
Routing-State Abstraction Based on Declarative
Equivalence

Kai Gao† Xin Wang× Jun Bi† Guohai Chen Andreas Voellmy+ Y. Richard Yang×+
×Tongji University †Tsinghua University +Yale University

ABSTRACT
Providing abstract views on top of raw network state can pro-
vide substantial benefits to both the network OS, who man-
ages the network state, and the network control applications,
who consume the network state. In this paper, we conduct
the first study to provide control applications with access to
the routing state, which is a key component of the network
state. We design a simple, efficient algorithm to look up a
route query in a flow rule manager (FRM), which is a com-
mon data structure storing a network’s routing state. More
importantly, we design a simple, novel interface based on
a principle called declarative equivalence for network con-
trol applications to query the routing state, and the network
OS uses redundancy elimination to compute equivalent, but
minimal routing state, providing the first, novel, systematic
algorithm to compute abstract, compressed routing state. We
implement our design in OpenDaylight and show substantial
performance benefits.

1. INTRODUCTION
A major lacking of the current SDN architecture is the

missing of key abstractions in the control plane, where dis-
tribution, configuration, and forwarding are identified as the
three key components of SDN [11]. Specifically, distribu-
tion collects a global network state to allow centralized con-
trol programming; configuration provides abstract views of
the centralized state to simplify querying (read) and/or pro-
gramming (write) network state; and forwarding provides a
unified model of the distributed forwarding elements. In the
last few years, substantial progress has been made in dis-
tribution (e.g., the design and implementation of OpenDay-
Light [10] and ONOS [8]) and forwarding (e.g., OpenFlow
1.0 [7] to 1.4 [9] and P4 [3]). However, little progress has
been made on configuration abstractions.

Providing abstract views on top of raw network state can
provide substantial benefits to both the network OS, which
manages the network state, and the network control appli-
cations, which consume the network state. First, a more
compact abstract network state view can reduce the require-
ment on client scaling. The raw network state of a large
network may consist of a large number of network devices.
A consumer of such a large amount of information must be
scalable. Second, an abstract network state view can better
protect the privacy of the provider of the network. Third,
an abstract network state view may substantially reduce the
load of information updates.

Despite the aforementioned substantial benefits, there are
few systematic studies on constructing abstract views on top

of raw network state. The existing abstract network-state
views, such as the single-node view (e.g., NOX [5], ALTO [1]),
are statically constructed, simple views. In the general case,
let view() be the function that constructs an abstract view for
a network control function f . One can see that view() may
compute an on-demand, instead of static view that will de-
pend on not only f but also functions {f ′}, which construct
the network state that f depends on. For example, let f be a
flow-rate scheduling function, for fixed routing. Then {f ′}
will be the functions that contribute to the construction of
the routing in the network. The ultimate goal of our project
is to develop a systematic framework to design view().

In this short paper, we make a first step toward realizing
the preceding goal. In particular, we focus on control appli-
cations who need to access the routing state of the network
OS. We say that these applications request the routing-state
query service of the network OS. As routing is the most ba-
sic service of a network, the routing-state query service as
one of the most basic services of network state abstraction.

Providing an efficient, compact routing-state query ser-
vice, however, is not trivial. First, as a basic step, consider a
control application who queries for the route (or the proper-
ties of the route) of a flow (e.g., a Web session). Looking up
the route in the data structure of the network OS storing the
routing state, however, may not be trivial. In particular, cur-
rent network OS’es such as OpenDayLight and ONOS use
a data structure called flow rule manager (FRM) to aggre-
gate the effects of potentially complex routing computation
involving many components (e.g., customized routing). As
we will show, looking up the route in FRM of a customized
route query is not trivial; there is no existing published algo-
rithm to address this issue.

Further, and more importantly, it may not be desirable at
all to return raw routes in providing the routing-state query
service, due to privacy, scalability concerns, as we already
discussed in the general setting. For example, a flow-rate
scheduling application (assume route is given) may not need
to know the exact routes of all source-destination pairs that
the application schedules, as long as shared bottlenecks are
given. Revealing minimal route information is a key bene-
fit of routing-state abstraction, but there is no existing algo-
rithm that computes abstract, minimal routing states.

The key contribution of this paper is that we conduct the
first study to address the preceding two issues. In partic-
ular, we design a simple, efficient algorithm to look up a
route query in FRM. More importantly, we design a simple,
declarative API for a network control application to specify
its need (i.e., requirements) of routing and topology state,

1

and the network OS, using redundancy elimination as a key
step, computes the minimal, but equivalent routing state,
providing the first, novel, systematic algorithm to compute
abstract routing states. We implement our design in Open-
Daylight and evaluate its performance. Even for a small
topology, we achieve compression ratio close to 5.

We emphasize that our design is still in a relatively early
stage. It provides a foundation for potential standard [2],
and opens up substantial new capabilities that should be ex-
plored but we have not explored in this paper. In particular,
the completeness of our design is a major future work item,
although we provide a basic completeness result.

The rest of this paper is organized as follows. Section 2
gives examples to illustrate both the use cases and the is-
sues to be solved to support the use cases. In Section 3, we
give an overview of design. In Section 4, we give the novel
algorithms to compute abstract routing state based on redun-
dancy elimination. Section 5 presents evaluation results.
2. MOTIVATION

We start with examples to both provide basic use cases of
the routing-state query service and illustrate the key issues to
be solved. We choose the examples to be as simple as pos-
sible for illustration purpose. Real life examples are more
complex and we evaluate some in Section 5.

Figure 1 is the example network, which has 7 switches
(sw1 to sw7). Switches sw1/sw3 provide access on one side,
sw2/sw4 provide access on the other side, and sw5 − sw7

form the backbone. End-hosts (eh1 to eh4) are connected
to access switches sw1 to sw4 respectively. Assume that the
bandwidth of each link is 100 Mbps.

Figure 1: Example network.
With the flexibility of new control capabilities (e.g., SDN),

the network uses a customized routing algorithm. Further-
more, assume that the network implements access control
using Group Based Policy (GBP) [4] as follows.TODO. As-
sume that the network uses an active SDN controller such as
OpenDayLight or ONOS, the final effects of the preceding
algorithms will be aggregated into the flow rule store man-
aged by the flow rule manager.
Basic routing state query: First, consider the use case that
the administrator of the network is asked about the total avail-
able bandwidth of an FTP session from eh1 to eh2. To an-
swer this question, the administrator should be able to issue
a query command to determine the route from eh1 to eh2.

The storage of the routing state in FRM, however, does not
provide a direct answer to the preceding query. The admin-

istrator could display the whole FRM and try to manually
match the rules in each switch to determine the route, but
this is not productive.
Routing state abstraction: Now, consider a higher-layer
network control application, which conducts rate control.
Assume that the routing state query is to obtain the available
bandwidth of two flows: eh1 to eh2, and eh3 to eh4, respec-
tively. Simply returning a number for each flow may not
be sufficient. Assume that the returned result is 100 Mbps
for each flow. But the application cannot determine that if it
schedules the two flows together, whether it will obtain a to-
tal of 100 Mbps or 200 Mbps. This depends on whether the
routing of the two flows shares a bottleneck in the current
routing state:

1. If the two flows use different paths, for example, when
the first uses sw1→ sw5→ sw7→ sw2, and the sec-
ond uses sw3→ sw5→ sw6→ sw7→ sw4. Then the
application will obtain 200 Mbps.

2. On the other hand, if the two flows share a bottleneck,
for example, when both use the direct link sw5→ sw7,
then the application will obtain only 100 Mbps.

To allow applications to distinguish the two possible cases,
the network needs to provide more details on the routing
state. A naive solution to this problem, then, is to return the
two complete, detailed routes and the available bandwidth of
each link on the routes. But this may not be desirable, as the
application may not need the details and/or may not have the
permission to see networks details.

Now consider what route abstraction can achieve. Assum-
ing case 2 (shared bottleneck), it is sufficient for the net OS
to return a single abstract link for each flow: ane1(≤ 100Mbps),
where ane stands for abstract network element.

Consider a variation of the preceding case. Assume that
the capacity of the link from sw1 to sw5 is 70 Mbps, while the
rest are still at 100 Mbps. Then the abstract route from eh2
to eh4 becomes ane1(≤ 100Mbps) and ane2(≤ 70Mbps).

For simple networks such as the example, one can man-
ually construct the minimal, abstract routes as above. For
real networks with complex topologies and many flows, an
efficient algorithm is essential, and this is a key problem that
we solve in this paper.

3. SERVICE OVERVIEW
We now present our design. This section gives the API,

the basic work flow, and then the basic routing-state lookup
algorithm. The details of the route abstraction/compression
algorithm is specified in the next section.

3.1 The API and Basic Work Flow
The more the network OS knows about what a network

control application f needs regarding a routing state query,
the more concise the network OS response can be. Hence,
an extreme API is that the complete network control appli-
cation f (i.e., the code and related state) is sent to the net-

2

work OS. This, however, can create substantial complexity
in the routing-state query component, as even some simple
program properties (e.g., halting) are already difficult to ana-
lyze. Also, in settings such as interdomain, the owner of the
control function f may not want to provide the complete f
to the network OS. Another extreme API is that each routing
state query provides only the most basic information (i.e., the
source and the destination). This, however, does not provide
enough information for the routing-state service to compute
efficient route abstraction/compression. Hence, the returned
routes will be independent of individual control functions,
missing out opportunities on abstraction or compression.

Our API strikes a careful balance between the two ex-
tremes, using a principle that we call declarative equiva-
lence. Specifically, in a declarative-equivalence design, each
network-state query provides a declarative description of the
control function f , to describe what it needs regarding the
network state query, so that the network OS provides a sim-
pler, abstract, but equivalent network state, according to the
equivalence condition in the declaration. Instantiating the
preceding in the context of routing-state query, Figure 2 gives
the grammar to specify the API that a control application re-
quests the routing-state query service:
rs-query := flow-list equiv-cond
flow-list := flow [flow-list]
flow := generic-match-condition

Figure 2: The Routing-state query API.
Specifically, the key component of a routing-state query is

a list of flows (flow-list). Traditional protocols such as
PCEP and ALTO specify a flow by providing only a source
IP address and a destination IP address. The emergence of
SDN, however, provides much routing flexibility and hence
the route of a packet can depend on not only the IP addresses
but also other fields such as TCP/UDP ports. Thus, it is nec-
essary that a query to the routing state also provides the same
flexibility. As a result, each flow in the API is specified by a
match condition, as in OpenFlow. For simplicity of discus-
sion, we focus on unicast flows in this paper.

Another key component of a routing-state query is the de-
clared equivalence condition. A particular type of equiva-
lence condition, in the context of routing-state query, is the
equal range condition. We give the detailed specification of
the condition in Section 4.

After receiving a routing-state query, the network OS re-
trieves the route for each flow, and then computes the result
after compression (abstraction). Our API provides an indi-
cator to allow the control application to receive updates to
the query results, achieving push notification. The push no-
tification is implemented using HTTP SSE.
3.2 FRM Lookup
Problem: A basic step in the work flow is to lookup the
route of each flow specified in a routing-state query. As we
illustrate in Section 2, a key issue is due to potential mis-
match of the match in the routing-state query and the current
routing state. Hence, the key idea of our lookup algorithm is

maintaining a union of match of available rules and skipping
the rule which has a match included in the union match even
it has an intersection with the queried match. ’Available’
here means the rule has an intersection with the match in the
routing-state query and also it isn’t covered by higher prior-
ity rules. Note that the algorithm assumes that the full rout-
ing state is stored in FRM. Hence, we consider a proactive
routing system. In the case of reactive routing (e.g., [12]),
the FRM may be only a cache of routing decisions. Since
proactive routing is a more common routing design, we fo-
cus on this setting and leave the case of reactive routing as
future work.
Algorithm 1 Find ONE Path in FRM
Require:

R - the set of rules stored in FRM
S - the set of switches in the network
M - the match of flow
l - the ingress link

Ensure: P - the matching paths
procedure MERGERULE(match, action, r, M)

I ← Intersection(Match(r),M)
if I 6= ∅ and I * match then

match← match ∪ I
action← action ∪ Action(r)

function FRMLOOKUP(R, S, M , l)
visited ← ∅, path← ∅
p← the ingress port for l
s← the switch that owns p
while true do

if p ∈ visited then
return ∅ . Loop

visited ← visited ∪ {p}
match← ∅, action← ∅
M ′ ←M ∪ {ingress_port = p}
Rs ← rules on s
while Rs 6= ∅ do

r ← the rule with highest priority in Rs

Rs ← Rs \ {r}
MergeRule(match, action, r,M ′)

if M ′ 6= match then
action← action ∪ {drop}

. Rules for unmatched flows
if action has arbitary destinations then

return ∅ . We don’t want arbitary paths
if action is drop then

return ∅
s′ ← next-hop(action)
p← the ingress port for (s, s′) on s′

path← path ∪ {(s, s′)}
if (s, s′) is an egress link then

return path
s← s′

Algorithm 1 gives the lookup algorithm. It simulates the
process of packet forwarding to find the path for a given flow

3

characterized by a match condition M . The algorithm starts
from an ingress port and the corresponding ingress switch.
For each switch it goes from the flow rule with the highest
priority to the one with the lowest and computes the inter-
section of the rule’s matching condition and M , denoted by
I . There are two cases when a rule will be deprecated: I = ∅
which indicates that the rule has no effect on this flow, and
I ⊆ match which means this rule is overlapped by another
one with a higher priority. The variable match represents the
subset of M that is already matched by some rule. It will be
updated every time a new matching rule is found and so will
the action set.

Currently we do not support multiple paths so the algo-
rithm would report that no valid path is available when the
action set contains arbitary operations, such as pushing vs.
no pushing vlan tags, routing to different ports, etc.

If the actions for M on a switch are identical, either the
flow is dropped or an egress port is provided Dropping the
flow is considered a sign that the path is not valid so we
return an ∅. As with the egress port the algorithm adds its
corresponding link to the path. If the paired ingress port is
from an external switch, the algorithm terminates and returns
the path. Otherwise it will proceed with this ingress port
unless a loop is detected.
4. ROUTE ABSTRACTION/COMPRESSION

After retrieving the route(s) of each flow, a simplistic routing-
state service will just return all links (and their attributes) on
the routes. This section develops algorithms to compute ab-
stract, compressed routing state.

4.1 Problem Definition
Ntations: Let attr be a vector for a given link attribute. Let
vector R[i] represent the result of route lookup for flow i,
where R[i][e] is the fraction of traffic of flow i on link e, ac-
cording to the current routing state. For example, the result
of route lookup for the second use case in Section 2 can be
represented as the following:

R[0] R[1] avabw delay bg-tr
link1 1 0 1G 2ms ...
link2 1 0 100M 5ms ...
link3 1 1 100M 5ms
Link4 1 1 100M 5ms
link5 0 1 100M 7ms
link6 0 1 1G 4ms
...
linkM

Although a routing-state query without abstraction/com-
pression will return all of the data shown above, route ab-
straction/compression will select only a subset link attributes
(columns) and some links (rows). Elimination of links from
the complete result achieves compression but may result in
loss of information to the control application. Hence, a spec-
ification on conditions whether the elimination of a set of
links from the complete result leads to information loss or
not is the key to the problem definition. Such a specifica-
tion, however, can be provided only by the application itself.

Insight: Specifically, in the general case, the result from the
routing-state query will become the input parameters for the
algorithms in the control application, to help the control ap-
plication to make decisions. Let x be the vector of the de-
cision variables in the control application. Then, one can
identify that a generic structure of the control application is
to solve/optimize obj(x), subject to two types of constraints
on x: (1) those do not involve the results from the routing
state query; and (2) those do. Let the first type limit x ∈ X0.
Consider the second type. The state of art in algorithmic
design typically handles only linear constraints, and hence
the set S of constraints of this type will be of the format
{aTk x ≤ bk}, where ak is a vector, and bk a constant. Hence,
it is in ak or bk where the result from the routing-state query
appears. Let Ax ≤ b as a matrix format to represent the
whole set of constraints.

Now, consider the case that a link appears in the com-
plete result of a routing-state query, but its parameters do
not appear in a boundary constraint among the aforemen-
tioned constraints, then the link may not need to appear in a
compressed routing-state query result.

DEFINITION 1 (EQUIVALENCE). Two constraint sets
S1 and S2 of a network control function are equivalent if
and only if they limit the decision variables in the same way:
X0 ∩ {x : A1x ≤ b1} = X0 ∩ {x : A2x ≤ b2}

DEFINITION 2 (REDUNDANT). A constraint s is redun-
dant to a constraint set S if and only if s ∈ S and the two
sets S and S \ {s} are equivalent.

DEFINITION 3 (MINIMAL CONSTRAINT SET). A con-
straint set S is minimal if and only if for any s ∈ S, s is not
redundant.

DEFINITION 4 (EQUIVALENT ROUTING-STATE QUERY).
A declarative equivalence based routing-state query is one
where the querier (control application) declares X0 and a
set of constraints S = {aTk x ≤ bk}. If the attribute of a link
does not appear in a minimal constraint set, the link can be
eliminated from the routing-state result.

A concern one may have is that the preceding definition
may be limited. Consider the case of hierarchical networks,
where the upper-layer network (i.e., the network control ap-
plication) conducts routing (traffic engineering) in its layer
and uses routing-state query to obtain the state of the lower
layer (i.e., the network OS). Let flows be the n(n−1) source-
destination pairs in the upper layer network with n nodes.
Let x be the set of decision variables controlling the rout-
ing in the upper-layer, where each element is the routing on
each of the preceding flows. Let X0 encode the constraints
on traffic demand. We have the following result:

PROPOSITION 1 (UTE COMPLETENESS). Any upper-
layer routing (traffic engineering) algorithm where the goal
of routing-state query in the lower-layer network is to avoid

4

congestion of shared links or shared risk groups can be im-
plemented using the declarative equivalence based routing-
state query. We refer to this as the upper-layer traffic en-
gineering (UTE). Let A = R and b = cap. Then the
routing-state query returns a link only if the link may be-
come a bottleneck in the upper layer network.

4.2 A Basic Algorithm
Although the preceding definition defines the problem pre-

cisely, it does not provide an efficient algorithm yet. A naive
algorithm is for the network OS to try out each link, but this
can lead to an exponential algorithm. We now develop prac-
tical algorithms to eliminate the redundant constraints. The
algorithm is based on Lemma 2; see our technical report for
proofs on the formal results in this paper.

LEMMA 1 (SUBSET PRODUCES BETTER SOLUTION).
If S0 ⊆ S1, for any objective function

y = maxaTx

the corresponding solutions y0 and y1 with constraints S0

and S1 respectively satisfies that y0 ≥ y1.

LEMMA 2 (REDUNDANCY CRITERION). When x is a
vector of continuous variables, ∀s : aTs x ≤ bs ∈ S, s is
not redundant if and only if bs is less than the solution to the
objective function

y = maxaTs x

on the constraints of

A′x ≤ b′

where A′ is the matrix form of set S \ {s}.

In this subsection we propose Algorithm 2 and prove its
correctness. The algorithm generates the minimal equiva-
lent subset of a given constraint set based on Lemma 2.
Algorithm 2 Find the Minimal Equivalent Constraint Set (1)
Require: S - the set of linear constraints
Ensure: S0 - the minimal equivalent subset of S

function MINEQUIVCONSTRAINTSET(S)
S0 ← ∅
for s ∈ S do

s1 ← transform s into standard form aT1 x ≤ b1
constraints← S \ {s}
obj_func← a1
y ← SolveLP(constraints, obj_func)
if b1 < y then

S0 = S0 ∪ {s}
return S0

THEOREM 1 (CORRECTNESS OF ALGORITHM 2). S0

is minimal and S0 is equivalent to S.

4.3 Extension: Fast Elimination Algorithm for
0-1 Constraints

The performance of Algorithm 2 can be improved when
the constraints have certain properties. As in the case of
upper-layer routing, in the case of single-path routing, one
can observe that each entry in the matrix is either 0 or 1.
This simple property, however, allows substantial speedup.

LEMMA 3. When ∀s ∈ S, s can be transformed into the
format of aTs x ≤ bs and as ∈ {0, 1}n \ {0},x ∈ R+

n, bs ∈
R+, let S0 denote the minimal equivalent subset of S.

If there is only one element s0 with the minimal capacity,
s0 ∈ S0. If there are multiple elements with the minimal
capacity, the one with most 1 coefficents must belong to S0.

From Lemma 3 we can conclude that a certain element
of the constraint set is always in the minimal equivalent
subset. Also it has specified how to find such a constraint.
Utilizing the lemma, we develop Algorithm 3.
Algorithm 3 Find the Minimal Equivalent Constraint Set (2)
Require: S - the set of linear constraints
Ensure: S0 - the minimal equivalent subset of S

function MINEQUIVCONSTRAINTSET(S)
S0 ← ∅
S ← {s1 ← the standard form of s,∀s ∈ S}
while S 6= ∅ do

s0 ← FindMinimalElement(S)
if S0 = ∅ then

S0 ← S0 ∪ {s0}
else

constraints← S0

obj_func← coefficients(s0)
y ← SolveLP(constraints, obj_func)
if bs0 < y then

S0 ← S0 ∪ {s0}
S ← S \ {s0}

return S0

PROPOSITION 2 (CORRECTNESS OF ALGORITHM 3).
Algorithm 3 will return the minimal equivalent subset of S.

4.4 Summary
Both algorithms invoke SolveLP |S| times. The amount

of constraints increases from 1 to a maximum number of
|S|−1 in Algorithm 3 while it always stays |S|−1 in Algo-
rithm 2. However, Algorithm 2 has less requirements on the
constraint set and thus are capable of handling generic prob-
lems. Also the performance can be enhanced using parallel
computing techniques.

5. EVALUATIONS
In this section, we evaluate the benefits of routing ab-

straction for the UTE use case (Section 4.1) to show that
our design (1) generates compressed routing states, (2) im-
proves the performance of UTE, and (3) achieves routing
states push notification efficiently.

5

#Flow #Origin #Compressed Rate RT3(ms) RTG(ms)
5 19 4 0.21 375 692

10 30 7 0.23 764 1843
20 45 12 0.27 866 1636
30 56 18 0.32 1543 3621
40 62 23 0.37 2493 4094
50 67 27 0.40 3403 5975
60 67 26 0.39 3416 6408
70 72 40 0.56 5431 13955
80 68 27 0.40 3550 10077
90 73 39 0.53 6173 18643
100 69 41 0.59 6557 21696

Table 1: Compressed links, running time at different
number of flows
5.1 Compressed routing states

We first evaluate the compression rate and performance of
routing abstraction.

Topology: We use the topology from [6] and name it Intern-
ode. It has 65 switches and 78 links. We divide the switches
20 internal and 45 external switches. The links between in-
ternal switches have higher bandwidth than those between
external switches. We use shortest path as base routing.

Results: Table 1 shows the results of the number of com-
pressed links, compression rate, and running time of Algo-
rithms 2 and 3, as we vary the different number of flows.
#Flow gives the number of flows in a query. We make the
following observations. First, our algorithms can achieve
large compression ratios. Column 2 (#Origin) shows the
origin number of links and column 3 (#Compressed) gives
the compressed number of links. We can see that with 5
flows, our algorithm reduces the number of links by a factor
of almost 5.

Second, Algorithm 3 can speedup compression. Column
5 (RT3) gives the running time of Algorithm 3 and column
6 (RTG) is the running time of a general compression algo-
rithm that filters links by removing one link and computing
optimum for the rest by LP. We can see that as the number
of flows increasing, for example, for 100 flows, Algorithm 3
can be 3 times faster.

5.2 Push notification
We then evaluate the performance of push notification.

Update cases: We evaluate four cases of routing state change.
Specifically, we divide the links into two sets: S1 and S2,
where S1 is the set of links that should be sent to higher-layer
application and S2the rest. Considering the available band-
width of links could increase or decrease, we can divide link
capacity updates into 4 cases: (1) increasing at S1 (case1),
(2) decreasing at S1 (case2), (3) increasing at S2 (case3),
(4) decreasing at S2 (case4). It’s obvious that case2 and
case3 have no effect to the computation of application. So
we only evaluate case1 and case4.

Results: Figure 3 shows the running time and the number of
entries of push notification at the different number of flows.
We can observe that our system supports incremental up-
dates essentially. For case1, our system can skip the links
with smaller c than the original value of the updated link.

Figure 3: The running time and number of updates in
push notification.
And for case4, our system should only consider S1 and the
updated one since the rest links in S2 have no chance to add
in S1. It shows that the running time of updating of both
cases is smaller than the complete one (line chart) and also
the running time of case1 is higher than case4 since the
problem set of case4 is S1 plus the updated one which is
much smaller than case1. Also the bar graph specifies the
number of entry to push. 0 means that even the network OS
receives updates from underlay network, the updates don’t
need to push to the application. Note that for case2 and
case3, the number of entries for pushing should be all zero.

6. REFERENCES
[1] R. Alimi, R. Penno, and Y. R. Yang. The ALTO Protocol, RFC 7285,

2014.
[2] G. Bernstein, Y. Lee, W. Roome, M. Scharf, and Y. Yang. ALTO

topology extension: Path vector as a cost mode. (IETF
Internet-Draft), draft-yang-alto-path-vector-00.txt, 2015.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., 44(3):87–95, July 2014.

[4] Group-based Policy (GBP). https://wiki.opendaylight.
org/view/Group_Policy:Architecture/OVS_
Overlay#Packet_Processing_Pipeline.

[5] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. Nox: Towards an operating system for networks.
SIGCOMM Comput. Commun. Rev., 38(3):105–110, July 2008.

[6] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
internet topology zoo. Selected Areas in Communications, IEEE
Journal on, 29(9):1765 –1775, october 2011.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
Enabling innovation in campus networks. SIGCOMM Comput.
Commun. Rev., 38(2):69–74, Mar. 2008.

[8] ONOS. http://onosproject.org.
[9] Open Networking Foundation. Openflow switch specification 1.4.0.

Open Networking Foundation (on-line), Oct. 2013.
[10] OpenDaylight. http://www.opendaylight.org.
[11] S. Shenker. Software-defined networking at the crossroads. Stanford

seminar, 2013.
[12] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak. Maple:

Simplifying sdn programming using algorithmic policies. In
Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, pages 87–98. ACM, 2013.

6

