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Abstract—An intuitive shortcut to understanding the max- mentation complexity, and show that the MAP decoder can be
imum a posteriori (MAP) decoder is presented based on an jmplemented with no more than four times the complexity of
approximation. This is shown to correspond to a dual-maxima a Viterbi decoder for the same code.
computation combined with forward and backward recursions
of Viterbi algorithm computations. The logarithmic version of
the MAP algorithm can similarly be reduced to the same form IIl. AN INTUITIVE APPROXIMATE
by applying the same approximation. Conversely, if a correction APPROACH TO THEMAP ALGORITHM
term is added to the approximation, the exact MAP algorithm is . . .
recovered. It is also shown how the MAP decoder memory can be  Let us first consider briefly the MAPsoft-output decoder
drastically reduced at the cost of a modest increase in processing for a block code. Ifu is the information bit sequence agds

speed. the sequence of received channel output symbols, thea the
Index Terms—Dual-maxima, MAP decoder, soft-decision met- POsteriori probability ratio for thekth bit is just
ric, Viterbi algorithm.
> p(uy)

Plur = +1ly) _ ww=+1
I. INTRODUCTION Plur = —1ly) Z p(%y).
HE maximum a posteriori (MAP) decoding algorithm Uiup=—1
T for convolutional codes was proposed over two decad

Ay = 1)

¢ by Bahl L 11 but initiall ved lit fe preference to using\; as the soft-decision output, its
ago: by Banhl et al. [ ]’. ut initially received very litle |00 ithm has the advantage that, for a memoryless channel,
attention because of its increased complexity over alternat overall metric can be formed as sums, rather than products

convolutional decoders for a minimal advantage in bit-errqf independent components or metrics. Thus defining
rate performance. Recently, however, the MAP decoder has '

enjoyed renewed and greatly increased attention as an iterative L, 2 Ay (2)

soft-output decoder for the class of “turbo” codes discovered )

by Berrouet al. [3], as well as the class of serial concatenate@' the soft-output metric, and

codes with random interleaving, more recently proposed, ana- A .

lyzed, and simulated by Benedetbal. [4]. Other soft-output Mf{u,y) = In p(u,y) = In P(w) +In p(ylu) 3)

decoding algorithms have also been proposed and successfitlipllows from (1)—(3) that

demonstrated, notably the SOVA algorithm of Hagenauer and

Hoeher [5]. Only the MAP algorithm, however, achieves L& = In Z MUY 1 Z MUY (4)

acceptable performance &k, /N, levels within 1 dB of the Urup=+1 Usup=—1

value which corresponds to Shannon capacity. Exponentiation enhances the differences between individual
In the next section, we derive intuitively an approximation teetrics M (u,y). Hence, typically, one term will dominate

the MAP algorithm. We then proceed to justify this heuristieach sum, which suggests the approximation

approach by demonstrating its structural equivalence to the _

formally derived MAP algorithm, particularly after the same In Z e ~ max a, (5)

approximation is applied to the basic function required to J

implement the latter. The connection is further strengthen@ghich is obviously also a lower bound. When applied to (4),

by showing that when the approximation is augmented bytlais yields

correction term, it becomes the same as the logarithmic form

of the MAP algorithm. In the last section, we consider imple- Ly =~ u DX M(u,y) - X M(u,y) 6)
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Fig. 1. MAP framework.

We now proceed to apply the same approach to a bloc&n be similarly stated as
code generated as a convolutional code which is truncated
by forcing the encoder to a known (e.@) state as shown
in Fig. 1. While (4) and (6) still apply, they involve an
inordinately complex computation involvirg)¥ terms, where bn(s) =—o00, s#0 8
N is the length of the information bit sequence. We proceed

to simplify (6) by recognizing that the maximum metriGyherec;(s', s) is again the metric from the branch connecting

for a given state of the convolutional code’s trellis cag’ to 5. This branch metric required by both recursions is just
be obtained from the conventional Viterbi algorithm (VA)ihe log-likelihood function

Suppose then that we segk for the kth bit, when thechannel

is memorylessFor simplicity, let the code trellis be binary, so A

that one branch corresponds to a single bit (this can be easily cx(s'ss) = In p(yrls, s') +1n P(s]s"). 9)
generalized to treat multiple bits per branch). Then we may

argue intuitively as follows, referring to Fig. 1. Let us generatghys, for two states’ and s, for which a branch transition
all of the state metrics at thé - 1)th node by applying the does not exist, the metric is negative infinity, as seen from
Viterbi algorithm (VA) from the initial node to this point. For (9). However, for all pairs{, s) for which a branch transition
each state, the metric corresponds to the maximum metric oegists, we may combine the forward state metrics at node
all paths up to that node. Let us denote the state metrics at thel, the backward state metrics at nddeand the metrics for
(k—1)th nodea;_,(s") and those at theth nodea,(s), where branches connecting the two sets to obtain for the approximate
s’ ands are the generic states at the- 1)th andkth nodes, metric of (6) the expressidn

respectively. These are generated by the Viterbi algorithm,

whose definition is the recursion relation Ly~ max 1[ak—1(8’) + s, s) + bi(s)]

bj—1(s") = max(b;(s) + c;(s, )]y bx(0) =0;

s/, stup =4+
ax(s) = max[ax—1(s") +er(s, 8);  ao(0) = 0; B 5’,SIELE;1:);—1[ak_1(8/) il ) +bu(s)]- (10)
ap(s) =—o0, $#0 (7)

Note that the first maximum is over all branch paig$,at
, . . . nodek — 1 ands at nodek for which the connecting branch
wherecy (s, s) is the branch metric for the branch connectings <hown as a solid line in Fig. 1, while the second maximum

states’ at nodek — 1 to states at nodek. The state Metrics ig gyer all pairs for which the connecting branch is shown as
for the portion of the trellis beyond thieh node can similarly 5 gotted line.

be computed recursively by a backward VA starting at the

last node (Fig. 1). Thus denoting the generic states at nodeyt was pointed out by a reviewer that a similar structure was previously
j—1 andj, s ands, respectively, and the corresponding sta roposed in [8]. However, the reference did not show the evolution of the

. . proximate from the exact formulation nor the detailed relationship between
metricsb;_1(s") andb;(s), the recursion for the backward VA the two, as described in this and the next sections.
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We next show that this result can be reached by applyimgpd backward recursions as “generalized Viterbi algorithms”
the approximation (5) to the exact formulation of the MARInd the computation of.; as a “generalized dual-maxima”
decoder; conversely, we shall also show that the exact restdmputation.
can be obtained by applying a correction term to the maximumWe note finally, as has been observed in [11] and [12],

functions of (7), (8), and (10). that the implementation ofnax*(z,y) is only slightly more
complex than the implementation ehax(x,y). The latter

IIl. RELATIONSHIPS OF THEAPPROXIMATE requires a subtractor to forme ¢ y) followed by a comparator

TO THE EXACT FORMULATION with zero, while max*(a:,y) requires additionally Only a

read-only memory (ROM) which outputs the correction term
eln(l + el===¥l) given the inputz — %, which is the subtractor
output. This also shows that, just as for a Viterbi decoder, a
p(s's5,9) =p(8's 8, Yjch Yo Yjo) common term can be subtracted from all metrics at a given
node to avoid overflows, with no consequence to performance.

Hagenaueeet al. [9] obtained an elegant derivation of th
MAP decoder by partitioning the joint probability

A ak ek ghi
=5 Y)W, 515 )P(Y;5kl5) = e ete
wherey;; andy;.,, are the sequences of received symbols V. IMPLEMENTATION FOR MEMORY REDUCTION

before and after théth branch. Replacing the summations in Now that the implementation has been reduced to a series of

the numerator ‘;ind denominator of (1) by the summations oV, .o decoder operations, the obvious remaining drawback
all state pairs £, s) for which v, is +1 and—1, respectively,

X ) of the MAP algorithm is the excessive memory required. As
one obtains for the logarithm of (1) described in the above, the entire state metric history must be
- 7 stored, out to the end of trellis, at which point the backward
Li=l Z P (ak_l ot bk) algorithm begins and decisions can be out?out starting with the
R last branch, without the need to store any but the last set of
—In Z €Xp (&k—l +cp + bk) (10)  state metrics computed backward. This storage requirement is
8, stup=— obviously excessive; for a 16-state code, assuming 6-bit state
metrics, it would require 96 bits of storage per branch, for a

With the recursions fofi,. and b; total of 96 000 bits for a 1000-bit block, judged to be minimal

a5 (s) = In explan_1(s') + cu(s', 8)]; for turbo code performance.

®) ES: (s () (+:5) We now describe a technigtihich reduces the memory
a0(0) =0; dg(s) = —o0, s#£0 (7) requirement for a 16-state code to just a few thousand bits,

i N1 , i ) independent of the block length. It can best be described by

j-1(s") = In Z exple; (57, 5) + ;(s)k referring to the timing diagram of Fig. 2, which indicates the
b (0) =0;  by(s) = —00, 0 @) bit processing times for one forward processor and two back-

ward processors operating in synchronism with the received
and where, is again the branch metric given by (9). ClearlyPranch symbols, i.e., computing one set of state metrics during
primed (7), (8), and (10) become the same as their un€ach received branch time (bit time for a binary trellis).
primed counterparts, developed intuitively, if we use (5) to The basis for this approach is the fact that the VA can
approximate the logarithm of the sum-of-exponentials by ti§éart cold in any state at any time; initially, the state metrics
maximum. generated are nearly worthless, but after a few constraint
More interesting, however, is to apply the reverse procel@igths, the set of state metrics are as reliable as if the
to the approximate development of the previous sectiopfocess had been started at the initial (or final) node. Let

Following several authors [10]-[13], we define the function this “learning” period consist of. branches. (For a 16-state
A code, L = 32 is more than sufficient, amounting to over

max*(z,y) = max(z,y) +In (1 + e 1o, (11) six constraint lengths of the convolutional code.) This applies
equally to the backward as well as the forward algorithm, and

It follows from the definition that assumes that all state metrics are normalized by subtracting at

max*(x,y) = In(e® + €¥). every node an equal amount from each.
_ Let the received branch symbols be delayedybranch
It also follows that just as times. Then the forward algorithm processor starts at the initial

node at branch tim@L, computing all state metrics for each

max(z, y, ) = max{max(z, y), 2 node every branch time and storing these in memory. The

so also first backward processor starts at the same time, but processes
backward from th&Lth node, setting every initial state metric
max*(z,y, ) = max*[max*(z,y), 2] to the same value, not storing anything until branch tisiie
=In(e” +¢¥ +¢°). (12) at which point it has built up reliable state metrics and it

. . . P L i N .
Thus' replacing max by maxn the a roximate expres- This approach is similar to the S||d|ng block techr"ques of Barbulescu
P Y y PP P 14], Pietrobon [15] and Benedettet al. [13], but differs in the timing

sions (7)' (8)' an.d _(10)_’. we obtain t_he ?Xa(.:t expressiof)s ( and storage requirements and the coordination of the forward and backward
(8), and (10). This justifies our labeling in Fig. 1 the forwardprocessing.
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Fig. 2. Processor’'s timing.

encounters the last of the first set &f forward computed 64 states and a 32-bit path memory requires abéttbis of
metrics. (In Fig. 2, the top line indicates the node indexesiemory, while aK = 9 decoder requires at least a 40-bit
the remaining lines are labeled according to the times pa&th memory resulting in ovel0K of storage.) We conclude
which the branches are processed. Also, unreliable metit@t these storage requirements are no greater than those of a
branch computations are shown as dashed lines.) At this podnventional VA for commonly used codes.
the generalized dual-maxima process is performed accordingis for processing requirements, it would appear that the
to (10), the Lth branch soft decisions are output, and th€A load is thus tripled; furthermore, the complexity of the
backward processor proceeds until it reaches the initial nodeganeralized dual-maxima process is no greater than that of
time 4L. Meanwhile, starting at tim8L, theseconchackward the forward or backward VA processor so that, overall, the
processor begins processing with equal metrics at iidde complexity is not more than quadrupled—also, the chain-back
discarding all metrics until timeZ, when it encounters the procedure is avoided. Further, since the code is shorter, the
forward algorithm having computed the state metrics for threumber of states is much reduced relative to fhe= 7 and
2Lth node. The generalized dual-maxima process is th@nexamples just given. Since the MAP decoder (with short
turned on until timeb L, at which point all soft decision outputsconstraint length) is only justified for iterative decoding of
from the2Lth to the Lth node will have been output. The twoturbo or serially concatenated codes, we must also account for
backward processors hop forwatfl branches every time theythe required number of iterations, which are on the order of
have generated backwagd. sets of state metrics, and theyd—8. Thus, a pair of 16-state concatenated decoders performing
time share the output processor since one generates usdiassiterations imposes double the processing load &f & 7
metrics while the other generates the useful metrics which arierbi decoder; a pair of four-state concatenated decoders
combined with those of the forward algorithm. performing eight iterations imposes the same load A&5-a 9

Note that nothing needs to be stored for the backwadicoder.
algorithms except for the metric set of the last node, and theseMiinimum decoding delay is set by the length of the block
only when reliable metrics are being generated. The forwand its corresponding interleaver. If the processors described
algorithm only needs to stor2l sets of state metriésince, above operate at just the speed of the received branches, it
after its first2L computations (performed by tim), its first is necessary to pipeline the successive iterations, and hence
set of metrics will be discarded, and the emptied storage camltiply the minimum delay by the number of iterations. If,
then be filled starting with the forward-computed metrics favn the other hand, the processors can operate at a much higher
the @L 4 1)th node (at branch timéL + 1). Thus, the storage speed, then additional delay can be much reduced.
requirements for a 16-state code using 6-bit state metrics is just
192L bits in all, which for L = 32 amounts to approximately
6K bits. (Note that a convention&l = 7 Viterbi decoder with V. CONCLUDING REMARKS

5 . o One purpose of this paper is to clarify and simplify the
Actually, storage forl. sets of state metrics would suffice if the storaget ic of MAP d d f uti | cod hich is of
process were to proceed alternately forward and backward dvérnanches, opic 0 ecoders ot convolutional codes, which Is often

but with some added complexity in the process and its description. clouded by unintuitive presentations, and hence appears more
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complex than it actually is. By its inherent equivalence to g7] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communications.

combination of forward and backward VA processors, couple
by a dual-maxima computation, the appearance of complexi
is dispelled and quantitatively bounded. Another purpose is

to assess implementation complexity. By applying memor

management techniques similar to those used for ordinary
convolutional decoding, we have bounded the processing l0a€l
at no more than four times that of a conventional decoder
for the same code, with moderate memory requirements. Horj
turbo (parallel) and serially concatenated codes, employing

iterative soft-output decoders, the component code constrai
lengths are much shorter, which affords the possibility of
performing several decoding iterations without exceeding t

processing time of a single conventional decoder for the longér
constraint lengths in common practice. All of this guarantees
the feasibility of such decoders operating at multimegabit p

second data rates.
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