
260 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

An Intuitive Justification and a
Simplified Implementation of the MAP

Decoder for Convolutional Codes
Andrew J. Viterbi,Life Fellow, IEEE

Abstract—An intuitive shortcut to understanding the max-
imum a posteriori (MAP) decoder is presented based on an
approximation. This is shown to correspond to a dual-maxima
computation combined with forward and backward recursions
of Viterbi algorithm computations. The logarithmic version of
the MAP algorithm can similarly be reduced to the same form
by applying the same approximation. Conversely, if a correction
term is added to the approximation, the exact MAP algorithm is
recovered. It is also shown how the MAP decoder memory can be
drastically reduced at the cost of a modest increase in processing
speed.

Index Terms—Dual-maxima, MAP decoder, soft-decision met-
ric, Viterbi algorithm.

I. INTRODUCTION

T HE maximum a posteriori (MAP) decoding algorithm
for convolutional codes was proposed over two decades

ago1 by Bahl et al. [1], but initially received very little
attention because of its increased complexity over alternative
convolutional decoders for a minimal advantage in bit-error
rate performance. Recently, however, the MAP decoder has
enjoyed renewed and greatly increased attention as an iterative
soft-output decoder for the class of “turbo” codes discovered
by Berrouet al. [3], as well as the class of serial concatenated
codes with random interleaving, more recently proposed, ana-
lyzed, and simulated by Benedettoet al. [4]. Other soft-output
decoding algorithms have also been proposed and successfully
demonstrated, notably the SOVA algorithm of Hagenauer and
Hoeher [5]. Only the MAP algorithm, however, achieves
acceptable performance at levels within 1 dB of the
value which corresponds to Shannon capacity.

In the next section, we derive intuitively an approximation to
the MAP algorithm. We then proceed to justify this heuristic
approach by demonstrating its structural equivalence to the
formally derived MAP algorithm, particularly after the same
approximation is applied to the basic function required to
implement the latter. The connection is further strengthened
by showing that when the approximation is augmented by a
correction term, it becomes the same as the logarithmic form
of the MAP algorithm. In the last section, we consider imple-

Manuscript received July 19, 1996; revised August 5, 1997. This paper was
presented at the IEEE Information Theory Workshop, Haifa, Israel, June 1996.

The author is with QUALCOMM Inc., San Diego, CA 92121 USA.
Publisher Item Identifier S 0733-8716(98)00165-6.
1A similar forward–backward recursion algorithm for MAP demodulation

for channels with intersymbol interference had previously been published by
Chang and Hancock [2].

mentation complexity, and show that the MAP decoder can be
implemented with no more than four times the complexity of
a Viterbi decoder for the same code.

II. A N INTUITIVE APPROXIMATE

APPROACH TO THEMAP ALGORITHM

Let us first consider briefly the MAP2 soft-output decoder
for a block code. If is the information bit sequence andis
the sequence of received channel output symbols, then thea
posteriori probability ratio for the th bit is just

(1)

In preference to using as the soft-decision output, its
logarithm has the advantage that, for a memoryless channel,
the overall metric can be formed as sums, rather than products,
of independent components or metrics. Thus defining

(2)

for the soft-output metric, and

(3)

it follows from (1)–(3) that

(4)

Exponentiation enhances the differences between individual
metrics . Hence, typically, one term will dominate
each sum, which suggests the approximation

(5)

which is obviously also a lower bound. When applied to (4),
this yields

(6)

a metric which has been termed the “dual-maxima” rule for
block codes [6], [7].

2In the context of soft-output decoding which goes beyond the original
goal of Bahlet al. [1] of merely minimizing the bit-error probability, a more
appropriate term for this decoder would be just thea posteriori probability
(APP) computation algorithm.

0733–8716/98$10.00 1998 IEEE

VITERBI: JUSTIFICATION AND IMPLEMENTATION OF MAP DECODER 261

Fig. 1. MAP framework.

We now proceed to apply the same approach to a block
code generated as a convolutional code which is truncated
by forcing the encoder to a known (e.g.,) state as shown
in Fig. 1. While (4) and (6) still apply, they involve an
inordinately complex computation involving terms, where

is the length of the information bit sequence. We proceed
to simplify (6) by recognizing that the maximum metric
for a given state of the convolutional code’s trellis can
be obtained from the conventional Viterbi algorithm (VA).
Suppose then that we seek for the th bit, when thechannel
is memoryless. For simplicity, let the code trellis be binary, so
that one branch corresponds to a single bit (this can be easily
generalized to treat multiple bits per branch). Then we may
argue intuitively as follows, referring to Fig. 1. Let us generate
all of the state metrics at the ()th node by applying the
Viterbi algorithm (VA) from the initial node to this point. For
each state, the metric corresponds to the maximum metric over
all paths up to that node. Let us denote the state metrics at the
()th node and those at theth node , where

and are the generic states at the ()th and th nodes,
respectively. These are generated by the Viterbi algorithm,
whose definition is the recursion relation

(7)

where is the branch metric for the branch connecting
state at node to state at node . The state metrics
for the portion of the trellis beyond theth node can similarly
be computed recursively by a backward VA starting at the
last node (Fig. 1). Thus denoting the generic states at nodes

and , and , respectively, and the corresponding state
metrics and , the recursion for the backward VA

can be similarly stated as

(8)

where is again the metric from the branch connecting
to . This branch metric required by both recursions is just

the log-likelihood function

(9)

Thus, for two states and , for which a branch transition
does not exist, the metric is negative infinity, as seen from
(9). However, for all pairs () for which a branch transition
exists, we may combine the forward state metrics at node

, the backward state metrics at nodeand the metrics for
branches connecting the two sets to obtain for the approximate
metric of (6) the expression3

(10)

Note that the first maximum is over all branch pairs,at
node and at node for which the connecting branch
is shown as a solid line in Fig. 1, while the second maximum
is over all pairs for which the connecting branch is shown as
a dotted line.

3It was pointed out by a reviewer that a similar structure was previously
proposed in [8]. However, the reference did not show the evolution of the
approximate from the exact formulation nor the detailed relationship between
the two, as described in this and the next sections.

262 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

We next show that this result can be reached by applying
the approximation (5) to the exact formulation of the MAP
decoder; conversely, we shall also show that the exact result
can be obtained by applying a correction term to the maximum
functions of (7), (8), and (10).

III. RELATIONSHIPS OF THEAPPROXIMATE

TO THE EXACT FORMULATION

Hagenaueret al. [9] obtained an elegant derivation of the
MAP decoder by partitioning the joint probability

where and are the sequences of received symbols
before and after theth branch. Replacing the summations in
the numerator and denominator of (1) by the summations over
all state pairs () for which is +1 and , respectively,
one obtains for the logarithm of (1)

(10)

with the recursions for and

(7)

(8)

and where is again the branch metric given by (9). Clearly,
primed (7), (8), and (10) become the same as their un-
primed counterparts, developed intuitively, if we use (5) to
approximate the logarithm of the sum-of-exponentials by the
maximum.

More interesting, however, is to apply the reverse process
to the approximate development of the previous section.
Following several authors [10]–[13], we define the function

(11)

It follows from the definition that

It also follows that just as

so also

(12)

Thus, replacing max by maxin the approximate expres-
sions (7), (8), and (10), we obtain the exact expressions (7),
(8), and (10). This justifies our labeling in Fig. 1 the forward

and backward recursions as “generalized Viterbi algorithms”
and the computation of as a “generalized dual-maxima”
computation.

We note finally, as has been observed in [11] and [12],
that the implementation of is only slightly more
complex than the implementation of . The latter
requires a subtractor to form () followed by a comparator
with zero, while requires additionally only a
read-only memory (ROM) which outputs the correction term

given the input , which is the subtractor
output. This also shows that, just as for a Viterbi decoder, a
common term can be subtracted from all metrics at a given
node to avoid overflows, with no consequence to performance.

IV. I MPLEMENTATION FOR MEMORY REDUCTION

Now that the implementation has been reduced to a series of
common decoder operations, the obvious remaining drawback
of the MAP algorithm is the excessive memory required. As
described in the above, the entire state metric history must be
stored, out to the end of trellis, at which point the backward
algorithm begins and decisions can be output starting with the
last branch, without the need to store any but the last set of
state metrics computed backward. This storage requirement is
obviously excessive; for a 16-state code, assuming 6-bit state
metrics, it would require 96 bits of storage per branch, for a
total of 96 000 bits for a 1000-bit block, judged to be minimal
for turbo code performance.

We now describe a technique4 which reduces the memory
requirement for a 16-state code to just a few thousand bits,
independent of the block length. It can best be described by
referring to the timing diagram of Fig. 2, which indicates the
bit processing times for one forward processor and two back-
ward processors operating in synchronism with the received
branch symbols, i.e., computing one set of state metrics during
each received branch time (bit time for a binary trellis).

The basis for this approach is the fact that the VA can
start cold in any state at any time; initially, the state metrics
generated are nearly worthless, but after a few constraint
lengths, the set of state metrics are as reliable as if the
process had been started at the initial (or final) node. Let
this “learning” period consist of branches. (For a 16-state
code, is more than sufficient, amounting to over
six constraint lengths of the convolutional code.) This applies
equally to the backward as well as the forward algorithm, and
assumes that all state metrics are normalized by subtracting at
every node an equal amount from each.

Let the received branch symbols be delayed bybranch
times. Then the forward algorithm processor starts at the initial
node at branch time , computing all state metrics for each
node every branch time and storing these in memory. The
first backward processor starts at the same time, but processes
backward from the th node, setting every initial state metric
to the same value, not storing anything until branch time,
at which point it has built up reliable state metrics and it

4This approach is similar to the “sliding block” techniques of Barbulescu
[14], Pietrobon [15] and Benedettoet al. [13], but differs in the timing
and storage requirements and the coordination of the forward and backward
processing.

VITERBI: JUSTIFICATION AND IMPLEMENTATION OF MAP DECODER 263

Fig. 2. Processor’s timing.

encounters the last of the first set of forward computed
metrics. (In Fig. 2, the top line indicates the node indexes;
the remaining lines are labeled according to the times at
which the branches are processed. Also, unreliable metric
branch computations are shown as dashed lines.) At this point,
the generalized dual-maxima process is performed according
to (10), the th branch soft decisions are output, and the
backward processor proceeds until it reaches the initial node at
time . Meanwhile, starting at time , thesecondbackward
processor begins processing with equal metrics at node,
discarding all metrics until time , when it encounters the
forward algorithm having computed the state metrics for the

th node. The generalized dual-maxima process is then
turned on until time , at which point all soft decision outputs
from the th to the th node will have been output. The two
backward processors hop forward branches every time they
have generated backward sets of state metrics, and they
time share the output processor since one generates useless
metrics while the other generates the useful metrics which are
combined with those of the forward algorithm.

Note that nothing needs to be stored for the backward
algorithms except for the metric set of the last node, and these
only when reliable metrics are being generated. The forward
algorithm only needs to store sets of state metrics5 since,
after its first computations (performed by time), its first
set of metrics will be discarded, and the emptied storage can
then be filled starting with the forward-computed metrics for
the ()th node (at branch time). Thus, the storage
requirements for a 16-state code using 6-bit state metrics is just

bits in all, which for amounts to approximately
6 bits. (Note that a conventional Viterbi decoder with

5Actually, storage forL sets of state metrics would suffice if the storage
process were to proceed alternately forward and backward everyL branches,
but with some added complexity in the process and its description.

64 states and a 32-bit path memory requires about 2bits of
memory, while a decoder requires at least a 40-bit
path memory resulting in over of storage.) We conclude
that these storage requirements are no greater than those of a
conventional VA for commonly used codes.

As for processing requirements, it would appear that the
VA load is thus tripled; furthermore, the complexity of the
generalized dual-maxima process is no greater than that of
the forward or backward VA processor so that, overall, the
complexity is not more than quadrupled—also, the chain-back
procedure is avoided. Further, since the code is shorter, the
number of states is much reduced relative to the and

examples just given. Since the MAP decoder (with short
constraint length) is only justified for iterative decoding of
turbo or serially concatenated codes, we must also account for
the required number of iterations, which are on the order of
4–8. Thus, a pair of 16-state concatenated decoders performing
four iterations imposes double the processing load of a
Viterbi decoder; a pair of four-state concatenated decoders
performing eight iterations imposes the same load as a
decoder.

Minimum decoding delay is set by the length of the block
or its corresponding interleaver. If the processors described
above operate at just the speed of the received branches, it
is necessary to pipeline the successive iterations, and hence
multiply the minimum delay by the number of iterations. If,
on the other hand, the processors can operate at a much higher
speed, then additional delay can be much reduced.

V. CONCLUDING REMARKS

One purpose of this paper is to clarify and simplify the
topic of MAP decoders of convolutional codes, which is often
clouded by unintuitive presentations, and hence appears more

264 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

complex than it actually is. By its inherent equivalence to a
combination of forward and backward VA processors, coupled
by a dual-maxima computation, the appearance of complexity
is dispelled and quantitatively bounded. Another purpose is
to assess implementation complexity. By applying memory
management techniques similar to those used for ordinary
convolutional decoding, we have bounded the processing load
at no more than four times that of a conventional decoder
for the same code, with moderate memory requirements. For
turbo (parallel) and serially concatenated codes, employing
iterative soft-output decoders, the component code constraint
lengths are much shorter, which affords the possibility of
performing several decoding iterations without exceeding the
processing time of a single conventional decoder for the longer
constraint lengths in common practice. All of this guarantees
the feasibility of such decoders operating at multimegabit per
second data rates.

REFERENCES

[1] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,”IEEE Trans. Inform.
Theory, vol. IT-20, pp. 284–287, 1974.

[2] R. W. Chang and J. C. Hancock, “On receiver structures for channels
having memory,”IEEE Trans. Inform. Theory,vol. IT-12, pp. 463–468,
1966.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding: Turbo codes,” inProc. IEEE Int. Conf. Com-
mun., Geneva, Switzerland, 1993, pp. 1064–1070.

[4] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “Serial concate-
nation of intereleaved codes: Performance analysis, design and iterative
decoding,” inTDA Progr. Rep.42-126, Jet Propulsion Lab., Pasadena,
CA, pp. 1–26, 1996.

[5] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision
outputs and its applications,” inProc. IEEE GLOBECOM, Dallas, TX,
1989, pp. 47.1.1–47.1.7.

[6] A. M. Viterbi and A. J. Viterbi, “Noncoherent receiver employing a
dual-maxima metric generation process,” U.S. Patent 5 442 627, 1995.

[7] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communications.
Reading, MA: Addison-Wesley, 1995, ch. 4, pp. 77–121.

[8] Y. Li and B. Vucetic, “A generalized MLSE algorithm,” inProc. Int.
Conf. Neural Networks and Signal Processing, INNSP’95, China, 1995,
pp. 718–721.

[9] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary
block and convolutional codes,”IEEE Trans. Inform. Theory, vol. 42,
pp. 429–445, 1996.

[10] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal
and sub-optimal MAP decoding algorithms operating in the log domain,”
in Proc. ICC’95, Seattle, WA, 1995, pp. 1009–1013.

[11] S. S. Pietrobon, “Implementation and performance of a serial MAP
decoder for use in an iterative turbo decoder,” inProc. IEEE Int. Symp.
Inform. Theory, Whistler, B.C., Canada, 1995, p. 471.

[12] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “Soft-output
decoding algorithms in iterative decoding of turbo codes,”JPL TDA
Progr. Rep., vol. 42-124, pp. 63–87, 1995.

[13] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft input soft
output MAP module to decode parallel and serial concatenated codes,”
in TDA Progr. Rep.42-127, Jet Propulsion Lab., Pasadena, CA, pp.
1–20, 1996.

[14] S. A. Barbulescu, “Iterative decoding of turbo codes and other con-
catenated codes,” Ph.D. dissertation, Univ. South Australia, pp. 23–24,
1996.

[15] S. S. Pietrobon, “Efficient implementation of continuous MAP decoders
and a synchronization technique for turbo decoders,” inProc. Int. Symp.
Inform. Theory Appl., Victoria, B.C., Canada, 1996, pp. 586–589.

Andrew J. Viterbi (S’54–M’58–SM’63–F’73–
LF’97) is Vice Chairman and cofounder of
QUALCOMM Incorporated. He has spent equal
portions of his career in industry, having previ-
ously cofounded LINKABIT Corporation, and in
academia as Professor in the Schools of Engineering
at both University of California at Los Angeles and
University of California at San Diego, at which he
is now Professor Emeritus.

Dr. Viterbi is a member of both the National
Academy of Engineering and the National Academy

of Sciences, among the numerous honors he has received.

