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1 The spectral efficiency,
measured in bits per sec-
ond per hertz, is defined
here as the ratio between
the information rate in
bits per second and the
bandwidth in hertz. For
the bandwidth, we adopt
the Shannon definition of
half the product of num-
ber of channel signals per
second times the number
of dimensions of the sig-
nal space.

CAPACITY APPROACHING CODES,
ITERATIVE DECODING ALGORITHMS, AND

THEIR APPLICATIONS

INTRODUCTION

Channel coding has become an indispensable
tool in modern communication systems domi-
nated by stringent power and bandwidth con-
straints. As made clear by Shannon back in
1948 [1], large coding gains (defined as the dif-
ference in the signal energy between the uncod-
ed and coded systems required to achieve a
given error probability) for a given spectral effi-
ciency1 can be obtained by encoding the infor-
mation sequence in large blocks. The largest
possible coding gain for a given rate and very
large blocks stems from the capacity limit
derived by Shannon. In Fig. 1 the bit error
probability is plotted vs. the ratio between the
energy per information bit Eb and the Gaussian
noise power spectral density N0 for several
spectral efficiencies assuming very large blocks
and capacity-achieving codes. The curves
become vertical for bit error probability roughly
below 10–4, and their intercept with the abscissa
constitutes the so-called Shannon limit, that is,

the minimum Eb/N0 yielding a bit error proba-
bility as low as desired.

For about five decades coding theorists have
been looking in vain for codes capable of
approaching the Shannon limit.  From this
unsuccessful search stems the folk theorem: all
codes are good, except those that we know of.
The story is more complicated though, since
finding good codes is a simple task. Indeed,
randomly generated codes with large block
sizes will be very good with high probability.
The problem lies in the fact that while encoding
is always a rather simple task, the decoding
complexity for a randomly generated code
increases exponentially with the block size, and
thus quickly becomes unmanageable. Thus, the
previously mentioned theorem should be
rephrased as: all codes are good, except those
that we know how to decode. The history of the
past 50 years of coding theory is about the
struggle of conjugating a great structure in the
code architecture to facilitate decoding with a
random look in the code words distribution to
enhance the code strength according to the
message implicit in the proof of Shannon cod-
ing theorem.

An important step in the right direction was
made by Dave Forney with his thesis work on
concatenated codes [2]. Instead of making the
code more and more complex in the search for
larger gains, he proposed to cascade relatively
simple codes (in practice, two codes, inner and
outer) to obtain a powerful overall code for
which the decoding complexity increased only
algebraically with the block size.

Concatenated codes have become a de
facto standard in many communication sys-
tems. The by far most popular structure is the
cascade of an outer algebraic code, typically a
Reed-Solomon code, with an inner convolu-
tional code. The rationale is to face the “bad”
channel with a code for which soft decoding
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ABSTRACT

This article presents a tutorial overview of
the class of concatenated convolutional codes
with interleavers, also known as turbo-like
codes. They are powerful codes, formed by a
number of encoders connected through inter-
leavers, endowed by a decoding algorithm that
splits the decoding burden into separate decod-
ing of each individual code. Refinement of suc-
cessive estimates of the information sequence
is obtained by iterating the procedure of pass-
ing from one decoder to the other likelihood
information decorrelated by the interleaver
action. The key issues of code analysis and
design are covered at the level of broad com-
prehension, without paying attention to analyti-
cal details.
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(based on the received sufficient statistics and
thus better than hard decoding) is  s imple
through the Viterbi algorithm, and then pre-
sent to the outer decoder a cleaner binary
channel suitable for its powerful hard decod-
ing capabilities.

Unprecedented results very close to Shannon
limit (0.5 dB) were presented in [3]. The authors
of the article introduced for the first time a
structure (called turbo code by them) in which
previously adopted ingredients (two encoders
and one interleaver) were organized as the par-
allel concatenated convolutional code (PCCC)
shown in Fig. 2.

It consists of two constituent convolutional
encoders (CEs) fed by the same information
bits, in different order, as those at the input of
the lower encoder are the permuted (by the
interleaver) version of those entering the upper
encoder. The two encoders are generally termi-
nated (i.e., transformed into block codes) by
appending a suitable number of dummy bits at
the end of the information word to drive the
encoder trellis to the zero state.

For linear CEs, the overall encoder of Fig. 2
is then a linear terminated convolutional code,
and, as such, could be maximum-likelihood
(ML) decoded using the Viterbi algorithm. The
number of states of the encoder varies with
time, and for properly designed codes reaches
a value on the order of 2ν1+ν2+N, where 2ν1

and 2ν2 are the number of states of the con-
stituent encoders, and N is the information
block size, or, equivalently, the interleaver size.
For the large N used in practice,  the ML
decoding complexity, which is proportional to
the number of trellis states, soon becomes
unaffordable.

The solution is to break this large complexi-
ty by means of a local decoding algorithm work-
ing on each individual CE, with a complexity on
the order of 2ν1 + 2ν2, and to approach ML
performance by letting each decoder take
advantage of the progress made by the other
through the recirculation of an enhanced relia-
bility measure about the information symbols.
The information passed from one decoder to
the other is the so-called extrinsic information,
that is, the improvement to the knowledge of
each information symbol evaluated by each
decoder on the basis of the statistical depen-
dence of the coded symbols through the
encoder trellis.

The decoding algorithm has important impact
on what each constituent decoder should do.
Indeed, since the extrinsic information output by
each decoder must pass through the inter-
leaver/deinterleaver, it has to be a quantity asso-
ciated with each symbol, so sequence decoding
algorithms like Viterbi decoding cannot be
directly applied. Rather, one needs an algorithm
capable of computing the a posteriori probability
(APP) of each symbol based on the knowledge
of the whole received sequence of the soft values
forming sufficient statistics.

An algorithm like this was already available
[4], waiting since 1974 for practical application.
It is the BCJR (acronym from the authors’
names) algorithm, which computes the APP of
code and information symbols through two

recursions on the code trellis, one in the for-
ward and the other in the backward direction,
with a computational complexity per decoded
symbol that is independent of block size and
increases linearly with the number of trellis
states. The BCJR algorithm is between two and
three times more complex than the Viterbi
algorithm.

The code structure of Fig. 2, endowed with
the iterative decoding algorithm sketched above,
meets nicely the two requirements of the Shan-
non theorem for a good code. In fact, it presents
a certain degree of randomness offered by the
interleaver (indeed, highly structured inter-
leavers like row-column interleavers yield poor
performance), and has a decoding complexity
per decoded bit independent of block size. It
should then come as no surprise that the perfor-
mance of these codes closely approaches the
Shannon limit.

In the following, we will guide the reader
through an unpretentious tutorial tour inside the
realm of concatenated codes with interleavers,
aiming at heuristic explanations of the reasons
for their astonishing behavior, and the main
tools for the code design.

� Figure 1. A plot of the points (Pb, Eb/N0) satisfying the capacity limits of the
unconstrained additive white Gaussian noise channel for different spectral
efficiencies.
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� Figure 2. A block diagram of a parallel concatenated convolutional code.
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ANALYSIS AND DESIGN OF
CONCATENATED CODES WITH

INTERLEAVERS

The error probability performance of con-
catenated codes with interleavers under itera-
tive decoding is invariably represented by
curves like those depicted in Fig. 3. We can
identify three different regions for increasing
values of Eb/N0. The first one is the noncon-
vergence region, where the error probability
keeps high nearly constant values. At a cer-
tain point, the convergence abscissa, the curves
start a rather steep descent to medium-low
values of the error probability (the waterfall
region). Finally, in the third region (the error
floor region), the slope of the curves decreas-
es significantly, and performance improve-
ments  incur s ignif icant  addit ional  energy
expenses. The waterfall region is dominated
by the interleaver gain (a phenomenon to be
explained in the following sections), whereas
the error floor region is dictated by the mini-
mum distance of the code. In the first region,
the interleaver acts mainly through its size,
whereas in the second the kind of interleaver
plays a dominant role.

Any attempt to design codes like the one
in Fig.  2  as  a  whole leads to discouraging
results because of its complexity. So far, only
two successful design techniques have been
proposed in the literature: the first relies on
maximum l ikel ihood (ML) decoding,  and
leads to design rules  for  the const i tuent
encoders that work nicely for medium-low
error probabilities assuming a purely random

interleaver. After designing the constituent
encoders, one can improve the code perfor-
mance by a cut and trial approach to inter-
leaver design.

While the first approach [5, 6] is a purely
analytical one, the second requires the separate
simulation of the behavior of each constituent
encoder, and is based on the probability density
evolution technique (see [7–9] or the so-called
EXIT charts [10]). This second approach leads to
codes that exhibit good performance in terms of
convergence abscissa, and are suited to medium-
high values of the error probability.

The two design approaches converge to
some common criteria, but lead in general to
slightly different code designs; typically, the
codes designed (or, better, found) through
the second technique show faster conver-
gence of the iterative decoding algorithm (a
lower value of the converging abscissa), but
reach more quickly the error floor (curve a,
Fig .  3) .  The opposi te  i s  t rue for  codes
designed using the first technique (curve b,
Fig. 3). As a consequence, the choice depends
on the quality of service requirements of the
system at hand. In the following, we provide
a succinct survey of the two techniques with
some examples.

MAXIMUM-LIKELIHOOD
ANALYSIS AND DESIGN OF PCCCS

The performance of a PCCC like that in Fig. 2
can be estimated via Monte Carlo simulation of
the iterative decoding algorithm. As is easily
understood, this gives no insight into the “how”
and “why” of code behavior, and is of little help
in code design, which should answer the ques-
tions of how to choose the constituent codes
and interleaver. Moreover, it does not show how
close the suboptimum iterative decoding can be
to ML decoding, an important issue that
requires the ability to estimate ML performance
analytically.

To understand the mysteries of PCCC behav-
ior, it is important to distinguish between codes
and encoders. A code is simply the set of code
words, and characterizes the output of the
encoder, without any reference to the input
information words. An encoder, instead, is
described by the ordered set of information and
code word pairs, so each code word is associated
with the information word that has generated it
through the encoding law.

Of the two most important performance
measures of a code, the word error probability
(WEP), the average probability that the
decoder chooses a code word different from the
transmitted one, only depends on the code,
whereas the bit error probability (BEP), the
average probability that the decoder makes a
mistake in delivering an information bit,
depends on the encoder. The fact that a given
code admits many different encoders (i.e., dif-
ferent mappings between information words
and code words) makes it evident that the mini-
mization of the BEP requires a proper design
of the input-output characteristics of the
encoder. A complete description of an (n, k)
encoder (k being the size of the input informa-

� Figure 3. Qualitative behavior of the error probability vs. Eb/N0 for concate-
nated codes with interleavers under iterative decoding.
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tion word and n the code word size) passes
through the knowledge of the input-output
coefficients Aw,d, which represent the number
of code words with Hamming weight (number
of bits equal to one) d generated by informa-
tion words of weight w .  Obviously, d varies
from 0 to n and w from 0 to k. Upper bounds
to the BEP, like the union bound, are based on
the input-output coefficients. In particular, for
the case of an additive white Gaussian noise
channel, binary antipodal modulation and ML
soft decoding, the union bound is

(1)

where Pb is the BEP, and rc = k/n the code rate.
Traditionally, a good code had been defined

as a code with a set of large weights d (relative-
ly to their code word block size), and, in partic-
ular, with a large minimum distance dmin = min
d, d ≠ 0, which determines the asymptotic per-
formance for large Eb/N0. Looking at Eq. 1 we
see that the bit error probability can be
reduced, even in the presence of a small mini-
mum distance, by acting on the coefficients
Aw,d. This is precisely what concatenated codes
with interleavers do, as Dave Forney pointed
out in his Shannon Lecture [11]: rather than
attacking error exponents, they (turbo codes)
attack multiplicities, turning conventional wisdom
on its head.

To upper bound the ML BEP of a PCCC
according to Eq. 1 we need to know its input-
output coefficients, assuming knowledge of
those of the CEs. For large interleavers such as
those used in practice, computing the input-
output coefficients of the overall encoder is a
task with overwhelming complexity. The only
way out of it is to follow the path indicated by
Shannon in his proof of the channel coding the-
orem. In the case at hand, this means replacing
the actual PCCC with the set of PCCCs employ-
ing the same CEs and all possible interleavers
with a given size [5]. This move drastically sim-
plifies the analysis, and yields the upper bound
to the bit error probability of a code averaged
with respect to the set of all interleavers. In
practice, the performance of this average
encoder can be approached by using actual
interleavers generated by purely random per-
mutations.

The “average” approach to the PCCC ML
analysis proves to be a very useful tool for the
design of the CEs as well, since it allows for
splitting the overall PCCC design into two steps:
first, the choice of CEs “optimized” for the aver-
age interleaver; second, the design of the inter-
leaver for the chosen CEs. Referring the reader
seeking mathematical rigor to [5, 6], we will now
offer a heuristic and unpretentious insight into
the CEs design.

In a concatenated code with interleaver, the
role of the interleaver is twofold:
• First, it aims at improving the code strength

by increasing the Hamming weight of code
words. As an example, in the encoder of
Fig. 2 the interleaver should be able to per-
mute the information word from the input

to the upper encoder to that of the lower
encoder to associate a weak (low weight)
upper code word with a strong (large
weight) lower code word. In this respect,
the interleaver improves the ML perfor-
mance, which depends on the code weight
spectrum.

• The second function of the interleaver is to
spread the outputs from one decoder to
provide the other decoders with loosely cor-
related inputs. This improves the behavior
of the iterative decoding algorithm.
Referring to the PCCC of Fig. 2, let us con-

sider an information word with k = N bits and
(Hamming) weight w that generates through
the upper encoder a code word with a low
weight d, corresponding to a short error event in
the code trellis (an error event is a path leaving
the all-zero state in the trellis and merging into
it later). A “good” interleaver should be able to
permute the position of the 1s in the informa-
tion word to break the error event and generate
a larger weight code word in the second
encoder. The probability of finding a good
interleaver by choosing it at random in the set
of all distinct permutations of w objects in N
positions can be estimated as 1 minus the ratio
between the number of bad interleavers and
the cardinality of the set of all permutations,
yielding

(2)

where N is the number of bad interleavers, that
is, those which rigidly shift the w ones without
altering the relative positions, thus keeping the
error event in the lower encoder (we neglect
boundary effects for simplicity), and N

w) is the
number of distinct permutations.

Equation 2 shows that the probability of
randomly choosing a good interleaver increas-
es with w and N, so the most critical informa-
tion words (i.e., those for which the interleaver
wil l  f ind it  diff icult  to yield through the
encoders large code words weights) are those
with lower weight; in particular, the informa-
tion words able to generate an error event in
the CEs with minimum w, wmin. If wmin = 1,
the probability of Eq. 2 is 0 independent of N.
This happens for feed forward CEs, represent-
ed as a finite impulse response filter, for which
an input word with weight 1 always generates
an error event due to the finiteness of the
impulse response. On the other hand, choos-
ing recursive convolutional encoders as CEs,
one obtains wmin = 2,  due to the infinite
impulse response. In this case, the probability
of Eq. 2 increases with N as 1 – 1/N. The math-
ematical analysis in [5, 6] shows that indeed
the BEP with ML decoding decreases with the
input block size as 1/N, a phenomenon known
as interleaving gain, provided that both CEs
are recursive.

From the previous heuristic explanation,
we also learn that the most likely error events
in PCCC code words will be those generated
by information words of decreasing weight w.
As a consequence, the optimization of the
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CEs should be aimed at  maximizing the
weights of code words generated, in decreas-
ing order of importance, by information words
with weight w = 2, 3, 4, …. Once again, we
notice that the classical optimality parameter
for the construction of good convolutional
codes (i.e.,  the code word weights starting
from the minimum one called free distance) is
replaced here by an optimali ty  cr i terion
involving the input-output characteristics of
the encoder (i.e., the maximization of output
weights generated by low input weights). In
particular, the free distance is replaced by the
so-cal led ef fect ive free distance,  which is
defined as the minimum weight of code words
generated by information words with weight 2.
Tables of CEs optimized according to the new
criteria can be found in [12].

OTHER FORMS OF CODE CONCATENATION
Besides PCCCs, other ways of concatenating

encoders and interleavers are possible. The
concept of a code network that generalizes that
of concatenated codes by employing q encoders
and q – 1 interleavers connected in various
ways was introduced in [13]. Three examples of
code networks are shown in Fig. 4, where u
and c refer to information and code words,
respectively. The first is the serial concatena-
tion [14] of two convolutional encoderss
(SCCC) separated by an interleaver acting on
the code words of the outer code, the second is
the original turbo code structure described
above, and the third is a hybrid concatenation
(HCCC) with q = 3.

Code networks are endowed with a subopti-
mum distributed iterative decoding algorithm,
which generalizes the one previously described,

whose complexity roughly amounts to the sum
of the decoding complexities of each con-
stituent encoder. The decoding algorithm is
based on the replacement of each element of
the code network by a suitably defined soft-
input soft-output (SISO) counterpart [13],
which receives reliability information from the
rest of the network and broadcasts to the net-
work an internally upgraded version of this
information. In Fig. 4 we show the distributed
decoders for the three code networks previous-
ly described. In it,  P(·) represents suitably
defined soft information of the corresponding
symbol in the code network.

Union bounds to the error probabilities and
the design tool based on ML performance can
be extended to code networks, based on averag-
ing with respect to the q – 1 interleavers. An
important case is constituted by the SCCC. The
design rules for it require that the inner encoder
must be recursive, in which case the interleaver
gain becomes equal to

(3)

where dfree
o is the free distance of the outer code.

The interleaver gain of an SCCC can be signifi-
cantly greater than for PCCCs.

Beyond offering better performance with
respect to PCCCs in terms of the error floor
due to the larger interleaver gain, the SCCC
structure and i ts  i terat ive decoding can
encompass other systems that can be inter-
preted as serial concatenations of individual
modules. Important examples refer to the cas-
cade of an outer encoder and an inner modu-
lator separated by an interleaver,  to the
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� Figure 4. Serial, parallel, and hybrid concatenated encoders and decoders. The label BC stands for broad-
caster: the decoder counterpart of the one-to-two replication in the encoder.
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concatenation of an outer encoder,  inter-
leaver, and a magnetic recording channel, to
coded continuous-phase modulations, and to
the coded multiuser interference channel.
Detailed explanations of such systems can be
found in [15].

THE DENSITY EVOLUTION
ANALYSIS AND DESIGN

Consider a PCCC or an SCCC as shown in Fig.
4. Iterative decoders for these codes are based
on two SISO modules. The iterative decoder for
either code construction can be viewed as a non-
linear dynamical feedback system in which
extrinsic information sequences are passed from
one constituent decoder to the other.

In a code using an ideal interleaver (i.e., a
random interleaver with size going to infinity),
the extrinsic information becomes independent
and identically distributed random variables,
with probability density function that can be
approximated by a Gaussian probability distri-
bution function (pdf) [8] whose expression
depends only on two parameters, its mean µ
and variance σ2.

When the iterative decoding algorithm
works properly,  the extrinsic information
improves as the iterations evolve. This
improvement can be quantitatively measured in
several ways [7, 8, 10]. A simple and intuitive
one is given by its signal-to-noise ratio (SNR)
defined as SNR =∆ µ2/σ2. This is equivalent to
viewing each SISO as a nonlinear device with
negative noise figure, yielding an output SNR
larger than the input one.

Consider the input and output SNRs for each
decoder, denoted SNR1in, SNR1out, SNR2in,
SNR2out. A nonzero Eb/N0 from the channel
enables decoder 1 to produce a nonzero SNR1out
for the output extrinsic information even though
the initial SNR1in is 0. For a given value of
Eb/N0, the output SNR of each fecoder is a non-
linear function of its input SNR, denoted G1 for
decoder 1 and G2 for decoder 2.

The functions G1 and G2 can be empirically
evaluated by independent Monte Carlo simula-
tions of the two SISOs fed by appropriate Gaus-
sian random variables. Plotting G1 and G2

–1 as
shown in Fig. 5, we can analyze the decoder con-
vergence by tracking the evolution of the extrin-
sic information’s SNR from half-iteration to
half-iteration.

The results refer to a rate 1/3 PCCC consist-
ing of the two 16-state systematic recursive con-
volutional encoders shown in the figure. The
upper curve corresponds to the input-output
function G1 for decoder 1, and the lower curve
corresponds to G2

–1 for decoder 2.
Figure 5 graphically shows the progress of

the decoder’s iterations. The improvement in
the SNR of the extrinsic information, and the
corresponding improvement in the decoder’s
bit error rate, follows a staircase path reflect-
ing at right angles between the curves corre-
sponding to G1 and G2

–1. The steps in this
staircase are large when the bounding curves
are far apart, and small when they are close
together. Where the curves become closer, the
improvement in bit error probability slows

down, as many iterations are required to get
out of the narrow iterative decoding tunnel
between the curves.  When the iterative
decoder successfully passes through the tun-
nel, convergence becomes very rapid as the
two curves get farther apart at higher SNRs.
This means that the bit  error probabil i ty
approaches zero as the number of iterations
increases.

The initial displacement of the G1 curve for
SNR1in = 0 is dependent on the Eb/N0 due to
the channel observations. If we reduce Eb/N0
from the value of 0.5 dB used in Fig. 5, at some
point the two curves will just touch each other.
That value of Eb/N0 represents the iterative
decoding convergence abscissa of Fig. 3.

PERFORMANCE AND APPLICATIONS
Using concatenated codes with interleaver in
one of their various forms, keeping the same
constituent encoders with interleavers of differ-
ent sizes and modulators with increasing cardi-
nality, we can obtain codes relatively simple to
decode that lie within less than 1 dB2 from the
theoretical limits in a theoretically unlimited
range of spectral efficiencies and block sizes.
This points to one of the main characteristic of
turbo-like codes that is sometimes overlooked: a
versatility that has never been seen in any of the
code classes discovered in the previous 50 years
of coding theory.

As an example, in Fig. 6 we plot for various
codes the code imperfectness, that is, the differ-
ence in dB between the SNR required to obtain
a word error probability of 10–4 and the mini-
mum SNR dictated by information theory vs. the
information word size. The curves labeled

� Figure 5. Iterations and convergence of an iterative turbo decoder using
recursive CEs.
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CCSDS refer to the PCCCs standardized by the
Consultative Committee for Space Data Sys-
tems.

The figure shows that PCCCs yields code
imperfectness lower than 1 dB for block sizes
ranging from a few hundred to several tens of
thousand.

As described in a companion article in this
issue [17], turbo-like codes have already made
their way into practical applications and stan-
dards. This has occurred in spite of the fact
that some unexplained features still remain in
the behavior of the decoding algorithm. Indeed,
although satisfactory from the point of view of
engineers, more attentive to performance than
to theoretical subtleties, the iterative decoding
algorithm underlying the behavior of concate-
nated codes with interleavers (and low density
parity check codes as well) still suffers from a
lack of theoretical foundation. The explanation
of its performance stems from heuristic argu-
ments rather than exact theoretical results.
Some important steps toward a more rigorous
framework to understand the algorithm behav-
ior have been moved recently. In [18] a geo-
metrical interpretation of the turbo decoding
algorithm has been presented, based on its for-
malization as a discrete-time nonlinear dynamic
system, that sheds some light on the relation-
ship between ML and iterative decoding. In the
article the existence of fixed points of the
decoding algorithm for a class of turbo codes
has been shown, together with a set of suffi-
cient conditions for their uniqueness and stabil-
ity.  An interesting follow-up describing a
bifurcation analysis approach of the iterative
decoding process as a dynamic system parame-
terized by SNR has recently appeared in [19].
However, there remain fundamental questions
still unanswered, such as: Under which condi-
tions does the iterative decoding algorithm
admit a single fixed point? When there are
multiple fixed points (or more generally multi-
ple attractors, each characterized by its basin of
attraction in the state space), what are the cor-

responding basin boundaries? What are the sta-
bility properties of different fixed points, and
how do they bifurcate when the system parame-
ters are varied? How are fixed points related to
ML decoded code words?

CONCLUSIONS
A short walk into the thick jungle of results con-
cerning turbo-like codes was the scope of this
article. The approach has been necessarily tuto-
rial, without derivations and mathematical sub-
tleties. Our desire was to instill in readers an
interest in this fascinating field that has pro-
foundly renovated coding theory. The accurately
selected bibliography (there are today more than
1000 papers on the subject, and we apologize to
the authors of the good papers that were not
included in the list) should provide enough
“water” to quench the thirst of those who would
like to delve deeper into the subject.
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� Figure 6. Code imperfectness vs. code word size for various codes.
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