) for each j # i, j # k. The same amount  of 
updating  information is used in the ARPANET strategy,  but 
there delays rather  than marginal delays are sent, and the 
transmissions are unordered so that  many  updates are required 
for changes to  propagate through  the  network. Here, of 
course, changes propagate completely in one  update,  and  the 
only inaccuracies  come from inaccuracies in  the  estimates  of 
the link marginal delays. One might object to  sending each 

value aDT/ari(j)  separately on a link,  and indeed the  ineffi- 
ciency would be high if each  such  number required an indi- 
vidual packet. However, the  routing  update  information could 
easily be piggy-backed on  other  packets, requiring very little 
overhead. One might also object to  the time  required for  the 
updating to  propagate through  the  network,  but speed is 
relatively unimportant  in a  quasi-static  algorithm. 

We shall later define one small but  important  detail  that has 
been  omitted so far  in the  updating  protocol  between  nodes; a 
small amount of additional  information is necessary for  the 
algorithm to maintain  loop  freedom.  It  turns  out  to  be nec- 
essary, for each destination j and  each  node i, to specify  a set 
Bi(j) of  blocked nodes k for  which & ( j )  = 0 and  the algo- 
rithm is not  permitted to  increase & ( j )  from 0. For  nota- 
tional convenience  we  include k such  that (i,k) @ L in the  set 
Bi(j) .  We first  define  and discuss the  algorithm  and  then define 
the  sets Bi(j) .  

The algorithm A ,  on each iteration, maps the  current 
routing variable set @ into a new set @l = A  (4). The mapping 
is defined as follows. For k EBi( j ) ,  

For k Bi( j ) ,  define 

where 7) is a scale parameter  of A to  be discussed later.  Let 
kmin(i , j)  be a value of m that achieves the minimization in 
(1 1). Then 

The algorithm  reduces the  fraction  of  traffic  sent  on  non- 
optimal links  and increases the  fraction  on  the best link.  The 
amount of reduction, given by Aik( j ) ,  is proportional to  aik( j ) ,  
with  the restriction that @ j k l ( j )  cannot be negative. In  turn 
aik(j )  is the difference between  the marginal delay to  node j 
using link (i ,k) and using the best link.  Note  that as the suffi- 
ciency condition (9) is approached,  the changes get small, as 
desired. The  amount of reduction is also inversely proportional 
to t i ( j ) .  The reason for  this is that  the change in  link traffic is 
related to Aik(i)t i( i) .  Thus when ti(i) is small, A i k ( j )  can be 
changed by a large amount  without .greatly  affecting the 
marginal link delays.  Finally the changes depend  on  the scale 
factor 77. For 7) very small, convergence of  the algorithm is 
guaranteed, as shown  in Theorem 5, but  rather slow. As 7) 
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increases, the speed of convergence increases but  the danger of 
no convergence also increases. 

It is not difficult to develop  heuristic  improvements on this 
algorithm to speed up  its convergence; we have settled on this 
particular version since it allows us to prove convergence. 

We now must complete  the  definition  of algorithm A by 
defining the sets Bi(j). First  define a  routing variable &( j )  
to be improper if &(j)  > 0 and aDT/ari(j) < aDT/ark(j). 
We have already said that Bi(j) includes only k for which 
&(j)  = 0, and  thus,  from ( S ) ,  

Assuming positive marginal link delays, aDT/ari(j) < 
aD,/ark(j) + if @i&) is improper,  and we see that 
the algorithm always reduces improper  routing variables. In 
fact, since aDT/ari(j) is the marginal delay from i to j ,  we 
would expect marginal delay to decrease as we move down- 
stream,  and  improper  routing variables should  be rather 
atypical. 

For  a given destination  node j ,  the  set  of marginal delays 
aDT/ari(j) (i Zj) forms an ordering of  the nodes i. Note  that 
if there are no improper  routing variables, this  ordering is con- 
sistent  with  the  downstream partial  ordering. Fig. 3 illustrates 
these  orderings. The  horizontal axis represents marginal delay 
(for  the given destination  node j = 5 )  and  the solid lines show 
the  downstream  partial ordering by  denoting  the links for 
which  @ik(5) > 0 .  The  dotted lines are examples of links (i,k) 
for which loops  would  form if G i h ( 5 )  were increased from 0. 
We now see that if @ is loop free and @l = A ( @ )  contains  a 
loop  for some destination j ,  then  the following two  conditions 
must  hold. 

1) The  loop  contains some  link (i,k) for which &( j )  = 0, 

2 )  The  loop  contains some link (Z,m) for which @,,(j) is 
improper  and  for which Glm l ( j )  > 0.  

The first condition reiterates that some routing variables 
must be increased from 0 to form  a  loop  and  that  the algo- 
rithm  only increases routing variables on links to nodes  with 
smaller marginal delay.  The second  makes use of  the  fact  that 
if nodes i have numbers associated with  them (aDT/ari(j)), 
then  it is impossible to move around  a  loop  of  nodes  and 
have those  numbers  monotonically decrease. 

Definition: The set Bi(j) is the  set  of  nodes k for which 
either @ i k ( j )  = 0 and k is blocked relative to j or (i,k) $E L. 
A  node k is blocked relative to j if k has  a  routing  path  to j 
containing some link (Lm) for which @ l m ( j )  is improper  and 

@ i k l ( j )  > 0 ,  and aDT/ari(j) > aDT/ark(j). 

Note  that  the  definition  permits k to be identical  to I. The 
reason for (15) can be seen from  (14)  and  (12). If  (15) is not 
satisfied, then Alm(j)  = @ l m ( j )  and @ l m l ( j )  = 0, so that (Z,m) 
can not be part  of  a  loop  for  destination j. 

Theorem 4: If the marginal link delays Dik' are positive and 
@ is loop  free,  then @l = A ( @ )  is loop  free. 

DecreoringdDT/dri(5) 

Fig. 3.  Marginal delay ordering,  downstream  partial  ordering, and 
possible loop formation. 

Proof: Assume to  the  contrary  that @l has  a  loop, say 
with respect to  destination j. Then from  condition 2 )  above 
there is some  link (I,m) on the  loop  for which @,,(j) is im- 
proper  and Glm l ( j )  > 0. This implies that (15) is satisfied. 
Now move backward around  the assumed loop to  the  first 
link (i,k) for which @j(i,k) = 0;  from  condition I), there  must 
be such  a  link. Since (Z,m) is on a  routing  path  for @ from k 
to j ,  k E Bi(j). Thus,  from  the algorithm, @ i k l ( j )  = 0, yielding 
the  contradiction. 

The  protocol required for  a  node i to determine  the set 
Bi(j) is as follows. Each  node I ,  when  it calculates aD,/ar,(j) 
determines,  for each downstream m, if @ l m ( j )  is improper 
and satisfies (1 5 )  (only the  downstream neighbors could be 
improper). If any  downstream neighbor satisfies these con- 
ditions,  node I adds a special tag to its  broadcast  of aDT/arl(j). 
The  node I also adds  this special tag if the received value 
aDT/arm(j) from  any  downstream m contained  a tag. In this 
way all nodes upstream  of I also send the tag. The  set Bi(j) 
is then  the  set  of  nodes k for which either (i,k) L or  the 
received aDT/ark(j) was tagged. 

Theorem 5: Assume that  for all (i,k) E L, Dik(fik) has  a 
positive first derivative and nonnegative  second derivative for 
0 < fik < Cik and  that limf. rcikDik(f ik)  = -. For every rk 
positive number Do there exists a scale factor 77 for A such 
that if Go satisfies DT(@O) < Do, then 

lim DT(@m)  = min DT(@) 
m + -  @ 

where Gm = A ( @ m - l )  for all m > 1. 
This is proved  in Appendix C. Note  that 77 depends  on some 

upper  bound Do to DT; this is natural, since when  the link 
flows are very close to capacity, small changes in the link  flows 
cause large changes in marginal delay.  The  proof uses a ridicu- 
lously small value of 77 to guarantee  convergence under all 
conditions  and  experimental  work is necessary to  determine 
practical values for 77. 

USE OF THE ALGORITHM FOR QUASI-STATIC ROUTING 

We have shown in the last section  that  the algorithm A 
must eventually converge to  the  minimum average delay for a 
network  with  stationary  inputs  and links. The algorithm is 
really intended, however, for quasi-static  applications  where 
the  input  statistics are slowly changing with time and where 
0-ccasionally links or nodes fail or are added  to  the  network. 
Under  these more general conditons,  it is clear that  the  loop 
freedom  of  the algorithm is maintained since this is a  mathe- 
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matical property  that is independent of the marginal link 
delays and  node flows,  which are the  only  inputs  to  the algo- 
rithm  (note  that  the  inputs r plays a role  in the  theoretical 
development,  but  do  not appear  in the algorithm  and  need not 
be estimated). 

The  question of whether  the algorithm  can adapt fast 
enough  to  keep  up  with changing statistics is difficult  and 
requires  more study. Clearly, the  faster  the statistics  change, 
the  more frequently  the algorithm  should be  updated,  but 
frequent  updating has two undesirable effects.  First,  frequent 
updates require  more updating  protocol,  thus reducing the 
effective link  capacities available for data,  and  second, fre- 
quent  updates will necessitate noisier measurements  of 
marginal link  delays and  node flows. Experimentation  would 
be helpful both in  determining update rates  and the scale 
parameter 1). 

~ Another  open  question is that of a starting rule for  the 
algorithm  (finding a  loop free @ to  start with).  One  possibility 
is to  start  with  shortest  paths;  that is,  set &( j )  = 1 for the 
link (i,k) that leads to j from i with  the smallest number of 
links. Such  a  strategy might well lead to link flows which 
mathematically .exceed  capacity,  but in this case a well 
designed flow control  would limit the  input  to  the  network, 
thus yielding large but finite marginal delays on  such links 
and allowing the routing  algorithm to gradually adapt. 

The  problem  of dropped links or  nodes is somewhat more 
complicated.  Some of the problems  here  must be solved by 
higher order  protocols, since if the  network becomes  discon- 
nected,  there is no way to  route  data  between disconnected 
parts of the  network. However the  routing algorithm should 
still adapt by  finding routes  for  any  data  that can be  sent. 
Each node i.at the  end of a link (i ,k) that has failed or whose 
opposite  node has failed should signal the  fact  that an update 
should  start  throughout  the  network. In addition, i should  no 
lpnger regard k as being downstream  with respect to  any des- 
tination j ,  and if k was the only downstream  neighbor,  then i 
should  broadcast aDT/ar,(j) = m. This latter broadcast  pre- 
vents  upstream nodes  from waiting indefinitely for  update 
information to  propagate through  a failed link  or  node.  The 
exact details  of updating  protocols in the presence of link and 
node failures is a subject for  futher research. 

APPENDIX A 

Proof of Theorem 1: 

Without loss of generality,  take  the  destination  node j to 
be the  nth of the n nodes and drop  the argument j from (l) ,  

Summing both sides over i, we  see that any solution  to  (Al) 
satisfies 

t ,  = r,. 
1 

Temporarily let Qni = ri/t,, and  substitute  this in (Al). 

Any  solution  to (A3)  and (A2) satisfies (Al)  and vice versa. 
Let 5 be the n X n matrix  with  components Gli. 6 is stochastic 
(i.e., G l j  2 0 for all 1, i and X i & ,  = 1  for all i) and  (A3) is just 
the  formula for steady-state probabilities in a Markov chain. 

It is well known (see, for  example,  Gantmacher  [15])  that 
if 9 is irreducible, then (A3) ha; a  unique  solution, aside from 
a scale factor  determined  by (A2), and ti > 0, 1 < i < n. The 
matrix 6 is irreducible; however, if for each i, k there is a  path 
i, 1, rn, .-, p ,  k such  that Gi1 > 0, Glm > 0, - * ,  G p k  > 0. If ri > 
0 for 1 < i < n - 1,  then  node n has a  path  to each i, 1 < i < 
n - 1. By the  definition of routing variables, each i has a  path 
to n and  consequently $ is irreducible. Thus  (Al) has a  unique 
solution,  with positive ti, if ri > 0 for  1 < i < n - 1. 

Now  let t = ( t l ,  -., tn- l ) ,  r = ( r l ,  - . a ,  rn-l) ,  and let @ be 
the n - 1 X n - 1  matrix  with  components Gli (1 < i, I < 
n - 1). Equation (Al) for  1 < i < n - l'is  then t ( I -  @) = r .  
Since this  equation has a unique solution  for ri > 0, I - @ 
must have an inverse. and 

Since the  components of t are positive when the  components 
of r are positive, components  of t are nonnegative  when the 
components of r are nonnegative.  Differentiating  (A4), we get 
the  continuous  function  of @, 

Using (A5) in (A4), the solution  to  (Al) is conveniently 
expressed, for any r ,  as 

Fin'ally, differentiating  (AI)  with respect to @ k m ,  we get 

where 6 , ,  = 1  for i = rn and 0 otherwise. For fixed k, rn, this 
is the same set of equations as (Al), so that  the  solution,  con- 
tinuous in @, is 

Proof of Theorem 2 

First we show that ( 5 ) ,  repeated below with  the  destination 
node again taken to  be n, has a unique solution. 

Let bi = @ i k D i k ' ( f i k )  and let b be the column  vector (b,  , -*, 
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I l ~ ~ . . - ~ ) .  Let V*DT be  the column  vector (aDT/arl, e-, ~ , ( ~ ) = z ~ ~ ~ ( f i ~ ( h ) ) .  
aDT/arn-l). Then (A8) can be rewritten as i. k 

There is a set of routing variables @(A) which gives  rise to f(X), 
(A9) but  they are not linear in X and their existence is not relevant 

We saw in the  proof  of  Theorem 1 that I - @ has a unique 
inverse with  components given by (A5). Thus  the unique  solu- 

to  our  proof. Since each  link  delay Dik is a convex U function 
of the  link  flow, DT(h) is convex U in X, and  hence 

tion to (A9) is 

Since q5* is arbitrary, proving that dDT(X)/dX 2 0 at X = 0 will 

ahm complete  the  proof.  From (B4) and (B3), =E T D l r n ‘ ( h m ) .  ‘ (A1 1) 
1.m 1 = z D i k ’ ( f i k ) [ f i k * -  f i k ] .  (B6) 

Differentiating DT directly  with (2) and (3 ) ,  we get the same dh A=O i ,k  

unique  solution,  which,  from  Theorem 1, is continuous in q5. 

Finally we calculate aDT/a@ik directly using (3j and (2), We now show  that 

Note from (B2) that ”1 + tiDik’(fik) 
ark aDT(@) - 

D i k ‘ ( f i k ) @ i k * ( j )  
k ari(i> 

(‘41 2) 
- dDT(@> 
7 @ik *( j) .  (B8) 

k ark(]) 
We have used (A7) and (A10) to derive (A12), which is the 
same as (6). This is clearly continuous in @ given the  contin- Multiplying both sides of (B8) by t i*(j) ,  summing over i, j ,  
uity  of ti and aDT/ari, and  the  proof is complete. and recalling that f i k  * = Z j  tj*(j)@ik *( j) ,  we obtain 

APPENDIX B 

Proof of Theorem 3 
aDT(@> 

First we show that (7) is a necessary condition  to minimize - z ti*(j>@ik*(j) - ’ 039) 
DT by assuming that @ does not satisfy (7). This  means that 
there is some i, j ,  k, and rn such  that 

i , j ,k  ark (1) 

From  (I), &ti*(j)@ik*(j) = t k * ( j )  - rk(j). Substituting this 
into  the rightmost term  of (B9) and canceling, we get (B7). 

( ~ 1 )  Note  that  the  only  inequality used here was (B8), and  that if 
a@ik (i> a@im (i) q5 is substituted  for q5*, this  becomes an equality  from  the 

aDT(@)  aDT(@) 
@ i k ( j )  > 0 ,  - >-. 

equation  for aDT/ari(j) in (5). Thus 
Since these- derivatives are continuous,  a sufficiently small 
increase in G i m ( j )  and  corresponding decrease in @ i k ( j )  will aDT(@) 
decrease DT, thus establishing that q5 does  not minimize DT.   xDik’ ( f ik ) f ik  =z rk ( j ) -  ’ (B10) 

i ,  k j , k  ark (i) 
Next we show that (8), repeated  below, is a sufficient con- 

dition to minimize DT. Substituting (B10) and (B7) into (B6), we  see that dD,(X)/dh > 
0 at X = 0, completing  the  proof. We note in passing that 

a  rather  fundamental conservation equation. 

aDT(@> ’ aDT(@> 

ark(j) ar i ( j )  
Dik‘(fik) + ~ 

2- , all i, j ,  k. (B2)  (B10) is  valid for  any  set of routing variables and appears to be 

Suppose  that @ satisfies (B2) and has node flows t and  link 
flows J: .Let @* be any  other set of routing variables with  node 
flows t* and link  flows f*. Define 

APPENDIX C 

We prove Theorem 4 through  a sequence of seven lemmas. 
= - X ) f i k  + Xfik* (B3) The  first five establish the descent  properties of  the algorithm, 
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the  sixth establishes a  type  of  continuity  condition, showing t i l ( j ) ,  summing,  and using (1) and (2),  we  get 
that if @ does not minimize D T ,  then for any @* in a neigh- 
borhood of @, DT(Am(@*))  < DT(@) for some m. The seventh x Aik(i)aik(dtil(i) 
lemma is a new global convergence theorem which  does not 
require continuity in the algorithm A ; Lemmas 6 and 7 aDT(@) 
together establish Theorem  4. 

DT(@) < D o  for  some Do. Let @l = A(@)  and let t, J tl, f1 be aDT(@) 
the  node and  link  flows  corresponding to @ and @l, respec- - x [ t k l  ( j )  - Tk (’>I ~ 

tively. Let fh (0 < X < 1) be defined by & k h  = (1 - h)&k + k .j  ark (’1 

=xfil(j) - - x f i k ’ O i k ’ ( f i k )  
i ,i ari(i) i,k 

Let @ be an arbitrary  set  of  routing variables satisfying 

h f k  l, and  let 

From  the Taylor  remainder theorm, 

1 d2DT(X) +-- 
2 dh2 

We have used (B10) to get (C7), and (C8) follows from  (Cl), 
(c2) completing the  proof. 

h=h* Lemma 2: 

where A* is some number, 0 < X* < 1. The  continuity of the 
second derivative above will be obvious from  the  proof of 
Lemma 4, which upper  bounds  that  term.  The first three 
lemmas  deal with dDT(h)/dX 

Lemma 1: 

Proof2: Using the  definitions of aik( j )  and Aik(j )  in (1 1) 
and (1 2) 

where 

f” From  the  definition of Aik(j )  in (12), -aik(’) < 
-ti(j)&G)/Q. Substituting  this  into (C3) yields 

where (C11) follows from Cauchy’s inequality, (Ckak&)z  < 

k # i. 
Now define t i*( j )  as the  total flow at  node i destined for] 

if the  routing variables &(j)  (for k # kmin(i,j)) are reduced 
by Aik(j )  but @ik(j)  for k = kmin(i,j) is not increased.  Mathe- 
matically ti*(’) satisfies 

(&k2)(Cpk2) ,  with ’= 1, fik = Aik( i ) ,  and the Sum  Over 

In (C4), we have used (13)  to  extend  the sum over all k and  in 
(C5), we have used (5). Multiplying both sides of (C5) by 

This has a  unique  solution because of the loop freedom  of @. 
Subtracting (C12) from (1) results in 

nonlinear  in h, and dDT(h)/ah cannot  be  calckated in a straightfor- 
ward way by  differentiating  with  respect to  oh. 

I I ,  
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Since @ is loop  free, at,(j)/ar,(j) < 1. Also if at,(j)/ar,(j) > 0, 
then Z'is upstream of i for  destination j and @&) (and  hence 

We now  upper bound I fik' - f i k  I by first upper  bounding 
[ t i l ( j )  - ti(j) I. As in the  proof  of Lemma 2 ,  we have 

Ail(j)) is zero.  Thus 

Multiplying the  left side by Ai(j) < 1 preserves the  inequality, 
yielding 

(C16) (C23) 

Since 0 < a t i l ( j ) / d r l ( j )  G 1, we can upper  bound this by 

Since the right-hand side of (C14) is nonnegative, we also have 
ti(j)Ai(j) 2 ti*(j)Ai(j). We interrupt  the  proof now for a short ti' ( j )  - li(j) < t k ( j l A k  0'). 
technicat lemma. h 

satisfying ai < F k p k  ;ai > pi for 1 < i < m. Then terms in  which @ k l ' ( j )  - @ k l ( j )  < 0 ,  and this leads to 
Lemma 3: Let ai, pi (1 < i < m )  be nonnegative numbers We can lower bound (C23) in the same way, considering only 

Proof of Lemma 3: 

where we have used ai > pi and then Cauchy's inequality. 
Since Cpi 2 for all k, j ' 1  

Ihk'   - f ik I 2 f l W l ( j ) G i k l ( j )  

This implies (C 17),  completing  the  proof of Lemma 3. The double sum in (C25) has at most (n - nonzero 
Now let ai = ti(j)Ai(j) and pi = ti*(j)Ai(j). Since  these terms ( j  # i, I # j : )  and the second  sum  at most n - 1  terms. 

terms are nonzero  only  for i # j ,  we can take m = n - 1. Since Using Cauchy's inequality on both  terms  together, we get 
the  conditions  of  the  lemma are satisfied for this  choice, 

Since t i*(j)  < t i l ( j ) ,  we can substitute (C20) into (C1 l),  -t x f i 2 0 ' ) [ @ i k 1 O ' ) - @ i h O ' ) l 2  
getting (C9) and  completing  the proof of Lemma 2. i 

i , k a n d o v e r O < X < l . T h e n f o r a n y X , O < & < l ,  i f i k '   - hk  l2 fi(n - 1) Zfl2(j)Al20') 

Lemma 4: Let M be an upper  bound  ta D i k " ( f i k * )  over all 

k i j , l  
d2D,(X) . - <-&f(i7 + 2)(n - 1)n 2 ( j ) t k  2( j ) -  (C21) 

dh2 j.k +2 2 t i2( j )Ai2( j )} .  (C26) 
i 

! 

Proof: The  bound M must exist because D i k " ( f i k * )  is 
a contin'uous function of X over the  compact region 0 < X S 1. Summing over i and substituting  the result in (C22), we get 
Taking the second  derivative, we get (C21), completing the  proof. 
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Lemma 5: For given Do,  define 

M = max  max Dik"(fl  
i ,k  f : D i k ( f )  < Do 

where Ai(j )  and t i ( j )  correspond to  the given @. Choose E small 

that 
7) = [Mn6] -1. (c28) enough so that (C33) is satisfied for I @ - @* I < e and also so 

Then  for all Q such  that DT(@) < Do, 

For 7) = [Mn6] - l ,  the second term in brackets above is less 
than half the  magnitude of the first term, yielding (C29). It 
follows that DT(@l)  < DT(@) < Do. By convexity  then The  lower bounds above are continuous  functions  of @. Since 
D i k ( f A )  < Do for 0 < X < 1. Thus M as  given in (C27) satisfies blocking  occurs in @, there is some i, j ,  k such that  both 
the  condition  on M in  Lemma 4, compleing the  proof. 

Do and  let @ be an arbitrary set  of routing variables that  does 
not minimize DT and  that satisfies DT(@) < Do. Given this @, 
there  exists  an E > 0 and an m, 1 < m < n, such  that for all and 

Lemma 6: Let the scale factor q satisfy  (C28) for  a given aDT 

arkO'> ariG> O (C36) 

Proof: We consider three cases. The first is the typical  Combining  (C35) to (C37), 
case in which no blocking  occurs  and DT(A(@)) < DT(@), the 
second is the case in  which  blocking occurs, and the  third is Aik(j>tiO'> 7)Dik'(fik). (C38) 
the  situation  typified  by Fig. 2 in which DT(A(@)) = DT(@). 

case 1: N~ blocking; ~ ~ ( j ) ~ ~ ( j )  > 0 for i, j .  ~f no Since the right-hand side of ((35)  is continuous in @, there is a 
nodes are blocked for @, then  by  the  definition of  blocking neighborhood Of @* around @ for which 
(15), there is a  neighborhood  of @* around 4 for which no 7) 

blocking  occurs. In this neighborhood, Aik*c)li*O')  -Dik'(tik). 2 (C39) 

which is continupus in @. It follows from  (12)  that Aik(j )  is 
continuous in 4, and the  upper  bound to  DT(A(@)) - &(@) 
in (C29) is continuous3 in @. Since by  assumption  the  bound 
in (C29) is strictly negative, there is a  neighborhood of @* 
around 4 for which 

3As a precaution against being too casual about these  arguments, 
one should note  that if the minimizing rn in (C32) is not  unique,  then 
A ( @ )  is not continuous  in @. 

Equation (C3 I) ,  for m = 1, now  follows  in the same way as in 
case 1 .  

Case 3: Aik(j)t i( j)  = 0 for all i, j ,  k. Let a3 be the set of 
@ for which Aik(j)t i( j)  = 0 for all i, j ,  k. Let @ ( I )  = A'(@) for 
the given @ and let rn 2 2 be the smallest integer such  that 
@(m -1 ) 4: a3. We first show that rn < n. Note  first that  for 
any @J E a3, A changes Gj(i,k) only  for i, j such that t i ( j )  = 0 
and  thus  the  node flows and link flows cannot change. 
aD,/ar,(j) can  change,  however, and as  we shall see later,  must 
change for some i, j if @ does not minimize DT. 

Now  consider (0 < I < m - 2, where @ ( O )  denotes  the 
original 4). Since @(') E a3, Aik(l)(j? > 0 implies that ti(j) = 

given i, j all @ i k ( ' ) ( j )  are reduced to 0 except  for  the k which 
minimizes Dik ' ( f ik )  + aDT(@(i))/ark(j). Thus, using ( S ) ,  

0. From  (12), @ i k ( ' ) ( j )  = Aik'"(j) and @ik( ' ' ' ) ( j )  = 0. For  a 
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Since  this equation is satisfied for all I, 0 < I < m - 2, we 
see that dDT(@(z)) /dri( j )  can be reduced on iteration I only if 
aDT(@(L-l)) /ark(])  is reduced on iteration I - 1 for some k 
such  that aD,(@(z- l ) ) /ark(j)  < aDT(@(l))/ari(j) .  This  reduc- 
tion  at  node k however implies a  reduction  at some node k’ of 
smaller differential delay at  iteration I - 2  and so forth. Since 
this  sequence of differential  delays is decreasing with decreasing 
I and since (from (C40)) the differential  delay  at a given node 
is nondecreasing with decreasing I, each  node in the sequence 
must be distinct. Since there are n - 1 nodes other  than  the 
given destination available for such a  sequence,  the initial I in 
such  a sequence satisfies I < n - 2. On the  other  hand, if 
DT(@(I ) ) /ar i ( j )  is unchanged for all i, j ,  we  see from (C40) 
that @ ( I )  satisfies the sufficient conditions  to minimize D,’ 
and  then @ also minimizes D,’ contrary  to  our  hypothesis; 
thus we must have m < n.4 

Now observe that  the middle  expression  in  (C40), for I = 0, 
is a  continuous  function of @ and  consequently aD,(@(l ) ) /  
ari(j) is a  continuous  function of @ for all i, j .  It  follows by 
induction  that aDT(@(z) ) /ar i ( j )  is a  continuous  function  of @ 
for all i, j and for I < m - 1. Finally @ ( m - l )  e a3, so it  must 
satsify the  conditions  of case 1 or 2;  it will be observed that 
the analyses  there apply equally to @ ( m - l )  because of  the 
continuity of aD,(@(m-l)) /ari( j )  as a  function @. This com- 
pletes the  proof. 

Our last lemma will be stated in greater  generality than 
required since it is a  global  convergence  theorem for algo- 
rithms  that avoids the usual continuity  constraint on the algo- 
rithm (see Luenberger [ 161 for  a good discussion of global 
convergence). 

Lemma 7: Let 4, be a  compact region of Euclidean N space. 
Let A be a mapping from @ into @J and let D ,  be a  continuous 
real valued function in 4,. Assume that D,(A(@)) <DT(@)  for 
all @ E 4,. Let Dmin be the  minimum  of DT over 4, and let 
amin be the set of @ E 4, such  that LIT(@) = Dmin. Assume 
that  for every @ E @ - amin, there is an e > 0 and an integer 
m 2 1 such  that  for all @* E 4, satisfying 1 @ - @* I < e, we 
have &(Am(@*)) <DT(4) .  Then for all @ E a, 

lim D,(Am(@)) = Dmin 
m + -  

Proof: Since 4, is compact,  the sequence {Am(@)}  has a 
convergent subsequence, say { @ } ,  with 

Since DT is continuous, 

41t can be seen from this that  the algorithm converges in at most n 
steps to  a 0 satisfying the sufficient conditions (8) if Dih is linear in 
f i k  for each i, k (in this case, from (C28), q = -). 
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Furthermore:  by  assumption, D,(Am (@)) is nonincreasing in m, 
so that 

To  complete  the  proof, we must  show ihat $’ E amin; we 
assume the  contrary and demonstrate  a  contradiction. By 
assumption then,  there is an e > 0 and an m‘ associated with 
@’ such  that D,(Am’(@*)) < DT(@’) for all @* E 4,, I $* - 
@’ I < e. By (C42) there is an I such  that 1 - @’ I < e,  and 
thus DT(Am‘(@l ) )  < &(@I). Since 41 = A m ( @ )  for some m, 
&(Am ”“(@)) < DT(@’); contradicting (C45)  and completing 
the  proof. 

Proof of Theorem 4: Let 4, be the  set  of  loop free routing 
variables @ such  that DT(@) < Do. We have verified that A 
maps loop free routing variables into  loop free routing vari- 
ables, and  from Lemma 5, D,(A(@)) <LID,($) for $ E 4,. Thus 
A is a mapping from @ into 4,. It is obvious that 4, is bounded 
and easy to verify that  any limit of loop free variables with 
DT(@) < Do is also loop free with DT(@)  <Do. Thus @ is com- 
pact.  The final assumption of Lemma 7 is established by 
Lemma 6.  Thus Lemma 7 asserts the conclusion of  Theorem 4. 
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The  Modeling of Adaptive  Routing  in 
Data-Communication  Networks 

Abstrucf-Basic analytical  models for problems of dynamic  and 
quasi-static routing  in  data-communication  networks are introduced. 
The models are  intended to  handle the  quantities of interest in an 
algorithmic form,  and  as such  require  only  a  minimal number of as- 
sumptions. Control  and  estimation  methods  are used to construct 
algorithms for  the  solution of the  routing problem. 

T 
I .  INTRODUCTION 

HE problem  of obtaining efficient routing  procedures  for 
fast delivery of messages to  their  destinations is of utmost 

importance in the design of modern  data-communication  net- 
works.  Although  a large variety of  routing algorithms have 
been  developed and  implemented  in  many existing networks, a 
lack of basic models  and theories able to  analyze  a large 
variety of routing procedures has made it necessary to  base 
these  algorithms  almost  solely on  intuition, heuristics,  and 
simulation.  It is the purpose of  this paper to present several 
analytical  models for various types  of  routing strategies  and to  
indicate methods to  analyze their  performance. 

For  the purpose of this  paper, we classify the  routing  pro- 
cedures  according to  how  dynamic  they  are,  with  the  ends of 
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the scale consisting of purely  static  and  completely  dynamic 
strategies. In a purely  static situation, given fractions of the 
traffic at a node i of   t he   ne twork   des t ined   fo r   each  of the 
other  nodes j # i are directed  on each  of the links outgoing 
from  node i .  These fractions are decided upon  before  the  net- 
work  starts  operating, are m e d  in time, and depend  only  on 
the  time  and ensemble averages of  the message flow  require- 
ments in the  network.  At  the  other  end  of  the scale is the 
completely dynamic strategy  which allows continuous 
changing of  the routes. In particular, the  routes can be varied 
not only as functions of time,  but also according to  congestion 
and  traffic  requirement changes in various ‘portions of the 
network. 

One  can immediately see some of the advantages and draw- 
backs  of  each  of the  extreme strategies, but  probably  the  most 
prominent ones are the following. The  static  routing  procedure 
is relatively simple to  implement,  but  on  the  other  hand, if 
links or  nodes in the  network fail or build congestion,  the mes- 
sages intended to  be transmitted over them will be completely 
blocked.  The  completely  dynamic  procedure is supposed to 
cope with  the congestion  and failure problems,  but  on  the 
other  hand,  it requires large amounts of overhead per message 
for purposes of addressing, reordering at  destinations,  etc. 

Given the advantages and disadvantages of  the  two  extreme 
routing  procedures, one  should try in many practical situations 
to devise strategies that can possibly have some  of the desired 
properties of both. One  possibility is to  use a quasi-static 
routing  procedure, in w h c h  changes of routes will be allowed 
only  at given intervals  of  time and/or whenever extreme 
situations  occur.  The  time intervals between  routing changes 
will be relatively long, so that  most  of  the  time messages will 


