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The  Modeling of Adaptive  Routing  in 
Data-Communication  Networks 

Abstrucf-Basic analytical  models for problems of dynamic  and 
quasi-static routing  in  data-communication  networks are introduced. 
The models are  intended to  handle the  quantities of interest in an 
algorithmic form,  and  as such  require  only  a  minimal number of as- 
sumptions. Control  and  estimation  methods  are used to construct 
algorithms for  the  solution of the  routing problem. 

T 
I .  INTRODUCTION 

HE problem  of obtaining efficient routing  procedures  for 
fast delivery of messages to  their  destinations is of utmost 

importance in the design of modern  data-communication  net- 
works.  Although  a large variety of  routing algorithms have 
been  developed and  implemented  in  many existing networks, a 
lack of basic models  and theories able to  analyze  a large 
variety of routing procedures has made it necessary to  base 
these  algorithms  almost  solely on  intuition, heuristics,  and 
simulation.  It is the purpose of  this paper to present several 
analytical  models for various types  of  routing strategies  and to  
indicate methods to  analyze their  performance. 

For  the purpose of this  paper, we classify the  routing  pro- 
cedures  according to  how  dynamic  they  are,  with  the  ends of 
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the scale consisting of purely  static  and  completely  dynamic 
strategies. In a purely  static situation, given fractions of the 
traffic at a node i of   t he   ne twork   des t ined   fo r   each  of the 
other  nodes j # i are directed  on each  of the links outgoing 
from  node i .  These fractions are decided upon  before  the  net- 
work  starts  operating, are m e d  in time, and depend  only  on 
the  time  and ensemble averages of  the message flow  require- 
ments in the  network.  At  the  other  end  of  the scale is the 
completely dynamic strategy  which allows continuous 
changing of  the routes. In particular, the  routes can be varied 
not only as functions of time,  but also according to  congestion 
and  traffic  requirement changes in various ‘portions of the 
network. 

One  can immediately see some of the advantages and draw- 
backs  of  each  of the  extreme strategies, but  probably  the  most 
prominent ones are the following. The  static  routing  procedure 
is relatively simple to  implement,  but  on  the  other  hand, if 
links or  nodes in the  network fail or build congestion,  the mes- 
sages intended to  be transmitted over them will be completely 
blocked.  The  completely  dynamic  procedure is supposed to 
cope with  the congestion  and failure problems,  but  on  the 
other  hand,  it requires large amounts of overhead per message 
for purposes of addressing, reordering at  destinations,  etc. 

Given the advantages and disadvantages of  the  two  extreme 
routing  procedures, one  should try in many practical situations 
to devise strategies that can possibly have some  of the desired 
properties of both. One  possibility is to  use a quasi-static 
routing  procedure, in w h c h  changes of routes will be allowed 
only  at given intervals  of  time and/or whenever extreme 
situations  occur.  The  time intervals between  routing changes 
will be relatively long, so that  most  of  the  time messages will 
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be delivered in order and will not need individual addressing, 
but  on  the  other  hand, if a link fails or recovers or if the 
traffic  and delays  build up in a particular section  of  the  net- 
work,  the  routing will be changed accordingly. 

The best known existing  analytical’ model for  routing 
problems in data-communication  networks has been intro- 
duced by Kleinrock [ l ]  and addresses the fuced routing 
strategy. We describe it briefly  here for reference and  com- 
parison with  the models introduced in this paper. 

1) The messages arrive from  outside  the  network to  the 
nodes according to  independent  constant rate Poisson pro- 
cesses, and their lengths are assumed to  be independent 
exponentially  distributed  and  independent  of  the arrival times. 

2) At subsequent  nodes along the  paths of the messages, 
the  lengths of the messages and  their interarrival  times  become 
dependent,  a  fact which makes  the analysis extremely dif- 
ficult.  To  cope  with  this  problem,  the  famous “independence 
assumption” is introduced, requiring the messages to  “lose 
their  identity”  at  each  node  and  be assigned new independent 
lengths. 

3) Once a message arrives at  a  node,  it is assigned to one  of 
the  outgoing lines and waits there in queue  until  it is sent. 

4) Based on M/M/1 queue analysis, the delay in steady 
state in each  link is calculated explicitly as 

where 

f i m  is the flow  in  link (Z,m) in messages/second 
Czm is the  capacity of  link (1,m) in messages/second 
Dl,  is the  total  delay/unit time experienced  by all mes- 

sages in link ( Z , r n ) .  

5) A  routing  procedure is obtained  to minimize the  total 
delay over the  entire  network (see [ 2 ] ) :  

The  routing  procedure is static,  namely,  constant in  time and  a 
function of the various  rates and capacities only. 

Since  Kleinrock’s model was proposed in 1962, researchers 
in the area have repeatedly expressed desires to  find  models 
that will be able to  handle  other  types  of  routing  procedures, 
in particular,  dynamic strategies.  Specifically, it is desirable to  
obtain  models 

a) in  which  various assumptions,  and in particular,  the 
“independence assumption” will not  be  needed, 

b)  that will be able to  handle transients and dynamic situa- 
tions and not  only  steady  state, 

c) that  can provide closed-loop control strategies, namely, 
strategies that change  dynamically  according to  the congestion 
in the various portions of the  network. 

The issues above are important in  systems using completely 
dynamic  routing, as well as those employing quasi-static 
strategies. 

The  purpose  of  the present  paper is to introduce models 
for  dynamic and.quasi-static routing and  present techniques  to 
handle  problems a): b), c) above. The models will  be described 
in detail in Section!; 11-IV, but we may mention already that 
the main trend of the models is departure  from  the need  of 
calculating the  quantities of interest like delay,  throughput, 
etc., explicitly in closed form, and rather developing  models 
directed  towards using efficient algorithms to  handle these 
quantities.  The  main idea of the models is to  use estimation 
and optimal  control  methods in the design of optimization 
algorithms. In fact, we may  mention  that  the  transition  from 
closed-form solutions  to  algorithmic  models  has  been re- 
peatedly made before in many aspects  of control  and  estima- 
tion  theory: Kalman  filters have replaced the Wiener filter, 
quadratic linear control replaced the classic root-locus 
methods,  etc. 

In Section I1  we introduce  the basic model for dynamic 
routing,  indicate  the  approach for solving it,  and  illustrate  it 
by a simple example.  Section I11 describes  quasi-static routing, 
indicates  what are the  quantities  of  interest in such a  pro- 
cedure, and proposes schemes to  estimate  them. Models for 
analyzing the  dynamic behavior of  networks using quasi- 
static routing and  for designing’ optimal  feedback quasi-static 
strategies  are introduced  then in Section IV. 

11. BASIC MODELS FOR DYNAMIC ROUTING 

One  of  the first questions  that  has  to  be answered in the 
process  of the  analytical modeling  of a system is how  detailed 
does the  description  of  the  system have to  be.  The  more 
microscopic the  model is, presumably  the  more  accuracy, is 
achieved, but  on  the  other  hand, usually the  harder  it is to  
handle analytically. In a  data-communication  network,  the 
usual approach is to look  at each message or  packet as an 
entity, and therefore  the  state of the  network will be described 
by  the  number  and  destination of packets (say) in each of the 
buffers.  The  difficulty  with  this  approach is that  the-number 
of states  becomes immense even for  the very simplest net- 
works; in a  network  with N nodes, a outgoing links  per node 
in the average, and  buffers  of  maximum  capacity  of m packets, 
the  number  of  states is approximately 

The way to circumvent this  difficulty is to  realize that, in fact, 
any individual packet  contributes very little to  the overall 
behavior of  the  network, so that  it is not really necessary to  
look  separately  at each of these packets  and  their  lengths (does 
it really make much’difference  from  the  network  point  of view 
if at some instant  there are 8 or  9  packets in a  particular 
buffer?).  It  therefore  makes sense to regard the  network in a 
more macroscopic  way  and this is one  of  the  main  features  of 
the  model described  below. 

A.  The Basic Model 
Consider a  data-communication  network consisting of N 

nodes  and  let  the  collection of nodes { 1,2, .-, N )  be  denoted 
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by N. Let L be the  collection of all links in the  network (all 
lines are taken to  be unidirectional): 

L = {(i,k), such  that i,  k E N and  there is a direct 

link connecting i to k } ,  (3 1 

and for every i E N ,  denote 

E(i) = collection  of nodes k such  that (i,k) E L 

Z(i) = collection  of nodes 1 such  that (1,i) E L . (4) 

Let us imagine that  at each node i E N we have N - 1 boxes  in 
which at every time t we store messages, packets,  bits,  etc., 
whose destination is 1, 2, ..., ( i  - l), (i + l), ..., N, respectively, 
disregarding their origin. We call them  boxes  rather  than 
queues, since any  queueing discipline can  be  accommodated 
by the  model  without changing the  equations.  The  number  of 
messages of  each type  at  any time t is measured in some 
arbitrary  units,  but we assume that  the  units are such that 
after  appropriate  normalization,  the  contents of the boxes can 
be approximated by a  continuous variable, called “amount of 
traffic.” Let 

xij(t) = amount of traffic  at  node i at time t whose desti- 
nation is node j where i, j ,  E N, j f i 

r i j ( t )  = instantaneous  rate of traffic  at time t with desti- 
nation j arriving at  node i from  outside  the  net- 
work 

Ci, = capacity of link (i,k) in units of traffic/unit time 
where (i,k) E L.  

We should point  out  that in contrast  to previous models,  the 
“queues”  here are being  associated with  the nodes rather  than 
with  the links. 

Each  link diverging from  a  node i is shared by some or all of 
the  up  to (N - 1) types of traffic  stored  at time t at  node i (we 
use the  term type to  indicate destination). The  problem can be 
stated now  as: at every time t, given the knowledge of the net- 
work  congestion {xij(t),  i, j € IN, j # i}, dynamically decide 
what portion of each link to use for each type of traffic, so 
that the total  delay will be minimized. 

We now give the  equations describing the  problem. 
Dynamics: Let Uikj(t) be the  portion of the  capacity of the 

link (i,k) used at time t for  traffic of type j .  Then  the rate  of 
change of the  contents of each box is  given by 

I Z j  

i,j E N, j # i. (5) 

We may mention  that, in contradistinction  to  ‘the  finite-state 
model, where the  number of states is given in ( 2 ) ,  the  continu- 
ous state  model (5) has at most N(N - 1) states where N is the 
number of nodes in the  network. This number can sometimes 
be further reduced if for physical reasons one  knows  that 

traffic destined to  particular nodes will never arrive at  a given 
node. 

Constraints: We clearly have positivity constraints 

and capacity  constraints 

z U i k j ( t )  < Cik,  (i,k) E L, j E N. (7) 
j #  i 

In  later versions of the  model,  more  constraints may be intro- 
duced, for example,  to  take  into  account  the capacities  of the 
buffers. 

Cost Functional: As mentioned in the discussion at  the end 
of Section I, one of the major  difficulties  of the queueing 
models is that  they require  explicit  closed-form  expressions  for 
the average delays,  and  these  can be found analytically  only 
for very special distributions and dependence relationships 
that  do  not always agree with reality. On the  other  hand, 
algorithmic-orienfed  models  require  only  an  expression for  the 
delay  in  terms  of the  state variables and controls describing the 
problem. For example, observe that if x( t )  is the  amount of 
traffic in some buffer  at time t, then  the  quantity 

gives the  total time spent in this  buffer  by  the  traffic  that 
passed through  it, during  some  period  of interest [to, t f]  when 
t f  is such  that x(t,) = 0 .  Consequently,  expression. (8) i s  
exactly  the  total delay experienced in this  buffer, and there- 
fore  the  total delay  in the  network during [to,t f]  is  given by 

where t f  is some  time at which all boxes are empty. Priorities 
can also be easily incorporated in the  criterion (9) by giving 
nonequal weights aij to  the  appropriate x’s, so that  the cost 
functional will be 

J =l: aijxij(t) dt. 
i f j  

Optimization Problem: Let us denote by x( t )  the vector  of 
all states xij(t)  and  by u(t)  the vector  of all controls Uikj(t). 
The problem is then  to find the set  of controls u as a  function 
of  time  and state 

u(t)  f u(t,x(t)) ( 1  1) 

that will bring the  state  from x( to)  = x. (given) to x ( t f )  = 0 
while minimizing the  criterion (10) subject to  control and 
state  inequality  constraints (6), (7), and to  the dynamics ( 5 ) .  
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B. Solutions to the Optimal Control Problem 

There  are  various ways in  which the  optimal  control 
problem stated in Section 11-A can be attacked.  First, one  can 
observe that  the  model is linear in all variables with  linear  cost 
functiona1,’so that  after discretizing it in time,  it reduces to  the 
solution  of  a linear  programming problem.  Its  solution will 
provide a sequence  of u’s that will bring the  state  from  a given 
x(to) to  0 while minimizing the  cost (10). However, this  brute- 
force method  has  many disadvantages; the linear  program will 
be of very large dimensions, this  method provides only  a non- 
feedback  (although  dynamic)  strategy and therefore  a new 
linear  program has to  be solved for each  initial condition,  and 
also the insight obtained  from  the  solution will be minimal. 
Nonfeedback  solutions, in general, are worth considering, how- 
ever,  because they require much less storage than  the closed- 
loop  one, and various possible methods are presently  under 
investigation [4] .  Our  presentation here will be  restricted, 
however, to  methods  for  obtaining  feedback  solutions, 
namely,  those in which the  optimal  routing variables are given 
as a  function of the present state  of  the  network x(t). 

Feedback  solutions are provided by  the  minimum principle 
of Pontryagin [3] requiring the  formation of the Hamiltonian 

+ CuijXij 

I F j  

where {A,} is the set  of costates, { p i j }  is a set of Lagrange 
multipliers to  take  into  account  the  state  inequality con- 
straints x ) ( t )  > 0 of (6 ) ,  and X) is substituted  from (5). For 
readers not familiar with  the  maximum principle, we may 
mention  that  the Hamiltonian is nothing  but  the  dynamic 
counterpart of the Lagrangian formed  for  static  constrained 
rijnimization  problems, and X, p ,  CY are the  appropriate 
Lagrange multipliers. The  costates satisfy [3] 

and the p i j  are such  that  they satisfy the  complementary slack- 
ness conditions 

The  optimal  control u*(t) is then given by  the following. 
Theorem 1: A necessary  and  sufficient condition  for  the 

control law u* E U optimal is that  for every t and  for some A, 
p,  ‘x satisfying (5), (6a), and (13)  and  (14),  it minimizes the 
Hamiltonian H namely,’ 

where U is the set  of  allowable controls given by 

The  necessity  of the  minimum principle (15) is  classical 
[3] . It  turns  out  that because of  the  linearity  of  the problem, 
(1 5) is also sufficient,  and this fact is proved  in  [4] . The 
sufficiency  of the minimum  principle is important, since it 
assures that if a  path can be found from x(to) to  x(t,) = 0 
such that (15) is satisfied with any set of  costates and 
Lagrange multipliers X ,  p with  properties (13), (14),  then  this 
path is optimal. Therefore the  solution of (15) will provide 
not only a local minimum,  but also a global one. 

Now observe that- since the last two  summations  of (12) 
are independent of u and so are the terms  containing the 
inputs r when substituting x from (5) into  (12), minimizing 
the Hamiltonian (12) is equivalent to  minimizing over u E U 
the  quantity 

r 

Now observe that  to minimize (17) with respect to u subject 
to  the  constraints (6b), (7) is again a linear  programming 
problem  (of very small dimensionality), provided that we 
know  the  costates A(t).  The  problem is that these  costates are 
given by (13),  which is a differential  equation running back- 
ward, whereas (5) are running forward, so that  a  two-point 
boundary value problem has to  be solved. Its  solutions will 
indeed  provide  feedback  strategies  because the X’s are 
dependent on the x’s through  (13) and (14), which makes  the 
solution u of  (17)~-dependent.  The usual technique  of solving 
two-point  boundary value problems is to guess some values of 
hij(to), run (13)  forward while satisfying  (14)  and  minimizing 
(17),  and see whether  the Xij(tf) that are obtained are all0 as 
required by f13). :If yes, the  problem is solved, and if not, 
one finds an  algorithm to correct  the guess and  repeats the 
procedure until  it converges. It is clear that  such an  algorithm 
would be quite  cumbersome  to  our  problem,  and also that, 
after all these iterations, one only  obtains  the  solution  for 
states along the  obtained  path. If another initial state has to  be 
considered,  the  procedure  must be repeated.  It is exactly  this 
point  that makes it difficult to  obtain  solutions  of general 
two-point  boundary value and optimal  control problems. The 
problem  considered here, however, is linear and  convex, and 
by heavily exploiting these facts,  it is possible to  construct  an 
algorithm which, using a relatively small number  of linear pro- 
grams of dimensions not larger than  the  number of control 
variables, will construct  the feedback control law. The main 
idea  of the  algorithy is that,  by solving one linear  program, 
it is possible, because of  the linearity and  convexity  of  the 
problem, to  obtain  the  control law for an entire conical por- 
tion of the  state  space, as will be illustrated in the  example  of 
Section II-C. 

C The Backward Construction of the Control 

We shall consider  here only  the case for which there are no 
inputs (r:(t) = 0 )  over the period of  interest t E [to, t f ]  and 
we also take all weights  in  (10) to  be  unity: 
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The goal is then to  deliver the existing traffic  in  the  network 
Cxij(to) for all i, j E N, i # j }  to  its  destination in such  a  way as 
to minimize total delay (9). In  the case of no  external  inputs, 
the  states x i  will deplete  from  their initial values and sequen- 
tially empty out (contact the boundary xij = 0 )  until  at tf all 
the  states are zero.  It is certainly possible for  optimality to dic- 
tate  that  two or more  states reach the  boundary simultaneously 
or that some states will first increase and  only  then  empty  out. 

Suppose, in the spirit of dynamic programming [5 ] ,  we 
were to  view the trajectories  backward  in  time beginning at t f .  ’ We would then see a  sequence of states leaving the  boundary 
(perhaps two or more at  a time) and varying with piecewise 
constant slopes. Since we know  the value of the  costates  at 
t f ,  we can construct backward  in time  the costates associated 
with those states off the  boundary (pi j  = 0). We then have a 
sequence  of  linear  programs (17), (16) with  known coeffi- 
cients  corresponding to  each time a  state  (or states) leaves the 
boundary. By solving a comprehensive set  of such programs 
corresponding to  all possible combinations  of  states leaving 
the  boundary, we may construct  the  optimal feedback control 
law u*(x) on  the  entire N(N - 1)-dimensional x-space. This 
technique will be illustrated  in the  Appendix  by investigating 
the simple network of Fig. 1. The main point  to observe is 
that  the  optimal routing strategy  for each of  the regions in 
Fig. 2 is obtained by just solving one small linear  program, and 
this will be the case for  arbitrary  networks. In addition,  the 
regions in the x-space within which the same control is optimal 
are always separated by hyperplanes passing through  the 
origin, a  fact which  makes both  their  computation and the 
decision on  the value of the  control  to  be used during the 
operation of the  network relatively simple  (checking several 
linear  inequalities).  Moreover, since the  controls are “bang- 
bang”, i.e., go from one extreme  point of the u-space to  
another,  the areas underneath  the  functions x j ( t )  are always 
trapezoidal, so that  the value of the  optimal cost J in (10) is 
always quadratic in the initial condition x(to).  

D. Stochastic Inputs 
In an actual  network,  the  inputs  are, of course,  stochastic. 

One approximation is to  take  into  account  only  the (ensemble) 
average rates of the  inputs [rij(t) in (5)] , find the  optimal  con- 
trols using the  deterministic  methods of Sections 11-A, B, and 
C,  and use these controls in the  operation  of  the  network. 
This  may or may not  work, depending  essentially on  the vari- 
ance and the higher moments of the  actual  inputs. For this 
reason it is of interest t o  investigate possible stochastic  control 
schemes. When the  inputs are stochastic, (5) becomes 

where Yij(t) is the process describing the  traffic  with  destina- 
tion j arriving at  node i from  outside  the  network. Clearly, 
the processes Yij(t) must have nondecreasing paths and  usually 
can be modeled as mutually  independent  jump processes with 
positive jumps  only.  (It is very tempting  for  control  theoreti- 

2 

1 3 . 

x1 = -Ul2 + u31 - U13 
. 2  2 2 2 

i 2  = u;2. + u;3 - u;l 

Fig. 1. An example of a data-communication network. 

2;  = 1 . 5  x; 

Fig. 2. Optimal controls corresponding to x12 2 0, x32 > 0 and 
all other  states  zero. 

cians to  model Yij as Gaussian processes, but  this  cannot  be 
done  here, for instance, because Y; must have nondecreasing 
paths.) The time of the  jumps  corresponds  to  the time  of  mes- 
sage arrivals and their size to  the message lengths. Such a pro- 
cess Y i ( t )  is characterized (see [7]) by  the  quantities nij(t ,y)  
defined for every y > 0 as the rate of arrival at time t of mes- 
sages of size  less than or  equal to y given the past histoly of  all 
processes of interest. For example, one can take, as  is usually 
done in the  literature, Yij to be a  compound Poisson process, 
in  which case IIij(t,y) is deterministic given by 
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is the message arrival rate.  It is important, however, if possible, 
to allow n ( ; y )  to be random, i.e., dependent on the past and 
present  development in the  network. For example, if the  net- 
work has finite  buffers,  then  one has to refuse traffic of  a size 
larger than  the difference  between the  buffer size and  its pres- 
ent  contents. This  makes the nij(t,dy) = 0 at  the  appropriate 
size y ,  and  this says essentially that nij(t,y) is, in fact, xij(t)- 
dependent: 

The cost to  be minimized  can be taken as 

where J(x(7)) is the value of the cost J of (10) with.Tidenti- 
f;ed with to and x(T )  being the initial condition in the  prob- 
lem  considered  in Sections 11-A, B, and C.:Equation (22) in- 
cludes the  expected  total deiay  during the period  of operation [O,n plus the  extra delay one has to  incur  to get rid,of  the 
traffic  left in the  system  at time T .  We  arc! now  interested in 
the  optimai  control of the  form  (11)  that will minimize K 
subject to  dynamics  (19) and constraints (6) and (7). A  suf- 
ficient condition  for  a  control u* to  be  optimal is provided by 
the following. 

Theorem 2: Let U be the set of ail admissible controls, i.e., 
feedback  controls satisfying the  constraints (6b), (7). Suppose 
there exists a  control u* E U and  a  function V(x,t) such  that 
for all t and x and for  any  other  control u E U ,  we have 

+ l- [ V(Xij + Z i j ,  t )  - i/(x,t) rIij(t,dZi’) 
I , I  1 

+ F ( x i j  + zij,  t )  - V(x,t)  IIij(t,dzij) (23a) 
1,l 0 1 

with termin’al condition 

(The  integrals in (23a) are ordinary Stieltjes  integrals.) Then 
u* is optimal in U and V(x,O) gives the  optimal cost (22) 
whenever x(0) = x. Here V(xij + zi’) says that  one adds zij 
only  to  the x i i  component  of x, while keeping all the  others 
fixed. 

To limit the  length  of  the  paper, we omit  the  proof  of 
Theorem 2 and indicate’only  that  the  proof follows  essentially 
the same lines as in [8] and [9] . The  functionV(x,t) will then 

provide the  expected remaining cost  at  time t given that the 
network is in state x ( t )  = x. In principle, V(x,t) and u(x,t) 
must be found  for every x and t by solving (23) backward in 
time, while also minimizing its right-hand  side. However, solu- 
tion by  numerical  integration is out  of  the  question here be- 
cause it necessitates a  computation  at each point  of  a grid over 
the  x-space, so that  alternate  solutions are being presently 
investigated. 

111. QUASI-STATIC ROUTING 

As mentioned in the  Introduction, in many  data-communi- 
cation networks  it will be advisable to use a quasi-static rout- 
ing procedure,  under which the  portions of traffic  sent  by  each 
node  to each destination  on  each outgoing  link will remain 
constant over relatively long  time periods. At preassigned 
times and/or  when need arises, the routes can be changed to 
improve the overall network  performance, which  in the pres- 
ent paper is taken to  be average delay. Regarding this  pro- 
cedure, we shall address  and elaborate  on  the following issues. 

1) Identify  the  quantities  of  interest  for  the  procedure and 
indicate  how to  use them. 

2)  From  the available measurements, estimate  these  quanti- 

3) Analyze the behavior of the  network  under  the quasi- 
ties. 

static routink procedure. 

A.  Quantity of Interest-Incremental Delay 

With the  notation of (3); and  (4),  let DikCfrh) be the total 
delay faced  by all messages passing through  link (i,k) per unit 
time.  For  simplicity, we assume heie  that for each  link (i,k), 
the delay Dik is a  function  only  of  the  total flow f i k  passing 
through  this  link.  Then  the  total deiay over the  network per 
unit  time is 

If there are different  types of traffic  through  a link so that  the 
delay is a  function  of  the individual  rates and  not  only of the 
total rate,  (24) can be easily changed  accordingly. 

Suppose now that some nominal  flow^^^ exist  in the  net- 
work satisfying  some  nominal flow requirements {Fij, i, j € 
N, i # j }  and  that  the flow requirement  from some node i to 
some destination j increases by an incremental  amount 6rir 
The  question is what  path should be chosen for  this  extra 
traffic. The classical answer to  this  question (say the  one im- 
plemented in the ARPANET [ l o ] )  is to choose the  path over 
which the  total delay is minimal.  Clearly, such  a  path will be 
the best for  the  extra  traffic 6rij itself,  but  it disregards the 
fact that  this choice  may hurt  everybody else, Le., the existing 
traffic. If the  quantity  to  be  optimized is indeed the average 
delay [which is proportional  to D, in (24)],  both  effects must 
be taken  into  consideration:  the delay incurred  by  the  extra 
traffic  itself, as well as the  extra delay suffered by  the existing 
traffic. This  can be done if one observes that if one chooses 
a  path P from i to j for  the  extra  traffic,  then  from (24) the 
extra  total delay 6D, will be (up  to first order) 
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Equation (25) essentially says that  the flow  in  each  of the 
links  of the chosen path P will increase  by Srij. 

The following  decentralized routing  algorithm is suggested 
by expression  (25): 

1) estimate  the incremental  delay over each link in the  net- 
work  (the  estimation can be done locally and  the  procedure 
will be described  presently) and 

2) use these quantities  to  update  the  routing tables essen- 
tially in the same way the  estimated delay is used in  ARPANET 

Other strategies  can be designed as well, depending  on  the 
particular network  under design. In [l I ]  a recursive algorithm 
has been  proposed to  divide the  traffic in  an optimal way over 
each  of the outgoing  links, so that  the  total delay will be  mini- 
mized.  Also,  in a  network  controlled  from  a  central  site,  the 
router can periodically  collect the  estimated  incremental  de- 
lays and use them  to  find  the gradient of  the delay whose 
projection on  the flow requirement subspace will provide the 
steepest  descent  direction for change of the flows. Such  a 
strategy has been proposed in [13]. No matter  which  of  the 
strategies indicated above is used,  the  point is that all methods 
need as a basic quantity  the incremental  delay dDlm/dfm.  
One  way to find it is using Kleinrock's formula (l),  but as 
stated  before,  this expression involves a  certain  number  of 
assumptions  which one  would like to  avoid if possible. It is 
therefore  of  importance to  estimate  the  incremental delay di- 
rectly,  thus reducing the  dependence of the  algorithms on 
various assumptions. In fact,  it will be seen in the  next  sub- 
section that  the  only necessary assumption  for  the  estimation 
algorithms to make sense is stationarity over the intervals be- 
tween  routing changes. 

Before describing the specific estimation procedures, we 
may also mention  that  the same kind  of  strategies as indicated 
above can be used in much  the same way  in other  kinds of 
networks like transportation or air traffic  nets.  It is only  the 
estimation  procedure  that will depend  on  the particular  appli- 
cation  and specific  transmission  mechanisms  of the  network. 
In  fact,  the  two  types of routing procedures  described above 
have been  considered before in the  transportation  literature. 
Minimizing each vehicle's own delay is referred to as user opti- 
mization or Wardrop's first  principle,  whereas  optimizing the 
average delay is called system optimization  or Wardrop's 
second  principle [ 141 . 

B. Estimation of Incremental  Delay 

[ l o ] .  

Once the  quantity of interest has been identified and  rout- 
ing procedures using it have been  indicated,  the  next  problem 
is to  find (i.e., estimate)  this  quantity.  In  the present  subsec- 
tion, we shall describe  algorithms to  estimate  the  incremental 
delay over a given link. Observe that  the  total delay over a 
link  (which we now  denote  by D for  notational convenience) 
is very easy to  estimate  by  just adding up  the individual  delays 
of the messages. It is not so obvious,  however, how to  estimate 
the  incremental delay dDcf)ldf  without actually  increasing the 
flow. The problem is to  estimate dD(f)/df over a given link 

from  the traffic  record of arrivals and  departures measured 
over the interval between routing changes. In addition,  it 
would be useful to have a  procedure  that will keep a current 
estimate  and will recursively update  it, so that  it will not be 
necessary to memorize the  entire record  and to  do all the com- 
putation  at  the  end. 

Clearly, the  estimation  procedure will depend  on  the 
mechanism that is used to  combine  the  data  at  the  nodes. In 
the following, we briefly  describe recursive algorithms to  ob- 
tain estimates of the  incremental delay dD/df over a given link 
for  two  different mechanisms:  1) addressed packets or mes- 
sages and 2) character  multiplexing. 

I )  Incremental Delay for Packet or Message Switched Net- 
works; Consider a  network  operating according to  a packet or 
message switching strategy. One is interested  then to find the 
effect  on  the arrival-departure  record over a given link of  a 
hypothetical increase (or decrease) Sf in traffic flow rate. To 
reduce the effective traffic  rate,  one  can, for example, use the 
following  procedure  which is similar to  the so-called "jack- 
knife"  algorithm  in  statistics for  estimating  the variance of  a 
distribution  from  a sequence  of independent samples [15] : 
suppose, again hypothetically,  that each  packet arriving to  the 
link  would be accepted  with  probability (1 - E )  and  rejected 
with  probability E independently  from packet to  packet. The 
effective  rate will then  be reduced in  the average by 

ME 
S f = -  

T 
where 

T = period  of interest over which the  estimate is calculated 
M = number of arrivals during T.  

Also, the  probability of removing two or more  packets at  a 
time is of  order e2 and therefore  of second order in S f ,  so that 
one  only has to  consider the  effect  of removing only one 
packet at  a  time.  It is also easy to  see that removing a packet 
from  one given busy  period has no  effect  on packets served in 
other  busy periods, so that one only has to  consider the  effect 
of the removal on packets from  the same busy  period. For a 
given busy  period,  let cmn be  the  amount of system time that 
the  mth  packet would save if the  nth packet were to  be re- 
moved.  If  we denote  by d, and a,, respectively, the  departure 
and arrival time of  the  nth packet relative to  the beginning of 
the  busy  period,  say,  then  one can easily obtain  the following 
recursive formulas: 

cmn = 0,  f o r m  <n 

c," = d, - a,, for m = n 

c , + ~ ,  = d,  - max (a,+l, dnF1)  where we take do = 0 (27a) 

and for m > n + 1 

c," = min (cmPln, - a,). (27b) 

We assume here  first-come first-serve discipline. We may  men- 
tion  that since the algorithm is recursive, very little  memory is 
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necessary to  implement  it.  Equations  (27)  hold,  of course, 
for all packets from the same busy period. Over B busy 
periods, containing  each {Ni ,  i = 1, -., B }  packets,  the  total 1 effect will therefore be 

and the  quantity SD/Sf will be 

Sf 5 Ni 
i =  1 

A slightly different algorithm will be to  add  a new hypo- 
thetical  packet  and calculate its influence on  the  total delay. 
This algorithm is described  in detail in [12] where properties 
of the estimates-like bias and consistency-are also investi- 
gated. One can note  here, however, that  both algorithms  re- 
quire no  assumptions whatsoever about  the  nature of the 
statistics  or  other  parameters of the  traffic,  but  rather use the 
measured  arrival-departure  record to  estimate  the  quantities 
of interest. Also, since the  estimation is done link by  link, 
the  procedure can be implemented locally in a  completely 
decentralized manner. 
2) Character Multiplexing: Suppose  each  link (1,k) operates 

with  the following scheme:  node 1 assembles into blocks all 
characters (disregarding the  destination)  that are supposed to  
go over the link (l,k), attaches  error check bits and other 
necessary overhead characters,  and sends the  block  over;  node 
k checks  for  errors, disassembles the  block,  and  forwards  the 
characters  to  the  subsequent links: node 1 has buffers where 
characters  from  each of the incoming  links intended  to go on 
link (Z,k) are stored,  and  at  the  time is is ready to  form  a new 
block,  it  empties all buffers;  the  characters are sent in one 
block  together  with  overhead, and when  the transmission of 
the  block is finished;the buffers are emptied again and  a new 
block is formed. We assume that  the overhead  per block is 
constant  and  let 

B = number  of blocks  observed, 
ni = length  of  ith  block,  both overhead and  information 

characters (in characters), i = 1, -., N 
C = capacity  of link (in characters/second) 
v = length of overhead (in characters) 
f = average flow (in characters/second). 

The  problem is to  estimate  the  first-order increase in total 
delay SD of  the  characters  that are transmitted over the  link 
caused by  a  hypothetical increase Sf of  the flow rate, given 
observations  of {n1,n2, -a, nB}  over some  period of  interest. 
Observe that  with  the present scheme,  the average delay (on 
the link under  consideration)  of  a  character  that  enters  the 
ith block is 

where no = 0. This is because such  a  character waits on  the 
average niP1/2C seconds before  it is sampled and  exactly ni/C 
seconds until  it is released at  the  other  end.  Therefore, since 
there are (ni - v) information characters  in the  ith  block, 
the  total delay per unit  time over B blocks being sent  during  a 
period of length T i s  

Next, we analyze what  would  happen  if we were to  increase 
the flow f through  the link by an  incremental amount Sf.  
Equation  (31) shows that  the change in the delay will be 
caused by changes 6ni in the  block  lengths; in turn  the change 
6ni in the  length  of  the  ith block will be caused both directly 
by the increase of  the flow and  indirectly  by the change of the 
length  of  the (i - 1)th  block.  On  the average, therefore, 

and (32) and (3 1) suggest a recursive procedure to  estimate  the 
quantity of interest SD/Sf: 

(3 3 4 

One should observe that  the  quantities needed in  the  estima- 
tion  procedure here are C, v, and  the measured data {no, 
nl, * . e ,  nN}.  Clearly, the  procedure  should  be  duplicated over 
each link,  and  the  estimates be used in updating  the  'routing 
tables as indicated in the beginning of  this  section. Observe, 
moreover,  that here also there are no  assumptions  needed in 
the  estimation  procedure and that  the  estimation can be  done 
in a  completely decentralized  way.  Moreover, it is a recursive 
procedure so that  the  amount of memory  needed to  imple- 
ment  it is minimal. 

IV. DYNAMIC ANALYSIS OF QUASI-STATIC ROUTING 

In Section 111 we indicated various routing  procedures  for 
networks working  in a quasi-static mode  and proposed ways to  
obtain  the  incremental  delay, which is the basic quantity used 
in those  procedures.  Another  question  that remains to  be 
answered is what will be  the  dynamic behavior of  the  network 
under these  quasi-static  procedures.  Specifically, due to  finite 
propagation  time  of  routing changes, the  network will not 
respond instantaneously  to these  changes, but  rather in a  dy- 
namicway. Moreover,  dynamically  changing input rateswill have 
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certain effects on the behavior of  the  network.  One  would like 
then  to have models and analysis techniques  that allow investi- 
gating basic questions  about  the behavior of  the  network, like 
dynamic  stability and time  constants, ability to  control and 
“observe” its dynamics (controllability  and observability  in 
system  theoretic language), and  the possibility t o  improve the 
routing  procedures  that were  proposed before  on an intuitive 
basis to  obtain  “good” system  behavior. For completeness we 
propose  here such a dynamic  model  for quasi-static routing 
whose analysis is,  however, only in  early  stages,  and hence  it 
is left to  subsequent  presentations. 

Clearly, the  systems  under consideration-data-communica- 
tion networks- are highly nonlinear and  system  theory is not 
developed enough  at this stage to  efficiently handle such sys- 
tems. What we  shall use here,  therefore, is a common  tech- 
nique  in  system  theory,  and  this is to linearize the  system 
around a nominal  operation  point.  The linearized model will 
describe then  the  fluctuations  of  the  network  around  such a 
point,  thereby indicating its  stability  or instability and  its 
approximate behavior. Moreover, it is important to realize 
that since a  quasi-static routing  procedure is under considera- 
tion  here,  rather  than a completely  dynamic  one as in Section 
11, a much  more macroscopic description of the system is neces- 
sary. For  example, we shall now disregard the  instantaneous 
contents  of  the  queues,  and use only  the flows through  the 
queues as our basic variables. 

TO  obtain  the  dynamic  model  for quasi-static routing,  con- 
sider first a network  operating in steady  state  at a  nominal 
point and let 

F i j  = total rate  of traffic destined for  node j at  node i 
I#)ikj = fraction of the  traffic Fij sent over link (i,k) 
f i k j  = rate of traffic destined for j over link (i,k) and 
r i j  = input flow at  node i of  traffic  destined  for j .  (34) 

Traffic  equilibrium gives for  nominal values (denoted  by over- 
bars) 

where I(i) and E(i) are defined  in  (3). 
We are now  interested in small dynamic changes 6 F i j ,  etc., 

around these  nominal values. The time unit will be  taken here 
as the time it  takes  for a change of  routing  at some node to  
be felt at  the adjacent nodes in the  network. We assume this 
quantity to be  fixed  throughout  the  network. Assuming also 
that changes in  input  rates are felt  immediatly  at  the source 
node,  the  dynamic behavior of  the  network is described by  the 
following dynamic  equations  [obtained  from  (35b)  and 
(35c)l : 

1 fi 

The above relationship  essentially  says that  it takes one time 
unit for changes occuring at  node I, say,  to be felt at an  adja- 
cent  node i, but changes in the  input rate at  node i influence 
the flow there immediately. The  system-theoretic  interpreta- 
tion  of  the various quantities in  (36) is clear: as said before, 
the  situation  in  the  network is described  now by  the set of 
node  flows, so that 6Fij(t) are the  states,  the  fractions  of  traf- 
fic over each outgoing  link  are the  quantities  that  control  the 
network,  therefore 61#) ik i ( t )  represent the  controls,  and  the 
stochastic  fluctuations 6r i j ( t )  in the  inputs represent the 
“noise.” 

Several other versions of  model (36)  can also be considered. 
For  example, instead  of the changes occuring at  one  node 
“being felt”  at  subsequent nodes after  exactly one  time unit, 
one  can have a “smoother” description by modeling  each node 
i as a first-order Markov system  with  time  constant aij. Then 
the  model (36) becomes 

Z#j  

where  now t E [to,=). In this  model,  the time constants aij 
will, of course, depend on  the nominal point  around which we 
are working  and will have to be determined  by measurements 
or  simulation. 

There are various analytically  attractive  features  of the 
above model.  It is a linear stochastic  model  and  such systems 
have been  widely studied in the  literature.  One can therefore 
hope  that  its analysis will give much insight  in the  dynamic 
behavior  of networks. Even more,  the  equations corresponding 
to  different  destinations are completely  decoupled, so that 
they reduce to  the  study of N systems,  each with (N - 1) 
states. This tremendous  reduction of  dimension will be of 
much  help in the analysis of the  model. 

V. CONCLUSIONS 

New models for  dynamic and  quasi-static routing have been 
introduced in this paper. These models have the  property  that 
they  do  not require  explicit  closed-form  expressions for  the 
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quantities  of  interest,  but  rather are intended to handle them 
in an algorithmic form. Optimal control  and  estimation 
methods  to  construct efficient  algorithms for  the problems of 
interest have been indicated. 

APPENDIX 

CONSTRUCTION OF OPTIMAL ROUTING  STATEGY FOR 
A SIMPLE EXAMPLE 

Consider the  network  of Fig. 1 with indicated  capacities. 
Suppose x1 leaves the  boundary last  (first  backward in time), 
and therefore  the  Hamiltonian along that segment is 

h12xI2 = h 1 2 ( - ~ 1 2 ~  + ~ 3 1  2 - ~ 1 3 2 ) .  (A1 1 

This is minimized at u* (1 2) defined by 

~ * ( 1 2 ) = { ~ 1 2 ~  = 1 , u 3 l 2  = 0 , ~ 1 3 ~   r 0 . 5 )  (A21 

and  the  requirement  that x32 = ~3~ = 0 implies ~ 3 2 ~  = 0.5. 
We then  know  that along the x12 axis of Fig. 2,x12 travels at 
the rate x12 = -1.5. We may similarly determine  the  optimal 
control  on  the x32 axis by  allowingxs2  to leave last. 

Next, we allow x12 to leave last and ~3~ beforehand.  The 
Hamiltonian is now 

h12(-U122 $- U312 - U132> + h32(-U322 - u312) (A3) 

and is minimized at u* (32,  12) defined by 

~ * ( 3 2 ,   1 2 ) = ( u 1 z 2  ~ ~ 3 2 ~  = 1 , ~ 1 3 ~  = 0 . 5 , ~ 3 1 ’  = O }  

(-44) 

since h32 < AI 2 .  Therefore, x1 and x3 travel at rates il = 
-1.5, x 3 2  = -0.5, namely, parallel to  the line x12 - 3x32 = 
0. 

This  says that  within  the region of  the plane (x12,x3’) be- 
tween this line and  the xI2 axis, the  optimal  control is u* (32, 
12). We may similarly determine  the  optimal  control  between 
the x32 axis and  the line 3x12 - x32 = 0 by allowing x32 to 
leave last and x1 beforehand. 

Finally, we allow x1 and x3 to leave the  boundary simul- 
taneously.  The  Hamiltonian 

h12(--11122-+ U 3 1 2  - U 1 3 2 )  f h32(-U32’ f 1f132 - U 3 1 2 )  

(A5) 

is minimized over the  infinitely  nonunique set u* (12  simult. 
32)  defined by 

u*(12  simult.  32) 

~ ( ~ 1 2 ~  I- ~ 3 2 ~  = 1, ~ 1 3 ~  = [0 ,0 .5 ] ,  ~ 3 1  2=  [0,0.51 I 

since h12 = X32. This allows us to stipulate  the  nonunique 
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control in the region lying between 3x12 - x32 = 0 and 
x12 - 3 ~ 3 ~  = 0, thus completing the  characterization of the 
two-dimensional  space xI2,  x32. The  procedure is then con- 
tinued  until  the  entire six-dimensional x-space is filled  up. 

In general, each time we solve a  linear  program  with m 
states assumed off  the  boundary, we have the additional 
N(N - 1) - m constraints X i j  = 0 corresponding to those 
states  on  the  boundary.  The  solution provides us with an opti- 
mal direction  (or directions)  in an rn-dimensional subspace of 
x-space  which may be used to  extend  the region of applicabil- 
ity  of  the  optimal  control  to a  convex region in  the  m-space. 
The  union of all such regions produced  by a  comprehensive 
set of linear  programs covers the  entire N(N - 1)-dimensional 
space with  optimal  controls. 

This  algorithm can be made to  operate efficiently  by  virtue 
of the  fact  that each  linear  program  in  a given sequence is 
parametrically  related to  the previous one (addition  of a 
column  and  perturbation  of cost  coefficients). The  problem  of 
finding the  complete set of nonunique  solutions which is 
needed to specify all optimal directions is handled by a varia- 
tion  of  the algorithm suggested by  Chernikova [ 6 ] .  A com- 
puter program is currently being designed and implemented to 
construct  the feedback space by  the  method indicated  above. 
Hopefully  this technique may  be extended to treat  the case 
with  inputs. 
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Throughput  in  the  ARPANET-Protocols  and  Measurement 
LEONARD  KLEINROCK, FELLOW, IEEE, AND HOLGER OPDERBECK, MEMBER,  IEEE 

Abstract-The speed at which large files can travel across  a computer 
network is an  important performance  measure of that network. In this 
paper we examine the achievable sustained throughput in the 
ARPANET. Our point of departure is to describe the procedures used 
for controlling the flow of long messages (multipacket messages) and  to 
identify  the  limitations  that these  procedures  place on the  throughput. 
We then present the  quantitative results of experiments which meas- 
ured the maximum throughput  as a function of  topological  distance in 
the ARPANET. We observed B throughput of approximately 38 kbit/s 
at  short distances. This throughput falls off at  longer distances in a 
fashion which depends  upon which  particuiar version of the flow con- 
trol procedure is in use; for example, at  a  distance of 9 hops, an Octo- 
ber 1974 measurement gave 30 kbitjs, whereas a May 1975 experiment 
gave 27 kbitls. The  two  different flow control procedures for these 
experiments are described, and  the sources of throughput degradation 
at longer distances are identified,  a major cause being due to a poor 
movement of critical  limiting  resources around  in  the  network (this  we 
call “phasing”). We conclude that flow control is a tricky business, but 
in spite of this, the ARPANET throughput is respectably high. 

I. INTRODUCTION 

T HE ARPANET,  which was the world’s first large-scale 
experimental packet-switching network, needs little  intro- 

duction;  it has  been  amply documented (see,  for example, 
[5] and the extensive  references  therein). Our  interest in this 
paper is to describe the message-handling protocols  and some 
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experimental results for  the achievable throughput across the 
ARPANET. These experiments were conducted  at  the UCLA 
Network Measurement Center (NMC) and show that  the  net- 
work can support roughly 38 kbit/sec  between HOST com- 
puters which are a few hops  apart; .for more distant HOST 
pairs, the  throughput falls off to  a level dependent  upon  the 
particular version of message processing used, as discussed in 
detail  below. 

An earlier NMC experiment  reported  upon  the behavior  of 
actual user traffic in. the ARPANET (and also described the 
NMC itself) [4] . More recent NMC experiments  identified, 
explained,  and solved some  deadlock and  throughput-degrada- 
tion  phenomena in the ARPANET [l 11 and also measured the 
effect of network  protocols and control messages on line  over- 
head [4] . The  experiments  reported  upon herein  consisted  of 
throughput measurements  of UCLA-generated traffic (using 
our PDP 11/45 HOST in a  dedicated  mode) which was sent 
through  the ARPANET to “fake” HOST’S at various topo- 
logical distances  (hops) from UCLA. Each.experiment ran for 
10 min  during  which  time full (8-packet)  multipacket  traffic 
was pumped  into  the ARPANET as fast as the  network would 
permit.  Both  throughput  (from  the UCLA HOST to the 
destination HOST) and delay (as seen by  the UCLA HOST) 
were measured, along with some other statistics described 
below. 

This  paper is organized as foll6ws. We describe the message- 
handling  procedure for  multipacket messages in Section 11, 
identify  the  limitations this  procedure  imposes ort the  through- 
put in Section 111, and then  quantitatively  report  upon  the 
October  1974  throughput  experiments in Section IV. The 
issue of looping in the adaptive routing procedure  and its 
erratic  effect  on  throughput is discussed in Section V. Some 


